1
|
Rajagopalan V, Venkataraman S, Rajendran DS, Vinoth Kumar V, Kumar VV, Rangasamy G. Acetylcholinesterase biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine neurotransmitter: A literature review. ENVIRONMENTAL RESEARCH 2023; 227:115724. [PMID: 36948285 DOI: 10.1016/j.envres.2023.115724] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/14/2023] [Accepted: 03/18/2023] [Indexed: 05/08/2023]
Abstract
Neurotoxic pesticides are a group of chemicals that pose a severe threat to both human health and the environment. These molecules are also known to accumulate in the food chain and persist in the environment, which can lead to long-term exposure and adverse effects on non-target organisms. The detrimental effects of these pesticides on neurotransmitter levels and function can lead to a range of neurological and behavioral symptoms, which are closely associated with neurodegenerative diseases. Hence, the accurate and reliable detection of these neurotoxic pesticides and associated neurotransmitters is essential for clinical applications, such as diagnosis and treatment. Over the past few decades, acetylcholinesterase (AchE) biosensors have emerged as a sensitive and reliable tool for the electrochemical detection of neurotoxic pesticides and acetylcholine. These biosensors can be tailored to utilize the high specificity and sensitivity of AchE, enabling the detection of these chemicals. Additionally, enzyme immobilization and the incorporation of nanoparticles have further improved the detection capabilities of these biosensors. AchE biosensors have shown tremendous potential in various fields, including environmental monitoring, clinical diagnosis, and pesticide residue analysis. This review summarizes the advancements in AchE biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine over the past two decades.
Collapse
Affiliation(s)
- Vahulabaranan Rajagopalan
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Swethaa Venkataraman
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Devi Sri Rajendran
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Vaidyanathan Vinoth Kumar
- Integrated Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India.
| | - Vaithyanathan Vasanth Kumar
- Department of Electronics and Communication Engineering, Hindustan Institute of Technology and Science, Chennai, India.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
2
|
Quaye JA, Ball J, Gadda G. Kinetic solvent viscosity effects uncover an internal isomerization of the enzyme-substrate complex in Pseudomonas aeruginosa PAO1 NADH:Quinone oxidoreductase. Arch Biochem Biophys 2022; 727:109342. [PMID: 35777523 DOI: 10.1016/j.abb.2022.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 11/02/2022]
Abstract
NAD(P)H:quinone oxidoreductases (NQOs) play an essential protective role as antioxidants in the detoxification of quinones in both Prokaryotes and Eukaryotes. NQO from Pseudomonas aeruginosa PAO1 uses FMN to catalyze the two-electron reduction of various quinones with NADH. In this study, steady-state kinetics, kinetic solvent viscosity effects, and rapid reaction kinetics were used to determine which kinetic steps control the overall turnover of the enzyme with benzoquinone or juglone. The rate constant for flavin reduction (kred) at pH 6.0 was 12.9 ± 0.3 s-1, and the Kd for NADH was at least an order of magnitude lower than 90 μM. With benzoquinone, the kcat value was 11.7 ± 0.3 s-1, consistent with flavin reduction being almost entirely rate-limiting for overall turnover. With juglone, a kcat value of 10.0 ± 0.5 s-1 was recorded. The normalized plot of the relative solvent viscosity effects on the kcat values established that hydride transfer from NADH to the FMN and quinol product release, with a calculated rate constant (kP-rel) of 52 s-1, are partially rate-limiting for the overall turnover of NQO. Kinetic solvent viscosity effects with glucose or sucrose revealed a hyperbolic dependence on the kcat and kcat/Km values with benzoquinone or juglone, respectively, consistent with the presence of a solvent-sensitive internal isomerization of the enzyme-substrate complex (ES). The data demonstrate opposing effects of benzoquinone and juglone on the equilibrium of the NQO ES isomerization with glucose or sucrose. Thus, our study demonstrates how quinol substrate properties alter the equilibrium of NQO ES isomerization.
Collapse
Affiliation(s)
- Joanna A Quaye
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, GA, 30302, USA
| | - Jacob Ball
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, GA, 30302, USA
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, P.O. Box 3965, Atlanta, GA, 30302, USA; Department of Biology, Georgia State University, Atlanta, GA, 30302, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302, USA.
| |
Collapse
|
3
|
Abstract
Choline oxidase catalyzes the four-electron, two-step, flavin-mediated oxidation of choline to glycine betaine. The enzyme is important both for medical and biotechnological reasons, because glycine betaine is one among a limited number of compatible solutes used by cells to counteract osmotic pressure. From a fundamental standpoint, choline oxidase has emerged as one of the paradigm enzymes for the oxidation of alcohols catalyzed by flavoproteins. Mechanistic, structural, and computational studies have elucidated the mechanism of action of the enzyme from Arthrobacter globiformis at the molecular level. Both choline and oxygen access to the active site cavity are gated and tightly controlled. Amino acid residues involved in substrate binding, and their contribution, have been identified. The mechanism of choline oxidation, with a hydride transfer reaction, an asynchronous transition state, the formation and stabilization of an alkoxide transient species, and a quantum mechanical mode of reaction, has been elucidated. The importance of nonpolar side chains for oxygen localization and of the positive charge harbored on the substrate for activation of oxygen for reaction with the reduced flavin have been recognized. Interesting phenomena, like the formation of a metastable photoinduced flavin-protein adduct, the reversible formation of a bicovalent flavoprotein, and the trapping of the enzyme in inactive conformations, have been described. This review summarizes the current status of our understanding on the structure-function-dynamics of choline oxidase.
Collapse
Affiliation(s)
- Giovanni Gadda
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States; Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States.
| |
Collapse
|
4
|
Su D, Smitherman C, Gadda G. A Metastable Photoinduced Protein–Flavin Adduct in Choline Oxidase, an Enzyme Not Involved in Light-Dependent Processes. J Phys Chem B 2020; 124:3936-3943. [DOI: 10.1021/acs.jpcb.0c02633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
5
|
Kiss DJ, Ferenczy GG. A detailed mechanism of the oxidative half-reaction of d-amino acid oxidase: another route for flavin oxidation. Org Biomol Chem 2020; 17:7973-7984. [PMID: 31407761 DOI: 10.1039/c9ob00975b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
d-Amino acid oxidase (DAAO) is a flavoenzyme whose inhibition is expected to have therapeutic potential in schizophrenia. DAAO catalyses hydride transfer from the substrate to the flavin in the reductive half-reaction, and the flavin is reoxidized by O2 in the oxidative half-reaction. Quantum mechanical/molecular mechanical calculations were performed and their results together with available experimental information were used to elucidate the detailed mechanism of the oxidative half-reaction. The reaction starts with a single electron transfer from FAD to O2, followed by triplet-singlet transition. FAD oxidation is completed by a proton coupled electron transfer to the oxygen species and the reaction terminates with H2O2 formation by proton transfer from the oxidized substrate to the oxygen species via a chain of water molecules. The substrate plays a double role by facilitating the first electron transfer and by providing a proton in the last step. The mechanism differs from the oxidative half-reaction of other oxidases.
Collapse
Affiliation(s)
- Dóra Judit Kiss
- Doctoral School of Chemistry, Eötvös Loránd University, Pázmány s 1/A, H-1117, Budapest, Hungary. and Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt 2, H-1117, Budapest, Hungary.
| | - György G Ferenczy
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt 2, H-1117, Budapest, Hungary.
| |
Collapse
|
6
|
On the use of noncompetitive kinetic isotope effects to investigate flavoenzyme mechanism. Methods Enzymol 2019; 620:115-143. [PMID: 31072484 DOI: 10.1016/bs.mie.2019.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This account describes the application of kinetic isotope effects (KIEs) to investigate the mechanistic properties of flavin dependent enzymes. Assays can be conducted during steady-state catalytic turnover of the flavoenzyme with its substrate or by using rapid-kinetic techniques to measure either the reductive or oxidative half-reactions of the enzyme. Great care should be taken to ensure that the observed effects are due to isotopic substitution and not other factors such as pH effects or changes in the solvent viscosity of the reaction mixture. Different types of KIEs are described along with a physical description of their origins and the unique information each can provide about the mechanism of an enzyme. Detailed experimental techniques are outlined with special emphasis on the proper controls and data analysis that must be carried out to avoid erroneous conclusions. Examples are provided for each type of KIE measurement from references in the literature. It is our hope that this article will clarify any confusion concerning the utility of KIEs in the study of flavoprotein mechanism and encourage their use by the community.
Collapse
|
7
|
Yildiz I, Yildiz BS, Kirmizialtin S. Comparative Computational Approach To Study Enzyme Reactions Using QM and QM-MM Methods. ACS OMEGA 2018; 3:14689-14703. [PMID: 31458147 PMCID: PMC6643517 DOI: 10.1021/acsomega.8b02638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/19/2018] [Indexed: 06/10/2023]
Abstract
Choline oxidase catalyzes oxidation of choline into glycine betaine through a two-step reaction pathway employing flavin as the cofactor. On the light of kinetic studies, it is proposed that a hydride ion is transferred from α-carbon of choline/hydrated-betaine aldehyde to the N5 position of flavin in the rate-determining step, which is preceded by deprotonation of hydroxyl group of choline/hydrated-betaine aldehyde to one of the possible basic side chains. Using the crystal structure of glycine betaine-choline oxidase complex, we formulated two computational systems to study the hydride-transfer mechanism including main active-site amino acid side chains, flavin cofactor, and choline as a model system. The first system used pure density functional theory calculations, whereas the second approach used a hybrid ONIOM approach consisting of density functional and molecular mechanics calculations. We were able to formulate in silico model active sites to study the hydride-transfer steps by utilizing noncovalent chemical interactions between choline/betaine aldehyde and active-site amino acid chains using an atomistic approach. We evaluated and compared the geometries and energetics of hydride-transfer process using two different systems. We highlighted chemical interactions and studied the effect of protonation state of an active-site histidine base on the energetics of transfer. Furthermore, we evaluated energetics of the second hydride-transfer process as well as hydration of betaine aldehyde.
Collapse
Affiliation(s)
- Ibrahim Yildiz
- Chemistry
Department and CIVE Department, Khalifa
University, P.O. Box 127788, Abu
Dhabi, UAE
| | - Banu Sizirici Yildiz
- Chemistry
Department and CIVE Department, Khalifa
University, P.O. Box 127788, Abu
Dhabi, UAE
| | - Serdal Kirmizialtin
- Chemistry
Program, New York University at Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| |
Collapse
|
8
|
Robinson RM, Klancher CA, Rodriguez PJ, Sobrado P. Flavin oxidation in flavin-dependent N-monooxygenases. Protein Sci 2018; 28:90-99. [PMID: 30098072 DOI: 10.1002/pro.3487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/14/2018] [Accepted: 07/23/2018] [Indexed: 01/08/2023]
Abstract
Siderophore A (SidA) from Aspergillus fumigatus is a flavin-containing monooxygenase that hydroxylates ornithine (Orn) at the amino group of the side chain. Lysine (Lys) also binds to the active site of SidA; however, hydroxylation is not efficient and H2 O2 is the main product. The effect of pH on steady-state kinetic parameters was measured and the results were consistent with Orn binding with the side chain amino group in the neutral form. From the pH dependence on flavin oxidation in the absence of Orn, a pKa value >9 was determined and assigned to the FAD-N5 atom. In the presence of Orn, the pH dependence displayed a pKa value of 6.7 ±0.1 and of 7.70 ±0.10 in the presence of Lys. Q102 interacts with NADPH and, upon mutation to alanine, leads to destabilization of the C4a-hydroperoxyflavin (FADOOH ). Flavin oxidation with Q102A showed a pKa value of ~8.0. The data are consistent with the pKa of the FAD N5-atom being modulated to a value >9 in the absence of Orn, which aids in the stabilization of FADOOH . Changes in the FAD-N5 environment lead to a decrease in the pKa value, which facilitates elimination of H2 O2 or H2 O. These findings are supported by solvent kinetic isotope effect experiments, which show that proton transfer from the FAD N5-atom is rate limiting in the absence of a substrate, however, is significantly less rate limiting in the presence of Orn and or Lys.
Collapse
Affiliation(s)
- Reeder M Robinson
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24061
| | - Catherine A Klancher
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24061
| | - Pedro J Rodriguez
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24061
| | - Pablo Sobrado
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia, 24061
| |
Collapse
|
9
|
Gadda G, Sobrado P. Kinetic Solvent Viscosity Effects as Probes for Studying the Mechanisms of Enzyme Action. Biochemistry 2018; 57:3445-3453. [DOI: 10.1021/acs.biochem.8b00232] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Pablo Sobrado
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
10
|
Carro J, Ferreira P, Martínez AT, Gadda G. Stepwise Hydrogen Atom and Proton Transfers in Dioxygen Reduction by Aryl-Alcohol Oxidase. Biochemistry 2018; 57:1790-1797. [DOI: 10.1021/acs.biochem.8b00106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Juan Carro
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Patricia Ferreira
- Departament of Biochemistry and Cellular and Molecular Biology and Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, E-50009 Zaragoza, Spain
| | - Angel T. Martínez
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, E-28040 Madrid, Spain
| | - Giovanni Gadda
- Department of Chemistry, Department of Biology, Center for Biotechnology and Drug Design, and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
11
|
Romero E, Gómez Castellanos JR, Gadda G, Fraaije MW, Mattevi A. Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes. Chem Rev 2018; 118:1742-1769. [DOI: 10.1021/acs.chemrev.7b00650] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Elvira Romero
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - J. Rubén Gómez Castellanos
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Giovanni Gadda
- Departments of Chemistry and Biology, Center for Diagnostics and Therapeutics, and Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Andrea Mattevi
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
12
|
Su D, Yuan H, Gadda G. A Reversible, Charge-Induced Intramolecular C4a-S-Cysteinyl-Flavin in Choline Oxidase Variant S101C. Biochemistry 2017; 56:6677-6690. [DOI: 10.1021/acs.biochem.7b00958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dan Su
- Department
of Chemistry, ‡Department of Biology, §Center for Diagnostics and Therapeutics, and ∥Center for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| | - Hongling Yuan
- Department
of Chemistry, ‡Department of Biology, §Center for Diagnostics and Therapeutics, and ∥Center for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| | - Giovanni Gadda
- Department
of Chemistry, ‡Department of Biology, §Center for Diagnostics and Therapeutics, and ∥Center for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
13
|
Gadda G, Yuan H. Substitutions of S101 decrease proton and hydride transfers in the oxidation of betaine aldehyde by choline oxidase. Arch Biochem Biophys 2017; 634:76-82. [PMID: 29029877 DOI: 10.1016/j.abb.2017.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 11/25/2022]
Abstract
Choline oxidase oxidizes choline to glycine betaine, with two flavin-mediated reactions to convert the alcohol substrate to the carbon acid product. Proton abstraction from choline or hydrated betaine aldehyde in the wild-type enzyme occurs in the mixing time of the stopped-flow spectrophotometer, thereby precluding a mechanistic investigation. Mutagenesis of S101 rendered the proton transfer reaction amenable to study. Here, we have investigated the aldehyde oxidation reaction catalyzed by the mutant enzymes using steady-state and rapid kinetics with betaine aldehyde. Stopped-flow traces for the reductive half-reaction of the S101T/V/C variants were biphasic, corresponding to the reactions of proton abstraction and hydride transfer. In contrast, the S101A enzyme yielded monophasic traces like wild-type choline oxidase. The rate constants for proton transfer in the S101T/C/V variants decreased logarithmically with increasing hydrophobicity of residue 101, indicating a behavior different from that seen previously with choline for which no correlation was determined. The rate constants for hydride transfer also showed a logarithmic decrease with increasing hydrophobicity at position 101, which was similar to previous results with choline as a substrate for the enzyme. Thus, the hydrophilic character of S101 is necessary not only for efficient hydride transfer but also for the proton abstraction reaction.
Collapse
Affiliation(s)
- Giovanni Gadda
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302-3965, United States; Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302-3965, United States; Center for Biotechnology and Drug Design, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302-3965, United States.
| | - Hongling Yuan
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302-3965, United States
| |
Collapse
|
14
|
Evidence for proton tunneling and a transient covalent flavin-substrate adduct in choline oxidase S101A. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1470-1478. [PMID: 28843728 DOI: 10.1016/j.bbapap.2017.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 11/20/2022]
Abstract
The effect of temperature on the reaction of alcohol oxidation catalyzed by choline oxidase was investigated with the S101A variant of choline oxidase. Anaerobic enzyme reduction in a stopped-flow spectrophotometer was biphasic using either choline or 1,2-[2H4]-choline as a substrate. The limiting rate constants klim1 and klim2 at saturating substrate were well separated (klim1/klim2>9), and were >15-fold slower than for wild-type choline oxidase. Solvent deuterium kinetic isotope effects (KIEs) ~4 established that klim1 probes the proton transfer from the substrate hydroxyl to a catalytic base. Primary substrate deuterium KIEs ≥7 demonstrated that klim2 reports on hydride transfer from the choline alkoxide to the flavin. Between 15°C and 39°C the klim1 and klim2 values increased with increasing temperature, allowing for the analyses of H+ and H- transfers using Eyring and Arrhenius formalisms. Temperature-independent KIE on the klim1 value (H2Oklim1/D2Oklim1) suggests that proton transfer occurs within a highly reorganized tunneling-ready-state with a narrow distribution of donor-acceptor distances. Eyring analysis of the klim2 value gave lines with the slope(choline)>slope(D-choline), suggesting kinetic complexity. Spectral evidence for the transient occurrence of a covalent flavin-substrate adduct during the first phase of the anaerobic reaction of S101A CHO with choline is presented, supporting the notion that an important role of amino acid residues in the active site of flavin-dependent enzymes is to eliminate alternative reactions of the versatile enzyme-bound flavin for the reaction that needs to be catalyzed.
Collapse
|
15
|
Pitsawong W, Haynes CA, Koder RL, Rodgers DW, Miller AF. Mechanism-Informed Refinement Reveals Altered Substrate-Binding Mode for Catalytically Competent Nitroreductase. Structure 2017; 25:978-987.e4. [PMID: 28578873 DOI: 10.1016/j.str.2017.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 04/02/2017] [Accepted: 05/05/2017] [Indexed: 01/25/2023]
Abstract
Nitroreductase (NR) from Enterobacter cloacae reduces diverse nitroaromatics including herbicides, explosives, and prodrugs, and holds promise for bioremediation, prodrug activation, and enzyme-assisted synthesis. We solved crystal structures of NR complexes with bound substrate or analog for each of its two half-reactions. We complemented these with kinetic isotope effect (KIE) measurements elucidating H-transfer steps essential to each half-reaction. KIEs indicate hydride transfer from NADH to the flavin consistent with our structure of NR with the NADH analog nicotinic acid adenine dinucleotide (NAAD). The KIE on reduction of p-nitrobenzoic acid (p-NBA) also indicates hydride transfer, and requires revision of prior computational mechanisms. Our mechanistic information provided a structural restraint for the orientation of bound substrate, placing the nitro group closer to the flavin N5 in the pocket that binds the amide of NADH. KIEs show that solvent provides a proton, enabling accommodation of different nitro group placements, consistent with the broad repertoire of NR.
Collapse
Affiliation(s)
- Warintra Pitsawong
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055, USA
| | - Chad A Haynes
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536-0509, USA
| | - Ronald L Koder
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055, USA
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536-0509, USA.
| | - Anne-Frances Miller
- Department of Chemistry, University of Kentucky, 505 Rose Street, Lexington, KY 40506-0055, USA; Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, 741 South Limestone Street, Lexington, KY 40536-0509, USA.
| |
Collapse
|
16
|
Salvi F, Rodriguez I, Hamelberg D, Gadda G. Role of F357 as an Oxygen Gate in the Oxidative Half-Reaction of Choline Oxidase. Biochemistry 2016; 55:1473-84. [PMID: 26907558 DOI: 10.1021/acs.biochem.5b01356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Choline oxidase from Arthrobacter globiformis catalyzes the oxidation of choline to glycine betaine by using oxygen as an electron acceptor. A partially rate limiting isomerization of the reduced wild-type enzyme during the reaction with oxygen was previously detected using solvent viscosity effects. In this study, we hypothesized that the side chains of M62 and F357, located at the entrance to the active site of choline oxidase, may be related to the slow isomerization detected. We engineered a double-variant enzyme M62A/F357A. The kinetic characterization of the double-variant enzyme showed a lack of the isomerization detected in wild-type choline oxidase, and a lack of saturation with an oxygen concentration as high as 1 mM, while most other kinetic parameters were similar to those of wild-type choline oxidase. The kinetic characterization of the single-variant enzymes established that only the side chain of F357 plays a role in the isomerization of choline oxidase in the oxidative half-reaction. Molecular dynamics studies suggest that the slow isomerization related to F357 is possibly due to the participation of the phenyl ring in a newly proposed gating mechanism for a narrow tunnel, assumed to regulate the access of oxygen to the reduced cofactor.
Collapse
Affiliation(s)
- Francesca Salvi
- Department of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug Design, and ∥Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| | - Isela Rodriguez
- Department of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug Design, and ∥Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| | - Donald Hamelberg
- Department of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug Design, and ∥Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| | - Giovanni Gadda
- Department of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug Design, and ∥Center for Diagnostics and Therapeutics, Georgia State University , Atlanta, Georgia 30302, United States
| |
Collapse
|
17
|
Zafred D, Steiner B, Teufelberger AR, Hromic A, Karplus PA, Schofield CJ, Wallner S, Macheroux P. Rationally engineered flavin-dependent oxidase reveals steric control of dioxygen reduction. FEBS J 2015; 282:3060-74. [PMID: 25619330 DOI: 10.1111/febs.13212] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 01/12/2023]
Abstract
UNLABELLED The ability of flavoenzymes to reduce dioxygen varies greatly, and is controlled by the protein environment, which may cause either a rapid reaction (oxidases) or a sluggish reaction (dehydrogenases). Previously, a 'gatekeeper' amino acid residue was identified that controls the reactivity to dioxygen in proteins from the vanillyl alcohol oxidase superfamily of flavoenzymes. We have identified an alternative gatekeeper residue that similarly controls dioxygen reactivity in the grass pollen allergen Phl p 4, a member of this superfamily that has glucose dehydrogenase activity and the highest redox potential measured in a flavoenzyme. A substitution at the alternative gatekeeper site (I153V) transformed the enzyme into an efficient oxidase by increasing dioxygen reactivity by a factor of 60,000. An inverse exchange (V169I) in the structurally related berberine bridge enzyme (BBE) decreased its dioxygen reactivity by a factor of 500. Structural and biochemical characterization of these and additional variants showed that our model enzymes possess a cavity that binds an anion and resembles the 'oxyanion hole' in the proximity of the flavin ring. We showed also that steric control of access to this site is the most important parameter affecting dioxygen reactivity in BBE-like enzymes. Analysis of flavin-dependent oxidases from other superfamilies revealed similar structural features, suggesting that dioxygen reactivity may be governed by a common mechanistic principle. DATABASE Structural data are available in PDB database under the accession numbers 4PVE, 4PVH, 4PVJ, 4PVK, 4PWB, 4PWC and 4PZF.
Collapse
Affiliation(s)
- Domen Zafred
- Institute of Biochemistry, Graz University of Technology, Austria.,Institute of Molecular Biosciences, University of Graz, Austria
| | - Barbara Steiner
- Institute of Biochemistry, Graz University of Technology, Austria
| | | | - Altijana Hromic
- Institute of Molecular Biosciences, University of Graz, Austria
| | - P Andrew Karplus
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | | | - Silvia Wallner
- Institute of Biochemistry, Graz University of Technology, Austria
| | - Peter Macheroux
- Institute of Biochemistry, Graz University of Technology, Austria
| |
Collapse
|
18
|
Smitherman C, Rungsrisuriyachai K, Germann MW, Gadda G. Identification of the Catalytic Base for Alcohol Activation in Choline Oxidase. Biochemistry 2014; 54:413-21. [DOI: 10.1021/bi500982y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Crystal Smitherman
- Department
of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug
Design, ∥Center for Diagnostics and Therapeutics, and ⊥Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Kunchala Rungsrisuriyachai
- Department
of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug
Design, ∥Center for Diagnostics and Therapeutics, and ⊥Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Markus W. Germann
- Department
of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug
Design, ∥Center for Diagnostics and Therapeutics, and ⊥Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-3965, United States
| | - Giovanni Gadda
- Department
of Chemistry, ‡Department of Biology, §Center for Biotechnology and Drug
Design, ∥Center for Diagnostics and Therapeutics, and ⊥Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
19
|
Romero E, Gadda G. Alcohol oxidation by flavoenzymes. Biomol Concepts 2014; 5:299-318. [DOI: 10.1515/bmc-2014-0016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/05/2014] [Indexed: 12/26/2022] Open
Abstract
AbstractThis review article describes the occurrence, general properties, and substrate specificity of the flavoenzymes belonging to the glucose-methanol-choline oxidoreductase superfamily and the l-α-hydroxyacid dehydrogenase family. Most of these enzymes catalyze the oxidations of hydroxyl groups, yielding carbonyl moieties. Over the years, carbanion, hydride transfer, and radical mechanisms have been discussed for these enzymes, and the main experimental evidences supporting these mechanisms are presented here. Regardless of the chemical nature of the organic substrate (i.e., activated and non-activated alcohols), a hydride transfer mechanism appears to be the most plausible for the flavoenzymes acting on CH-OH groups. The reaction of most of these enzymes likely starts with proton abstraction from the substrate hydroxyl group by a conserved active site histidine. Among the different approaches carried out to determine the chemical mechanisms with physiological substrates, primary substrate and solvent deuterium kinetic isotope effect studies have provided the most unambiguous evidences. It is expected that the numerous studies reported for these enzymes over the years will be instrumental in devising efficient industrial biocatalysts and drugs.
Collapse
Affiliation(s)
- Elvira Romero
- 1Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA
| | | |
Collapse
|
20
|
Salvi F, Gadda G. Human choline dehydrogenase: medical promises and biochemical challenges. Arch Biochem Biophys 2013; 537:243-52. [PMID: 23906661 PMCID: PMC7094428 DOI: 10.1016/j.abb.2013.07.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/24/2013] [Accepted: 07/16/2013] [Indexed: 01/17/2023]
Abstract
Human choline dehydrogenase (CHD) is located in the inner membrane of mitochondria primarily in liver and kidney and catalyzes the oxidation of choline to glycine betaine. Its physiological role is to regulate the concentrations of choline and glycine betaine in the blood and cells. Choline is important for regulation of gene expression, the biosynthesis of lipoproteins and membrane phospholipids and for the biosynthesis of the neurotransmitter acetylcholine; glycine betaine plays important roles as a primary intracellular osmoprotectant and as methyl donor for the biosynthesis of methionine from homocysteine, a required step for the synthesis of the ubiquitous methyl donor S-adenosyl methionine. Recently, CHD has generated considerable medical attention due to its association with various human pathologies, including male infertility, homocysteinuria, breast cancer and metabolic syndrome. Despite the renewed interest, the biochemical characterization of the enzyme has lagged behind due to difficulties in the obtainment of purified, active and stable enzyme. This review article summarizes the medical relevance and the physiological roles of human CHD, highlights the biochemical knowledge on the enzyme, and provides an analysis based on the comparison of the protein sequence with that of bacterial choline oxidase, for which structural and biochemical information is available.
Collapse
Affiliation(s)
- Francesca Salvi
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, United States
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, United States
- Department of Biology, Georgia State University, Atlanta, GA 30302-3965, United States
- The Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302-3965, United States
| |
Collapse
|