1
|
Akhtar MJ, Khan SA, Kumar B, Chawla P, Bhatia R, Singh K. Role of sodium dependent SLC13 transporter inhibitors in various metabolic disorders. Mol Cell Biochem 2022:10.1007/s11010-022-04618-7. [DOI: 10.1007/s11010-022-04618-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022]
|
2
|
Gu Z, Xue F, Yu J, Ju S. Preparation of N-Aryl Anthranilic Acid Drugs by Modified Ullmann Coupling Reaction in Ionic Liquids. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022060124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Yi Z, Xie J. Genomic Analysis of Two Representative Strains of Shewanella putrefaciens Isolated from Bigeye Tuna: Biofilm and Spoilage-Associated Behavior. Foods 2022; 11:foods11091261. [PMID: 35563985 PMCID: PMC9100107 DOI: 10.3390/foods11091261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Shewanella putrefaciens can cause the spoilage of seafood and shorten its shelf life. In this study, both strains of S. putrefaciens (YZ08 and YZ-J) isolated from spoiled bigeye tuna were subjected to in-depth phenotypic and genotypic characterization to better understand their roles in seafood spoilage. The complete genome sequences of strains YZ08 and YZ-J were reported. Unique genes of the two S. putrefaciens strains were identified by pan-genomic analysis. In vitro experiments revealed that YZ08 and YZ-J could adapt to various environmental stresses, including cold-shock temperature, pH, NaCl, and nutrient stresses. YZ08 was better at adapting to NaCl stress, and its genome possessed more NaCl stress-related genes compared with the YZ-J strain. YZ-J was a higher biofilm and exopolysaccharide producer than YZ08 at 4 and 30 °C, while YZ08 showed greater motility and enhanced capacity for biogenic amine metabolism, trimethylamine metabolism, and sulfur metabolism compared with YZ-J at both temperatures. That YZ08 produced low biofilm and exopolysaccharide contents and displayed high motility may be associated with the presence of more a greater number of genes encoding chemotaxis-related proteins (cheX) and low expression of the bpfA operon. This study provided novel molecular targets for the development of new antiseptic antisepsis strategies.
Collapse
Affiliation(s)
- Zhengkai Yi
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China;
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai 201306, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China;
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai 201306, China
- Correspondence: ; Tel.: +86-02161900391
| |
Collapse
|
4
|
Aust AC, Benesova E, Vidova V, Coufalikova K, Smetanova S, Borek I, Janku P, Budinska E, Klanova J, Thon V, Spacil Z. Profiling Tryptophan Catabolites of Human Gut Microbiota and Acute-Phase Protein Levels in Neonatal Dried Blood Specimens. Front Microbiol 2021; 12:665743. [PMID: 34777268 PMCID: PMC8581761 DOI: 10.3389/fmicb.2021.665743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
National screening programs use dried blood specimens to detect metabolic disorders or aberrant protein functions that are not clinically evident in the neonatal period. Similarly, gut microbiota metabolites and immunological acute-phase proteins may reveal latent immune aberrations. Microbial metabolites interact with xenobiotic receptors (i.e., aryl hydrocarbon and pregnane-X) to maintain gastrointestinal tissue health, supported by acute-phase proteins, functioning as sensors of microbial immunomodulation and homeostasis. The delivery (vaginal or cesarean section) shapes the microbial colonization, which substantially modulates both the immune system’s response and mucosal homeostasis. This study profiled microbial metabolites of the kynurenine and tryptophan pathway and acute-phase proteins in 134 neonatal dried blood specimens. We newly established neonatal blood levels of microbial xenobiotic receptors ligands (i.e., indole-3-aldehyde, indole-3-butyric acid, and indole-3-acetamide) on the second day of life. Furthermore, we observed diverse microbial metabolic profiles in neonates born vaginally and via cesarean section, potentially due to microbial immunomodulatory influence. In summary, these findings suggest the supportive role of human gut microbiota in developing and maintaining immune system homeostasis.
Collapse
Affiliation(s)
| | - Eliska Benesova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Veronika Vidova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | | | - Sona Smetanova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Ivo Borek
- Department of Pediatrics, University Hospital Brno and Masaryk University Medical School, Brno, Czechia
| | - Petr Janku
- Department of Gynecology and Obstetrics, University Hospital Brno and Masaryk University Medical School, Brno, Czechia
| | - Eva Budinska
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jana Klanova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vojtech Thon
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Zdenek Spacil
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
5
|
Functional (un)cooperativity in elevator transport proteins. Biochem Soc Trans 2020; 48:1047-1055. [PMID: 32573703 DOI: 10.1042/bst20190970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022]
Abstract
The activity of enzymes is subject to regulation at multiple levels. Cooperativity, the interconnected behavior of active sites within a protein complex, directly affects protein activity. Cooperativity is a mode of regulation that requires neither extrinsic factors nor protein modifications. Instead, it allows enzymes themselves to modulate reaction rates. Cooperativity is an important regulatory mechanism in soluble proteins, but also examples of cooperative membrane proteins have been described. In this review, we summarize the current knowledge on interprotomer cooperativity in elevator-type proteins, a class of membrane transporters characterized by large rigid-body movements perpendicular to the membrane, and highlight well-studied examples and experimental approaches.
Collapse
|
6
|
María Belén V, Adrián M, Francisco GC, José Manuel LN. Nanoencapsulation as fluorescence enhancer of vitamin L1 (anthranilic acid). An exhaustive study. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Colas C, Schlessinger A, Pajor AM. Mapping Functionally Important Residues in the Na +/Dicarboxylate Cotransporter, NaDC1. Biochemistry 2017; 56:4432-4441. [PMID: 28731330 DOI: 10.1021/acs.biochem.7b00503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transporters from the SLC13 family couple the transport of two to four Na+ ions with a di- or tricarboxylate, such as succinate or citrate. We have previously modeled mammalian members of the SLC13 family, including the Na+/dicarboxylate cotransporter NaDC1 (SLC13A2), based on a structure of the bacterial homologue VcINDY in an inward-facing conformation with one sodium ion bound at the Na1 site. In the study presented here, we modeled the outward-facing conformation of rabbit and human NaDC1 (rbNaDC1 and hNaDC1, respectively) using an outward-facing model of VcINDY as a template and identified residues in or near the putative Na2 and Na3 cation binding sites. Guided by the structural models in both conformations, we performed site-directed mutagenesis in rbNaDC1 for residues proposed to be in the Na+ or substrate binding sites. Cysteine substitution of T474 in the predicted Na2 binding site results in an inactive protein. The M539C mutant has a low apparent affinity for both sodium and lithium cations, suggesting that M539 may form part of the putative Na3 binding site. The Y432C and T86C mutants have increased Km values for succinate, supporting their proposed location in the outward-facing substrate binding site. In addition, cysteine labeling by MTSEA-biotin shows that Y432C is accessible from the outside of the cell, and the accessibility changes in the presence or absence of Na+. The results of this study improve our understanding of substrate and ion recognition in the mammalian members of the SLC13 family and provide a framework for developing conformationally specific inhibitors against these transporters.
Collapse
Affiliation(s)
- Claire Colas
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai , New York, New York 10029, United States
| | - Ana M Pajor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego , La Jolla, California 92130-0714, United States
| |
Collapse
|
8
|
Sato S, Huang XP, Kroeze WK, Roth BL. Discovery and Characterization of Novel GPR39 Agonists Allosterically Modulated by Zinc. Mol Pharmacol 2016; 90:726-737. [PMID: 27754899 DOI: 10.1124/mol.116.106112] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/15/2016] [Indexed: 12/19/2022] Open
Abstract
In this study, we identified two previously described kinase inhibitors-3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(3-methyl-1H-pyrazol-5-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine (LY2784544) and 1H-benzimidazole-4-carboxylic acid, 2-methyl-1-[[2-methyl-3-(trifluoromethyl)phenyl]methyl]-6-(4-morpholinyl)- (GSK2636771)-as novel GPR39 agonists by unbiased small-molecule-based screening using a β-arrestin recruitment screening approach (PRESTO-Tango). We characterized the signaling of LY2784544 and GSK2636771 and compared their signaling patterns with a previously described "GPR39-selective" agonist N-[3-chloro-4-[[[2-(methylamino)-6-(2-pyridinyl)-4- pyrimidinyl]amino]methyl]phenyl]methanesulfonamide (GPR39-C3) at both canonical and noncanonical signaling pathways. Unexpectedly, all three compounds displayed probe-dependent and pathway-dependent allosteric modulation by concentrations of zinc reported to be physiologic. LY2784544 and GS2636771 at GPR39 in the presence of zinc were generally as potent or more potent than their reported activities against kinases in whole-cell assays. These findings reveal an unexpected role of zinc as an allosteric potentiator of small-molecule-induced activation of GPR39 and expand the list of potential kinase off-targets to include understudied G protein-coupled receptors.
Collapse
Affiliation(s)
- Seiji Sato
- Department of Pharmacology (S.S., X.-P.H., W.K.K., B.L.R.) and National Institute of Mental Health Psychoactive Drug Screening Program (X.-P.H., B.L.R.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Xi-Ping Huang
- Department of Pharmacology (S.S., X.-P.H., W.K.K., B.L.R.) and National Institute of Mental Health Psychoactive Drug Screening Program (X.-P.H., B.L.R.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Wesley K Kroeze
- Department of Pharmacology (S.S., X.-P.H., W.K.K., B.L.R.) and National Institute of Mental Health Psychoactive Drug Screening Program (X.-P.H., B.L.R.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Bryan L Roth
- Department of Pharmacology (S.S., X.-P.H., W.K.K., B.L.R.) and National Institute of Mental Health Psychoactive Drug Screening Program (X.-P.H., B.L.R.), School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
9
|
Pajor AM, de Oliveira CA, Song K, Huard K, Shanmugasundaram V, Erion DM. Molecular Basis for Inhibition of the Na+/Citrate Transporter NaCT (SLC13A5) by Dicarboxylate Inhibitors. Mol Pharmacol 2016; 90:755-765. [DOI: 10.1124/mol.116.105049] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023] Open
|
10
|
Klotz J, Porter BE, Colas C, Schlessinger A, Pajor AM. Mutations in the Na(+)/citrate cotransporter NaCT (SLC13A5) in pediatric patients with epilepsy and developmental delay. Mol Med 2016; 22:molmed.2016.00077. [PMID: 27261973 DOI: 10.2119/molmed.2016.00077] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/23/2016] [Indexed: 01/13/2023] Open
Abstract
Mutations in the SLC13A5 gene that codes for the Na(+)/citrate cotransporter, NaCT, are associated with early onset epilepsy, developmental delay and tooth dysplasia in children. In the present study we identify additional SLC13A5 mutations in nine epilepsy patients from six families. To better characterize the syndrome, families with affected children answered questions about the scope of illness and treatment strategies. There are currently no effective treatments, but some anti-epileptic drugs targeting the GABA system reduce seizure frequency. Acetazolamide, a carbonic anhydrase inhibitor and atypical anti-seizure medication decreases seizures in 4 patients. In contrast to previous reports, the ketogenic diet and fasting produce worsening of symptoms. The effects of the mutations on NaCT transport function and protein expression were examined by transient transfections of COS-7 cells. There was no transport activity from any of the mutant transporters, although some of the mutant transporter proteins were present on the plasma membrane. The structural model of NaCT suggests that these mutations can affect helix packing or substrate binding. We tested various treatments, including chemical chaperones and low temperatures, but none improve transport function in the NaCT mutants. Interestingly, coexpression of NaCT and the mutants results in decreased protein expression and activity of the wild-type transporter, indicating functional interaction. In conclusion, our study has identified additional SLC13A5 mutations in patients with chronic epilepsy starting in the neonatal period, with the mutations producing inactive Na(+)/citrate transporters.
Collapse
Affiliation(s)
- Jenna Klotz
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA 94305
| | - Brenda E Porter
- Department of Neurology, Stanford University School of Medicine, Palo Alto, CA 94305
| | - Claire Colas
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Avner Schlessinger
- Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY 10029.,Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ana M Pajor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, CA 92130-0718
| |
Collapse
|
11
|
The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism. Nat Struct Mol Biol 2016; 23:256-63. [PMID: 26828963 PMCID: PMC5215794 DOI: 10.1038/nsmb.3166] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/30/2015] [Indexed: 11/11/2022]
Abstract
Secondary transporters use alternating access mechanisms to couple uphill substrate movement to downhill ion flux. Most known transporters utilize a “rocking bundle” motion, where the protein moves around an immobile substrate binding site. However, the glutamate transporter homolog, GltPh, translocates its substrate binding site vertically across the membrane, an “elevator” mechanism. Here, we used the “repeat swap” approach to computationally predict the outward-facing state of the Na+/succinate transporter VcINDY, from Vibrio cholerae. Our model predicts a substantial “elevator”-like movement of vcINDY’s substrate binding site, with a vertical translation of ~15 Å and a rotation of ~43°; multiple disulfide crosslinks which completely inhibit transport provide experimental confirmation and demonstrate that such movement is essential. In contrast, crosslinks across the VcINDY dimer interface preserve transport, revealing an absence of large scale coupling between protomers.
Collapse
|
12
|
Wu Y, Jiang C, Wu D, Gu Q, Luo ZY, Luo HB. Palladium-catalyzed C–H bond carboxylation of acetanilides: an efficient usage of N,N-dimethyloxamic acid as the carboxylate source. Chem Commun (Camb) 2016; 52:1286-9. [DOI: 10.1039/c5cc07890c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalyzed carboxylation of acetanilide and N,N-dimethyloxamic acid for the synthesis of N-acyl-anthranilic acids is described. N,N-Dimethyloxamic acid can act as an effective carboxylation precursor with K2S2O8 as the oxidant and Pd(OAc)2 as the catalyst.
Collapse
Affiliation(s)
- Yinuo Wu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Cheng Jiang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Deyan Wu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Qiong Gu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Zhang-Yi Luo
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
13
|
Colas C, Pajor AM, Schlessinger A. Structure-Based Identification of Inhibitors for the SLC13 Family of Na(+)/Dicarboxylate Cotransporters. Biochemistry 2015; 54:4900-8. [PMID: 26176240 DOI: 10.1021/acs.biochem.5b00388] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In mammals, citric acid cycle intermediates play a key role in regulating various metabolic processes, such as fatty acid synthesis and glycolysis. Members of the sodium-dependent SLC13 transporter family mediate the transport of di- and tricarboxylates into cells. SLC13 family members have been implicated in lifespan extension and resistance to high-fat diets; thus, they are emerging drug targets for aging and metabolic disorders. We previously characterized key structural determinants of substrate and cation binding for the human NaDC3/SLC13A3 transporter using a homology model. Here, we combine computational modeling and virtual screening with functional and biochemical testing, to identify nine previously unknown inhibitors for multiple members of the SLC13 family from human and mouse. Our results reveal previously unknown substrate selectivity determinants for the SLC13 family, including key residues that mediate ligand binding and transport, as well as promiscuous and specific SLC13 small molecule ligands. The newly discovered ligands can serve as chemical tools for further characterization of the SLC13 family or as lead molecules for the future development of potent inhibitors for the treatment of metabolic diseases and aging. Our results improve our understanding of the structural components that are important for substrate specificity in this physiologically important family as well as in other structurally related transport systems.
Collapse
Affiliation(s)
- Claire Colas
- †Department of Pharmacology and Systems Therapeutics, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Ana M Pajor
- ‡Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, California 92130-0718, United States
| | - Avner Schlessinger
- †Department of Pharmacology and Systems Therapeutics, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
14
|
RIO GABRIELF, SILVA BÁRBARAV, MARTINEZ SABRINAT, PINTO ANGELOC. Anthranilic acids from isatin: an efficient, versatile and environmentally friendly method. ACTA ACUST UNITED AC 2015. [DOI: 10.1590/0001-3765201520140289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This paper describes the preparation of a series of 16 anthranilic acids in yields ranging from 51 to 97%, by treating the isatins with NaOH and H2O2. Independently of the nature of the substituent on the aromatic ring, the reactions were complete in 15 min at room temperature, whereas those of isatins containing a substituent on the nitrogen atom required longer reaction time for completion (45 min) under the same reaction conditions.
Collapse
|
15
|
Culf AS, Čuperlović-Culf M, Ouellette RJ, Decken A. Metal-Free, Acid-Catalyzed ortho-Directed Synthesis of Anthranilic Acid Derivatives Using Carbodiimides. Org Lett 2015; 17:2744-7. [DOI: 10.1021/acs.orglett.5b01160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adrian S. Culf
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | | | | | - Andreas Decken
- Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
16
|
Mulligan C, Fitzgerald GA, Wang DN, Mindell JA. Functional characterization of a Na+-dependent dicarboxylate transporter from Vibrio cholerae. ACTA ACUST UNITED AC 2014; 143:745-59. [PMID: 24821967 PMCID: PMC4035743 DOI: 10.1085/jgp.201311141] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
VcINDY, a bacterial homolog of transporters implicated in lifespan in fruit flies and insulin resistance in mammals, is a high affinity, electrogenic, Na+-dependent dicarboxylate transporter. The SLC13 transporter family, whose members play key physiological roles in the regulation of fatty acid synthesis, adiposity, insulin resistance, and other processes, catalyzes the transport of Krebs cycle intermediates and sulfate across the plasma membrane of mammalian cells. SLC13 transporters are part of the divalent anion:Na+ symporter (DASS) family that includes several well-characterized bacterial members. Despite sharing significant sequence similarity, the functional characteristics of DASS family members differ with regard to their substrate and coupling ion dependence. The publication of a high resolution structure of dimer VcINDY, a bacterial DASS family member, provides crucial structural insight into this transporter family. However, marrying this structural insight to the current functional understanding of this family also demands a comprehensive analysis of the transporter’s functional properties. To this end, we purified VcINDY, reconstituted it into liposomes, and determined its basic functional characteristics. Our data demonstrate that VcINDY is a high affinity, Na+-dependent transporter with a preference for C4- and C5-dicarboxylates. Transport of the model substrate, succinate, is highly pH dependent, consistent with VcINDY strongly preferring the substrate’s dianionic form. VcINDY transport is electrogenic with succinate coupled to the transport of three or more Na+ ions. In contrast to succinate, citrate, bound in the VcINDY crystal structure (in an inward-facing conformation), seems to interact only weakly with the transporter in vitro. These transport properties together provide a functional framework for future experimental and computational examinations of the VcINDY transport mechanism.
Collapse
Affiliation(s)
- Christopher Mulligan
- Membrane Transport Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Gabriel A Fitzgerald
- Membrane Transport Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Da-Neng Wang
- The Helen L. and Martin Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, NY 10016 The Helen L. and Martin Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, New York, NY 10016
| | - Joseph A Mindell
- Membrane Transport Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
17
|
Sodium-coupled dicarboxylate and citrate transporters from the SLC13 family. Pflugers Arch 2013; 466:119-30. [PMID: 24114175 DOI: 10.1007/s00424-013-1369-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/19/2013] [Accepted: 09/23/2013] [Indexed: 12/30/2022]
Abstract
The SLC13 family in humans and other mammals consists of sodium-coupled transporters for anionic substrates: three transporters for dicarboxylates/citrate and two transporters for sulfate. This review will focus on the di- and tricarboxylate transporters: NaDC1 (SLC13A2), NaDC3 (SLC13A3), and NaCT (SLC13A5). The substrates of these transporters are metabolic intermediates of the citric acid cycle, including citrate, succinate, and α-ketoglutarate, which can exert signaling effects through specific receptors or can affect metabolic enzymes directly. The SLC13 transporters are important for regulating plasma, urinary and tissue levels of these metabolites. NaDC1, primarily found on the apical membranes of renal proximal tubule and small intestinal cells, is involved in regulating urinary levels of citrate and plays a role in kidney stone development. NaDC3 has a wider tissue distribution and high substrate affinity compared with NaDC1. NaDC3 participates in drug and xenobiotic excretion through interactions with organic anion transporters. NaCT is primarily a citrate transporter located in the liver and brain, and its activity may regulate metabolic processes. The recent crystal structure of the Vibrio cholerae homolog, VcINDY, provides a new framework for understanding the mechanism of transport in this family. This review summarizes current knowledge of the structure, function, and regulation of the di- and tricarboxylate transporters of the SLC13 family.
Collapse
|
18
|
Pajor AM, Sun NN, Leung A. Functional characterization of SdcF from Bacillus licheniformis, a homolog of the SLC13 Na⁺/dicarboxylate transporters. J Membr Biol 2013; 246:705-15. [PMID: 23979173 DOI: 10.1007/s00232-013-9590-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/10/2013] [Indexed: 11/25/2022]
Abstract
The SdcF transporter from Bacillus licheniformis (gene BL02343) is a member of the divalent anion sodium symporter (DASS)/SLC13 family that includes Na⁺/dicarboxylate transporters from bacteria to humans. SdcF was functionally expressed in Escherichia coli (BL21) and assayed in right side out membrane vesicles. ScdF catalyzed the sodium-coupled transport of succinate and α-ketoglutarate. Succinate transport was strongly inhibited by malate, fumarate, tartrate, oxaloacetate and L-aspartate. Similar to the other DASS transporters, succinate transport by SdcF was inhibited by anthranilic acids, N-(p-amylcinnamoyl) anthranilic acid and flufenamate. SdcF transport was cation-dependent, with a K₀.₅ for sodium of ~1.5 mM and a K₀.₅ for Li⁺ of ~40 mM. Succinate transport kinetics by SdcF were sigmoidal, suggesting that SdcF may contain two cooperative substrate binding sites. The results support an ordered binding mechanism for SdcF in which sodium binds first and succinate binds last. We conclude that SdcF is a secondary active transporter for four- and five-carbon dicarboxylates that can use Na⁺ or Li⁺ as a driving cation.
Collapse
Affiliation(s)
- Ana M Pajor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California-San Diego, La Jolla, CA, 92093-0718, USA,
| | | | | |
Collapse
|