1
|
Moore AT, Berhie Y, Weislow IS, Koculi E. Substrate Specificities of DDX1: A Human DEAD-Box Protein. ACS OMEGA 2025; 10:2598-2607. [PMID: 39895751 PMCID: PMC11780465 DOI: 10.1021/acsomega.4c07522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/12/2024] [Accepted: 12/25/2024] [Indexed: 02/04/2025]
Abstract
DDX1 is a human DEAD-box RNA helicase involved in various stages of RNA metabolism, from transcription to decay, and is consequently implicated in many human diseases. The nucleotides hydrolyzed by DDX1 and the structures of the nucleic acids upon which it acts in cells remain largely unknown. In this study, we identify the nucleic acid sequences and structures that support DDX1's nucleotide hydrolysis activity and determine its nucleotide hydrolysis specificity. Our data demonstrate that DDX1 hydrolyzes only ATP and deoxy-ATP in the presence of RNA. The ATP hydrolysis activity of DDX1 is stimulated by single-stranded RNA molecules as short as ten nucleotides, a blunt-ended double-stranded RNA, double-stranded RNA/DNA hybrid, and single-stranded DNA. Under our experimental conditions, single-stranded DNA stimulates DDX1's ATPase activity to a smaller extent compared to the other RNA constructs or the RNA/DNA hybrid. Given DDX1's involvement in numerous critical cellular processes and its implication in various human diseases, determining its substrate specificity not only enhances our understanding of its in vivo function, but also facilitates the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Anthony
F. T. Moore
- Department
of Chemistry, University of Central Florida, 4111 Libra Drive, Physical Sciences, Orlando, Florida 32816-2366, United States
| | - Yepeth Berhie
- Department
of Chemistry, University of Central Florida, 4111 Libra Drive, Physical Sciences, Orlando, Florida 32816-2366, United States
| | - Isaac S. Weislow
- Department
of Chemistry and Biochemistry, The University
of Texas at El Paso, 500 W University Ave, Chemistry and Computer Science, El Paso, Texas 79902-5802, United States
| | - Eda Koculi
- Department
of Chemistry and Biochemistry, The University
of Texas at El Paso, 500 W University Ave, Chemistry and Computer Science, El Paso, Texas 79902-5802, United States
| |
Collapse
|
2
|
Moore AFT, Berhie Y, Weislow IS, Koculi E. Substrate Specificities of DDX1: A Human DEAD-box protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.573566. [PMID: 38260591 PMCID: PMC10802426 DOI: 10.1101/2024.01.09.573566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
DDX1 is a human protein which belongs to the DEAD-box protein family of enzymes and is involved in various stages of RNA metabolism from transcription to decay. Many members of the DEAD-box family of enzymes use the energy of ATP binding and hydrolysis to perform their cellular functions. On the other hand, a few members of the DEAD-box family of enzymes bind and/or hydrolyze other nucleotides in addition to ATP. Furthermore, the ATPase activity of DEAD-box family members is stimulated differently by nucleic acids of various structures. The identity of the nucleotides that the DDX1 hydrolyzes and the structure of the nucleic acids upon which it acts in the cell remain largely unknown. Identifying the DDX1 protein's in vitro substrates is important for deciphering the molecular roles of DDX1 in cells. Here we identify the nucleic acid sequences and structures supporting the nucleotide hydrolysis activity of DDX1 and its nucleotide specificity. Our data demonstrate that the DDX1 protein hydrolyzes only ATP and deoxy-ATP in the presence of RNA. The ATP hydrolysis activity of DDX1 is stimulated by multiple molecules: single-stranded RNA molecules as short as ten nucleotides, a blunt-ended double-stranded RNA molecule, a hybrid of a double-stranded DNA-RNA molecule, and a single-stranded DNA molecule. Under our experimental conditions, the single-stranded DNA molecule stimulates the ATPase activity of DDX1 at a significantly reduced extent when compared to the other investigated RNA constructs or the hybrid double-stranded DNA/RNA molecule.
Collapse
Affiliation(s)
- Anthony F. T. Moore
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Physical Sciences, Orlando, FL 32816-2366
| | - Yepeth Berhie
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Physical Sciences, Orlando, FL 32816-2366
| | - Isaac S. Weislow
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W University Ave, Chemistry and Computer Science, El Paso, TX, 79902-5802
| | - Eda Koculi
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 W University Ave, Chemistry and Computer Science, El Paso, TX, 79902-5802
| |
Collapse
|
3
|
Khreiss A, Bohnsack KE, Bohnsack MT. Molecular functions of RNA helicases during ribosomal subunit assembly. Biol Chem 2023; 404:781-789. [PMID: 37233600 DOI: 10.1515/hsz-2023-0135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023]
Abstract
During their biogenesis, the ribosomal subunits undergo numerous structural and compositional changes to achieve their final architecture. RNA helicases are a key driving force of such remodelling events but deciphering their particular functions has long been challenging due to lack of knowledge of their molecular functions and RNA substrates. Advances in the biochemical characterisation of RNA helicase activities together with new insights into RNA helicase binding sites on pre-ribosomes and structural snapshots of pre-ribosomal complexes containing RNA helicases now open the door to a deeper understanding of precisely how different RNA helicases contribute to ribosomal subunit maturation.
Collapse
Affiliation(s)
- Ali Khreiss
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, D-37073 Göttingen, Germany
- Göttingen Centre for Molecular Biosciences, Georg-August University, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
4
|
Khreiss A, Capeyrou R, Lebaron S, Albert B, Bohnsack K, Bohnsack M, Henry Y, Henras A, Humbert O. The DEAD-box protein Dbp6 is an ATPase and RNA annealase interacting with the peptidyl transferase center (PTC) of the ribosome. Nucleic Acids Res 2023; 51:744-764. [PMID: 36610750 PMCID: PMC9881158 DOI: 10.1093/nar/gkac1196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/21/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are ribozymes, hence correct folding of the rRNAs during ribosome biogenesis is crucial to ensure catalytic activity. RNA helicases, which can modulate RNA-RNA and RNA/protein interactions, are proposed to participate in rRNA tridimensional folding. Here, we analyze the biochemical properties of Dbp6, a DEAD-box RNA helicase required for the conversion of the initial 90S pre-ribosomal particle into the first pre-60S particle. We demonstrate that in vitro, Dbp6 shows ATPase as well as annealing and clamping activities negatively regulated by ATP. Mutations in Dbp6 core motifs involved in ATP binding and ATP hydrolysis are lethal and impair Dbp6 ATPase activity but increase its RNA binding and RNA annealing activities. These data suggest that correct regulation of these activities is important for Dbp6 function in vivo. Using in vivo cross-linking (CRAC) experiments, we show that Dbp6 interacts with 25S rRNA sequences located in the 5' domain I and in the peptidyl transferase center (PTC), and also crosslinks to snoRNAs hybridizing to the immature PTC. We propose that the ATPase and RNA clamping/annealing activities of Dbp6 modulate interactions of snoRNAs with the immature PTC and/or contribute directly to the folding of this region.
Collapse
Affiliation(s)
- Ali Khreiss
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Régine Capeyrou
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Simon Lebaron
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Benjamin Albert
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, 37073 Göttingen, Germany,Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, 37077 Göttingen, Germany
| | - Yves Henry
- Correspondence may also be addressed to Yves Henry. Tel: +33 5 61 33 59 53; Fax: +33 5 61 33 58 86;
| | - Anthony K Henras
- Correspondence may also be addressed to Anthony Henras. Tel: +33 5 61 33 59 55; Fax: +33 5 61 33 58 86;
| | - Odile Humbert
- To whom correspondence should be addressed. Tel: +33 5 61 33 59 52; Fax: +33 5 61 33 58 86;
| |
Collapse
|
5
|
Chen J, Huang Y, Zhang K. The DEAD-Box Protein Rok1 Coordinates Ribosomal RNA Processing in Association with Rrp5 in Drosophila. Int J Mol Sci 2022; 23:ijms23105685. [PMID: 35628496 PMCID: PMC9146779 DOI: 10.3390/ijms23105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Ribosome biogenesis and processing involve the coordinated action of many components. The DEAD-box RNA helicase (Rok1) is essential for cell viability, and the depletion of Rok1 inhibits pre-rRNA processing. Previous research on Rok1 and its cofactor Rrp5 has been performed primarily in yeast. Few functional studies have been performed in complex multicellular eukaryotes. Here, we used a combination of genetics and developmental experiments to show that Rok1 and Rrp5, which localize to the nucleolus, play key roles in the pre-rRNA processing and ribosome assembly in D. melanogaster. The accumulation of pre-rRNAs caused by Rok1 depletion can result in developmental defects. The loss of Rok1 enlarged the nucleolus and led to stalled ribosome assembly and pre-rRNA processing in the nucleolus, thereby blocking rRNA maturation and exacerbating the inhibition of mitosis in the brain. We also discovered that rrp54-2/4-2 displayed significantly increased ITS1 signaling by fluorescence in situ hybridization, and a reduction in ITS2. Rrp5 signal was highly enriched in the core of the nucleolus in the rok1167/167 mutant, suggesting that Rok1 is required for the accurate cellular localization of Rrp5 in the nucleolus. We have thus uncovered functions of Rok1 that reveal important implications for ribosome processing in eukaryotes.
Collapse
Affiliation(s)
- Jie Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
- Correspondence: (J.C.); (Y.H.); Tel.: +86-20-87597440 (J.C.)
| | - Yuantai Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
- Correspondence: (J.C.); (Y.H.); Tel.: +86-20-87597440 (J.C.)
| | - Kang Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| |
Collapse
|
6
|
Mitterer V, Pertschy B. RNA folding and functions of RNA helicases in ribosome biogenesis. RNA Biol 2022; 19:781-810. [PMID: 35678541 PMCID: PMC9196750 DOI: 10.1080/15476286.2022.2079890] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic ribosome biogenesis involves the synthesis of ribosomal RNA (rRNA) and its stepwise folding into the unique structure present in mature ribosomes. rRNA folding starts already co-transcriptionally in the nucleolus and continues when pre-ribosomal particles further maturate in the nucleolus and upon their transit to the nucleoplasm and cytoplasm. While the approximate order of folding of rRNA subdomains is known, especially from cryo-EM structures of pre-ribosomal particles, the actual mechanisms of rRNA folding are less well understood. Both small nucleolar RNAs (snoRNAs) and proteins have been implicated in rRNA folding. snoRNAs hybridize to precursor rRNAs (pre-rRNAs) and thereby prevent premature folding of the respective rRNA elements. Ribosomal proteins (r-proteins) and ribosome assembly factors might have a similar function by binding to rRNA elements and preventing their premature folding. Besides that, a small group of ribosome assembly factors are thought to play a more active role in rRNA folding. In particular, multiple RNA helicases participate in individual ribosome assembly steps, where they are believed to coordinate RNA folding/unfolding events or the release of proteins from the rRNA. In this review, we summarize the current knowledge on mechanisms of RNA folding and on the specific function of the individual RNA helicases involved. As the yeast Saccharomyces cerevisiae is the organism in which ribosome biogenesis and the role of RNA helicases in this process is best studied, we focused our review on insights from this model organism, but also make comparisons to other organisms where applicable.
Collapse
Affiliation(s)
- Valentin Mitterer
- Biochemistry Center, Heidelberg University, Im Neuenheimer Feld 328, Heidelberg, Germany
- BioTechMed-Graz, Graz, Austria
| | - Brigitte Pertschy
- BioTechMed-Graz, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, Graz, Austria
| |
Collapse
|
7
|
Moore AT, de Victoria AL, Koculi E. Interactions of the C-Terminal Truncated DEAD-Box Protein DDX3X With RNA and Nucleotide Substrates. ACS OMEGA 2021; 6:12640-12646. [PMID: 34056415 PMCID: PMC8154130 DOI: 10.1021/acsomega.1c00700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
DDX3X is a human DEAD-box RNA helicase implicated in many important cellular processes. In addition to the RecA-like catalytic core, DDX3X contains N- and C-terminal domains. The ancillary domains of DEAD-box RNA helicases have been shown to modulate their interactions with RNA and nucleotide substrates. Here, with the goal of understanding the role of N- and C-terminal domains of DDX3X on the DDX3X catalytic activity, we examined the interactions of RNA substrates and nucleotides with a DDX3X construct possessing the entire N-terminal domain and the catalytic core but lacking 80 residues from its C-terminal domain. Next, we compared our results with previously investigated DDX3X constructs. Our data show that the C-terminal truncated DDX3X does not bind to a blunt-ended double-helix RNA. This conclusion agrees with the data obtained on the wild-type LAF-1 protein, the DDX3X ortholog in Caenorhabditis elegans, and disagrees with the data obtained on the minimally active DDX3X construct, which misses 131 residues from its N-terminal domain and 80 residues from its C-terminal domain. The minimally active DDX3X construct was able to bind to the blunt-ended RNA construct. Combined, the previous studies and our results indicate that the N-terminal of DDX3X modulates the choice of DDX3X-RNA substrates. Furthermore, a previous study showed that the wild-type DDX3X construct hydrolyzes all four nucleotides and deoxynucleotides, both in the presence and absence of RNA. The C-terminal truncated DDX3X investigated here hydrolyzes only cytidine triphosphate (CTP) in the absence of RNA and CTP, adenosine triphosphate (ATP), and deoxyribose adenosine triphosphate (dATP) in the presence of RNA. Hence, the C-terminal truncated DDX3X has a more stringent nucleotide specificity than wild-type DDX3X.
Collapse
Affiliation(s)
- Anthony
F. T. Moore
- Department
of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | | | - Eda Koculi
- Department
of Biology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
8
|
Aquino GRR, Krogh N, Hackert P, Martin R, Gallesio JD, van Nues RW, Schneider C, Watkins NJ, Nielsen H, Bohnsack KE, Bohnsack MT. RNA helicase-mediated regulation of snoRNP dynamics on pre-ribosomes and rRNA 2'-O-methylation. Nucleic Acids Res 2021; 49:4066-4084. [PMID: 33721027 PMCID: PMC8053091 DOI: 10.1093/nar/gkab159] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/23/2021] [Accepted: 02/26/2021] [Indexed: 12/18/2022] Open
Abstract
RNA helicases play important roles in diverse aspects of RNA metabolism through their functions in remodelling ribonucleoprotein complexes (RNPs), such as pre-ribosomes. Here, we show that the DEAD box helicase Dbp3 is required for efficient processing of the U18 and U24 intron-encoded snoRNAs and 2′-O-methylation of various sites within the 25S ribosomal RNA (rRNA) sequence. Furthermore, numerous box C/D snoRNPs accumulate on pre-ribosomes in the absence of Dbp3. Many snoRNAs guiding Dbp3-dependent rRNA modifications have overlapping pre-rRNA basepairing sites and therefore form mutually exclusive interactions with pre-ribosomes. Analysis of the distribution of these snoRNAs between pre-ribosome-associated and ‘free’ pools demonstrated that many are almost exclusively associated with pre-ribosomal complexes. Our data suggest that retention of such snoRNPs on pre-ribosomes when Dbp3 is lacking may impede rRNA 2′-O-methylation by reducing the recycling efficiency of snoRNPs and by inhibiting snoRNP access to proximal target sites. The observation of substoichiometric rRNA modification at adjacent sites suggests that the snoRNPs guiding such modifications likely interact stochastically rather than hierarchically with their pre-rRNA target sites. Together, our data provide new insights into the dynamics of snoRNPs on pre-ribosomal complexes and the remodelling events occurring during the early stages of ribosome assembly.
Collapse
Affiliation(s)
- Gerald Ryan R Aquino
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Nicolai Krogh
- Department of Cellular and Molecular Medicine, University of Copenhagen, 3B Blegdamsvej, 2200N Copenhagen, Denmark
| | - Philipp Hackert
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Roman Martin
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Jimena Davila Gallesio
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Robert W van Nues
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Claudia Schneider
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Nicholas J Watkins
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Henrik Nielsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 3B Blegdamsvej, 2200N Copenhagen, Denmark.,Genomics group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Centre Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.,Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| |
Collapse
|
9
|
Wu CY, Nagy PD. Blocking tombusvirus replication through the antiviral functions of DDX17-like RH30 DEAD-box helicase. PLoS Pathog 2019; 15:e1007771. [PMID: 31136641 PMCID: PMC6555533 DOI: 10.1371/journal.ppat.1007771] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 06/07/2019] [Accepted: 04/20/2019] [Indexed: 01/07/2023] Open
Abstract
Positive-stranded RNA viruses replicate inside cells and depend on many co-opted cellular factors to complete their infection cycles. To combat viruses, the hosts use conserved restriction factors, such as DEAD-box RNA helicases, which can function as viral RNA sensors or as effectors by blocking RNA virus replication. In this paper, we have established that the plant DDX17-like RH30 DEAD-box helicase conducts strong inhibitory function on tombusvirus replication when expressed in plants and yeast surrogate host. The helicase function of RH30 was required for restriction of tomato bushy stunt virus (TBSV) replication. Knock-down of RH30 levels in Nicotiana benthamiana led to increased TBSV accumulation and RH30 knockout lines of Arabidopsis supported higher level accumulation of turnip crinkle virus. We show that RH30 DEAD-box helicase interacts with p33 and p92pol replication proteins of TBSV, which facilitates targeting of RH30 from the nucleus to the large TBSV replication compartment consisting of aggregated peroxisomes. Enrichment of RH30 in the nucleus via fusion with a nuclear retention signal at the expense of the cytosolic pool of RH30 prevented the re-localization of RH30 into the replication compartment and canceled out the antiviral effect of RH30. In vitro replicase reconstitution assay was used to demonstrate that RH30 helicase blocks the assembly of viral replicase complex, the activation of the RNA-dependent RNA polymerase function of p92pol and binding of p33 replication protein to critical cis-acting element in the TBSV RNA. Altogether, these results firmly establish that the plant DDX17-like RH30 DEAD-box helicase is a potent, effector-type, restriction factor of tombusviruses and related viruses. The discovery of the antiviral role of RH30 DEAD-box helicase illustrates the likely ancient roles of RNA helicases in plant innate immunity.
Collapse
Affiliation(s)
- Cheng-Yu Wu
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
10
|
Moore AF, Gentry RC, Koculi E. DbpA is a region-specific RNA helicase. Biopolymers 2017; 107:10.1002/bip.23001. [PMID: 27813083 PMCID: PMC5179288 DOI: 10.1002/bip.23001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/12/2016] [Accepted: 10/31/2016] [Indexed: 11/11/2022]
Abstract
DbpA is a DEAD-box RNA helicase implicated in RNA structural rearrangements in the peptidyl transferase center. DbpA contains an RNA binding domain, responsible for tight binding of DbpA to hairpin 92 of 23S ribosomal RNA, and a RecA-like catalytic core responsible for double-helix unwinding. It is not known if DbpA unwinds only the RNA helices that are part of a specific RNA structure, or if DbpA unwinds any RNA helices within the catalytic core's grasp. In other words, it is not known if DbpA is a site-specific enzyme or region-specific enzyme. In this study, we used protein and RNA engineering to investigate if DbpA is a region-specific or a site-specific enzyme. Our data suggest that DbpA is a region-specific enzyme. This conclusion has an important implication for the physiological role of DbpA. It suggests that during ribosome assembly, DbpA could bind with its C-terminal RNA binding domain to hairpin 92, while its catalytic core may unwind any double-helices in its vicinity. The only requirement for a double-helix to serve as a DbpA substrate is for the double-helix to be positioned within the catalytic core's grasp.
Collapse
Affiliation(s)
- Anthony F.T. Moore
- Department of Chemistry, University of Central Florida, 4111 Libra Dr., Physical Sciences Bldg. Room 255, Orlando, FL 32816-2366, U.S.A
| | - Riley C. Gentry
- Department of Chemistry, University of Central Florida, 4111 Libra Dr., Physical Sciences Bldg. Room 255, Orlando, FL 32816-2366, U.S.A
| | - Eda Koculi
- Department of Chemistry, University of Central Florida, 4111 Libra Dr., Physical Sciences Bldg. Room 255, Orlando, FL 32816-2366, U.S.A
| |
Collapse
|
11
|
Khoshnevis S, Askenasy I, Johnson MC, Dattolo MD, Young-Erdos CL, Stroupe ME, Karbstein K. The DEAD-box Protein Rok1 Orchestrates 40S and 60S Ribosome Assembly by Promoting the Release of Rrp5 from Pre-40S Ribosomes to Allow for 60S Maturation. PLoS Biol 2016; 14:e1002480. [PMID: 27280440 PMCID: PMC4900678 DOI: 10.1371/journal.pbio.1002480] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 05/10/2016] [Indexed: 12/25/2022] Open
Abstract
DEAD-box proteins are ubiquitous regulators of RNA biology. While commonly dubbed “helicases,” their activities also include duplex annealing, adenosine triphosphate (ATP)-dependent RNA binding, and RNA-protein complex remodeling. Rok1, an essential DEAD-box protein, and its cofactor Rrp5 are required for ribosome assembly. Here, we use in vivo and in vitro biochemical analyses to demonstrate that ATP-bound Rok1, but not adenosine diphosphate (ADP)-bound Rok1, stabilizes Rrp5 binding to 40S ribosomes. Interconversion between these two forms by ATP hydrolysis is required for release of Rrp5 from pre-40S ribosomes in vivo, thereby allowing Rrp5 to carry out its role in 60S subunit assembly. Furthermore, our data also strongly suggest that the previously described accumulation of snR30 upon Rok1 inactivation arises because Rrp5 release is blocked and implicate a previously undescribed interaction between Rrp5 and the DEAD-box protein Has1 in mediating snR30 accumulation when Rrp5 release from pre-40S subunits is blocked. During ribosomal biogenesis, Rrp5 is unusual in being required for assembly of both small and large subunits. This study demonstrates a role for ATP hydrolysis by the DEAD-box protein Rok1 in releasing Rrp5 from pre-40S subunits. Assembly of the small and large ribosomal subunits requires two separate machineries. The assembly factor Rrp5 is unusual in being one of only three proteins required for assembly of both subunits. While it binds cotranscriptionally during early stages of small subunit assembly, it departs with large subunit intermediates after the separation of these precursors. How Rrp5 switches from interacting with small subunit precursors to binding large subunit precursors remains unknown but is potentially important, as it could regulate the interplay between small and large subunit assembly. Here, we show that the DEAD-box protein Rok1, a member of a ubiquitous class of RNA-dependent ATPases, releases Rrp5 from assembling small subunits to allow for its function in large subunit assembly. We show that a complex of Rrp5, Rok1, and adenosine triphosphate (ATP) binds small subunits or mimics of ribosomal RNA more tightly than does a complex of Rrp5, Rok1, and adenosine diphosphate (ADP). In cells, interconversion between the ATP and the ADP-form of Rok1 is required for release of Rrp5 from nascent small subunits and for binding to assembling large subunits. Furthermore, we show that the release of snR30, which leads to formation of a large substructure on small subunits, also requires Rok1-mediated release of Rrp5.
Collapse
MESH Headings
- Adenosine Diphosphate/metabolism
- Adenosine Triphosphate/metabolism
- Binding Sites/genetics
- DEAD-box RNA Helicases/chemistry
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Hydrolysis
- Models, Molecular
- Molecular Conformation
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Protein Binding
- Protein Domains
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/chemistry
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Sohail Khoshnevis
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Isabel Askenasy
- Department of Biological Science and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Matthew C. Johnson
- Department of Biological Science and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Maria D. Dattolo
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
- The Benjamin School, Palm Beach Gardens, Florida, United States of America
| | - Crystal L. Young-Erdos
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - M. Elizabeth Stroupe
- Department of Biological Science and the Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
- * E-mail: (MES); (KK)
| | - Katrin Karbstein
- Department of Cancer Biology, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail: (MES); (KK)
| |
Collapse
|
12
|
Lu J, Jiang C, Li X, Jiang L, Li Z, Schneider-Poetsch T, Liu J, Yu K, Liu JO, Jiang H, Luo C, Dang Y. A gating mechanism for Pi release governs the mRNA unwinding by eIF4AI during translation initiation. Nucleic Acids Res 2015; 43:10157-67. [PMID: 26464436 PMCID: PMC4666354 DOI: 10.1093/nar/gkv1033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/30/2015] [Indexed: 01/18/2023] Open
Abstract
Eukaryotic translation initiation factor eIF4AI, the founding member of DEAD-box helicases, undergoes ATP hydrolysis-coupled conformational changes to unwind mRNA secondary structures during translation initiation. However, the mechanism of its coupled enzymatic activities remains unclear. Here we report that a gating mechanism for Pi release controlled by the inter-domain linker of eIF4AI regulates the coupling between ATP hydrolysis and RNA unwinding. Molecular dynamic simulations and experimental results revealed that, through forming a hydrophobic core with the conserved SAT motif of the N-terminal domain and I357 from the C-terminal domain, the linker gated the release of Pi from the hydrolysis site, which avoided futile hydrolysis cycles of eIF4AI. Further mutagenesis studies suggested this linker also plays an auto-inhibitory role in the enzymatic activity of eIF4AI, which may be essential for its function during translation initiation. Overall, our results reveal a novel regulatory mechanism that controls eIF4AI-mediated mRNA unwinding and can guide further mechanistic studies on other DEAD-box helicases.
Collapse
Affiliation(s)
- Junyan Lu
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chenxiao Jiang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xiaojing Li
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lizhi Jiang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zengxia Li
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | | | - Jianwei Liu
- Department of Chemistry, Shanghai Key Lab of Chemical Biology for Protein Research & Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | - Kunqian Yu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jun O Liu
- Department of Pharmacology & Molecular Sciences and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yongjun Dang
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
13
|
Chuang C, Prasanth KR, Nagy PD. Coordinated function of cellular DEAD-box helicases in suppression of viral RNA recombination and maintenance of viral genome integrity. PLoS Pathog 2015; 11:e1004680. [PMID: 25693185 PMCID: PMC4333740 DOI: 10.1371/journal.ppat.1004680] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 01/12/2015] [Indexed: 12/16/2022] Open
Abstract
The intricate interactions between viruses and hosts include an evolutionary arms race and adaptation that is facilitated by the ability of RNA viruses to evolve rapidly due to high frequency mutations and genetic RNA recombination. In this paper, we show evidence that the co-opted cellular DDX3-like Ded1 DEAD-box helicase suppresses tombusviral RNA recombination in yeast model host, and the orthologous RH20 helicase functions in a similar way in plants. In vitro replication and recombination assays confirm the direct role of the ATPase function of Ded1p in suppression of viral recombination. We also present data supporting a role for Ded1 in facilitating the switch from minus- to plus-strand synthesis. Interestingly, another co-opted cellular helicase, the eIF4AIII-like AtRH2, enhances TBSV recombination in the absence of Ded1/RH20, suggesting that the coordinated actions of these helicases control viral RNA recombination events. Altogether, these helicases are the first co-opted cellular factors in the viral replicase complex that directly affect viral RNA recombination. Ded1 helicase seems to be a key factor maintaining viral genome integrity by promoting the replication of viral RNAs with correct termini, but inhibiting the replication of defective RNAs lacking correct 5' end sequences. Altogether, a co-opted cellular DEAD-box helicase facilitates the maintenance of full-length viral genome and suppresses viral recombination, thus limiting the appearance of defective viral RNAs during replication.
Collapse
Affiliation(s)
- Chingkai Chuang
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - K. Reddisiva Prasanth
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
14
|
DEAD-box RNA helicase Dbp4 is required for small-subunit processome formation and function. Mol Cell Biol 2014; 35:816-30. [PMID: 25535329 DOI: 10.1128/mcb.01348-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DEAD-box RNA helicase Dbp4 is required for 18S rRNA synthesis: cellular depletion of Dbp4 impairs the early cleavage reactions of the pre-rRNA and causes U14 small nucleolar RNA (snoRNA) to remain associated with pre-rRNA. Immunoprecipitation experiments (IPs) carried out with whole-cell extracts (WCEs) revealed that hemagglutinin (HA)-tagged Dbp4 is associated with U3 snoRNA but not with U14 snoRNA. IPs with WCEs also showed association with the U3-specific protein Mpp10, which suggests that Dbp4 interacts with the functionally active U3 RNP; this particle, called the small-subunit (SSU) processome, can be observed at the 5' end of nascent pre-rRNA. Electron microscopy analyses indicated that depletion of Dbp4 compromised SSU processome formation and cotranscriptional cleavage of the pre-rRNA. Sucrose density gradient analyses revealed that depletion of U3 snoRNA or the Mpp10 protein inhibited the release of U14 snoRNA from pre-rRNA, just as was seen with Dbp4-depleted cells, indicating that alteration of SSU processome components has significant consequences for U14 snoRNA dynamics. We also found that the C-terminal extension flanking the catalytic core of Dbp4 plays an important role in the release of U14 snoRNA from pre-rRNA.
Collapse
|
15
|
Martin R, Hackert P, Ruprecht M, Simm S, Brüning L, Mirus O, Sloan KE, Kudla G, Schleiff E, Bohnsack MT. A pre-ribosomal RNA interaction network involving snoRNAs and the Rok1 helicase. RNA (NEW YORK, N.Y.) 2014; 20:1173-82. [PMID: 24947498 PMCID: PMC4105744 DOI: 10.1261/rna.044669.114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/20/2014] [Indexed: 05/23/2023]
Abstract
Ribosome biogenesis in yeast requires 75 small nucleolar RNAs (snoRNAs) and a myriad of cofactors for processing, modification, and folding of the ribosomal RNAs (rRNAs). For the 19 RNA helicases implicated in ribosome synthesis, their sites of action and molecular functions have largely remained unknown. Here, we have used UV cross-linking and analysis of cDNA (CRAC) to reveal the pre-rRNA binding sites of the RNA helicase Rok1, which is involved in early small subunit biogenesis. Several contact sites were identified in the 18S rRNA sequence, which interestingly all cluster in the "foot" region of the small ribosomal subunit. These include a major binding site in the eukaryotic expansion segment ES6, where Rok1 is required for release of the snR30 snoRNA. Rok1 directly contacts snR30 and other snoRNAs required for pre-rRNA processing. Using cross-linking, ligation and sequencing of hybrids (CLASH) we identified several novel pre-rRNA base-pairing sites for the snoRNAs snR30, snR10, U3, and U14, which cluster in the expansion segments of the 18S rRNA. Our data suggest that these snoRNAs bridge interactions between the expansion segments, thereby forming an extensive interaction network that likely promotes pre-rRNA maturation and folding in early pre-ribosomal complexes and establishes long-range rRNA interactions during ribosome synthesis.
Collapse
MESH Headings
- Base Pairing
- DEAD-box RNA Helicases/metabolism
- Nucleic Acid Conformation
- Protein Binding
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/metabolism
Collapse
Affiliation(s)
- Roman Martin
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Philipp Hackert
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Maike Ruprecht
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Stefan Simm
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Lukas Brüning
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Oliver Mirus
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany
| | - Katherine E Sloan
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany
| | - Grzegorz Kudla
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University, 60438 Frankfurt, Germany Cluster of Excellence Frankfurt, Goethe University, 60438 Frankfurt, Germany
| | - Markus T Bohnsack
- Centre for Biochemistry and Molecular Cell Biology, Georg-August-University, 37073 Göttingen, Germany Cluster of Excellence Frankfurt, Goethe University, 60438 Frankfurt, Germany Göttingen Center for Molecular Biosciences, Georg-August-University, 37073 Göttingen, Germany
| |
Collapse
|
16
|
Kovalev N, Nagy PD. The expanding functions of cellular helicases: the tombusvirus RNA replication enhancer co-opts the plant eIF4AIII-like AtRH2 and the DDX5-like AtRH5 DEAD-box RNA helicases to promote viral asymmetric RNA replication. PLoS Pathog 2014; 10:e1004051. [PMID: 24743583 PMCID: PMC3990711 DOI: 10.1371/journal.ppat.1004051] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/19/2014] [Indexed: 12/17/2022] Open
Abstract
Replication of plus-strand RNA viruses depends on recruited host factors that aid several critical steps during replication. Several of the co-opted host factors bind to the viral RNA, which plays multiple roles, including mRNA function, as an assembly platform for the viral replicase (VRC), template for RNA synthesis, and encapsidation during infection. It is likely that remodeling of the viral RNAs and RNA-protein complexes during the switch from one step to another requires RNA helicases. In this paper, we have discovered a second group of cellular RNA helicases, including the eIF4AIII-like yeast Fal1p and the DDX5-like Dbp3p and the orthologous plant AtRH2 and AtRH5 DEAD box helicases, which are co-opted by tombusviruses. Unlike the previously characterized DDX3-like AtRH20/Ded1p helicases that bind to the 3' terminal promoter region in the viral minus-strand (-)RNA, the other class of eIF4AIII-like RNA helicases bind to a different cis-acting element, namely the 5' proximal RIII(-) replication enhancer (REN) element in the TBSV (-)RNA. We show that the binding of AtRH2 and AtRH5 helicases to the TBSV (-)RNA could unwind the dsRNA structure within the RIII(-) REN. This unique characteristic allows the eIF4AIII-like helicases to perform novel pro-viral functions involving the RIII(-) REN in stimulation of plus-strand (+)RNA synthesis. We also show that AtRH2 and AtRH5 helicases are components of the tombusvirus VRCs based on co-purification experiments. We propose that eIF4AIII-like helicases destabilize dsRNA replication intermediate within the RIII(-) REN that promotes bringing the 5' and 3' terminal (-)RNA sequences in close vicinity via long-range RNA-RNA base pairing. This newly formed RNA structure promoted by eIF4AIII helicase together with AtRH20 helicase might facilitate the recycling of the viral replicases for multiple rounds of (+)-strand synthesis, thus resulting in asymmetrical viral replication.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Peter D. Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
17
|
Abstract
Superfamily 2 helicase proteins are ubiquitous in RNA biology and have an extraordinarily broad set of functional roles. Central among these roles are the promotion of rearrangements of structured RNAs and the remodeling of ribonucleoprotein complexes (RNPs), allowing formation of native RNA structure or progression through a functional cycle of structures. Although all superfamily 2 helicases share a conserved helicase core, they are divided evolutionarily into several families, and it is principally proteins from three families, the DEAD-box, DEAH/RHA, and Ski2-like families, that function to manipulate structured RNAs and RNPs. Strikingly, there are emerging differences in the mechanisms of these proteins, both between families and within the largest family (DEAD-box), and these differences appear to be tuned to their RNA or RNP substrates and their specific roles. This review outlines basic mechanistic features of the three families and surveys individual proteins and the current understanding of their biological substrates and mechanisms.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712; ,
| | | |
Collapse
|
18
|
Soltanieh S, Lapensée M, Dragon F. Nucleolar proteins Bfr2 and Enp2 interact with DEAD-box RNA helicase Dbp4 in two different complexes. Nucleic Acids Res 2013; 42:3194-206. [PMID: 24357410 PMCID: PMC3950691 DOI: 10.1093/nar/gkt1293] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Different pre-ribosomal complexes are formed during ribosome biogenesis, and the composition of these complexes is highly dynamic. Dbp4, a conserved DEAD-box RNA helicase implicated in ribosome biogenesis, interacts with nucleolar proteins Bfr2 and Enp2. We show that, like Dbp4, Bfr2 and Enp2 are required for the early processing steps leading to the production of 18S ribosomal RNA. We also found that Bfr2 and Enp2 associate with the U3 small nucleolar RNA (snoRNA), the U3-specific protein Mpp10 and various pre-18S ribosomal RNA species. Thus, we propose that Bfr2, Dbp4 and Enp2 are components of the small subunit (SSU) processome, a large complex of ∼80S. Sucrose gradient sedimentation analyses indicated that Dbp4, Bfr2 and Enp2 sediment in a peak of ∼50S and in a peak of ∼80S. Bfr2, Dbp4 and Enp2 associate together in the 50S complex, which does not include the U3 snoRNA; however, they associate with U3 snoRNA in the 80S complex (SSU processome). Immunoprecipitation experiments revealed that U14 snoRNA associates with Dbp4 in the 50S complex, but not with Bfr2 or Enp2. The assembly factor Tsr1 is not part of the '50S' complex, indicating this complex is not a pre-40S ribosome. A combination of experiments leads us to propose that Bfr2, Enp2 and Dbp4 are recruited at late steps during assembly of the SSU processome.
Collapse
Affiliation(s)
- Sahar Soltanieh
- Département des sciences biologiques and Centre de recherche BioMed, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | | |
Collapse
|
19
|
Woolford JL, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 2013; 195:643-81. [PMID: 24190922 PMCID: PMC3813855 DOI: 10.1534/genetics.113.153197] [Citation(s) in RCA: 574] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/26/2013] [Indexed: 01/09/2023] Open
Abstract
Ribosomes are highly conserved ribonucleoprotein nanomachines that translate information in the genome to create the proteome in all cells. In yeast these complex particles contain four RNAs (>5400 nucleotides) and 79 different proteins. During the past 25 years, studies in yeast have led the way to understanding how these molecules are assembled into ribosomes in vivo. Assembly begins with transcription of ribosomal RNA in the nucleolus, where the RNA then undergoes complex pathways of folding, coupled with nucleotide modification, removal of spacer sequences, and binding to ribosomal proteins. More than 200 assembly factors and 76 small nucleolar RNAs transiently associate with assembling ribosomes, to enable their accurate and efficient construction. Following export of preribosomes from the nucleus to the cytoplasm, they undergo final stages of maturation before entering the pool of functioning ribosomes. Elaborate mechanisms exist to monitor the formation of correct structural and functional neighborhoods within ribosomes and to destroy preribosomes that fail to assemble properly. Studies of yeast ribosome biogenesis provide useful models for ribosomopathies, diseases in humans that result from failure to properly assemble ribosomes.
Collapse
Affiliation(s)
- John L. Woolford
- Department of Biological Sciences, Center for Nucleic Acids Science and Technology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | - Susan J. Baserga
- Molecular Biophysics and Biochemistry, Genetics and Therapeutic Radiology, Yale University, New Haven, Connecticut 06520-8024
| |
Collapse
|
20
|
Abstract
DEAD-box proteins, a large class of RNA-dependent ATPases, regulate all aspects of gene expression and RNA metabolism. They can facilitate dissociation of RNA duplexes and remodeling of RNA-protein complexes, serve as ATP-dependent RNA-binding proteins, or even anneal duplexes. These proteins have highly conserved sequence elements that are contained within two RecA-like domains; consequently, their structures are nearly identical. Furthermore, crystal structures of DEAD-box proteins with bound RNA reveal interactions exclusively between the protein and the RNA backbone. Together, these findings suggest that DEAD-box proteins interact with their substrates in a nonspecific manner, which is confirmed in biochemical experiments. Nevertheless, this contrasts with the need to target these enzymes to specific substrates in vivo. Using the DEAD-box protein Rok1 and its cofactor Rrp5, which both function during maturation of the small ribosomal subunit, we show here that Rrp5 provides specificity to the otherwise nonspecific biochemical activities of the Rok1 DEAD-domain. This finding could reconcile the need for specific substrate binding of some DEAD-box proteins with their nonspecific binding surface and expands the potential roles of cofactors to specificity factors. Identification of helicase cofactors and their RNA substrates could therefore help define the undescribed roles of the 19 DEAD-box proteins that function in ribosome assembly.
Collapse
|
21
|
Rodríguez-Galán O, García-Gómez JJ, de la Cruz J. Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:775-90. [PMID: 23357782 DOI: 10.1016/j.bbagrm.2013.01.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/15/2013] [Accepted: 01/16/2013] [Indexed: 11/17/2022]
Abstract
Ribosome biogenesis is a fundamental process that is conserved in eukaryotes. Although spectacular progress has been made in understanding mammalian ribosome synthesis in recent years, by far, this process has still been best characterised in the yeast Saccharomyces cerevisiae. In yeast, besides the rRNAs, the ribosomal proteins and the 75 small nucleolar RNAs, more than 250 non-ribosomal proteins, generally referred to as trans-acting factors, are involved in ribosome biogenesis. These factors include nucleases, RNA modifying enzymes, ATPases, GTPases, kinases and RNA helicases. Altogether, they likely confer speed, accuracy and directionality to the ribosome synthesis process, however, the precise functions for most of them are still largely unknown. This review summarises our current knowledge on eukaryotic RNA helicases involved in ribosome biogenesis, particularly focusing on the most recent advances with respect to the molecular roles of these enzymes and their co-factors in yeast and human cells. This article is part of a Special Issue entitled: The Biology of RNA helicases-Modulation for life.
Collapse
|