1
|
Zhou X, An L, Yang Y, Liu Z, Wang Y, Yao L. Positive activation entropy of Bacillus circulans xylanase catalyzed ONPX 2 hydrolysis: A mechanistic and engineering study. Int J Biol Macromol 2024; 282:137087. [PMID: 39489233 DOI: 10.1016/j.ijbiomac.2024.137087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/18/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Transition state (TS) stabilization by enzymes greatly accelerates catalytic reactions. For some enzymes, the TS complex has entropy higher than enzyme substrate (ES) complex. But the origin of favorable entropy remains unclear. In this work, we studied the mechanism of Bacillus Circulans xylanase (BCX) 11 catalyzed o-nitrophenyl β-xylobioside (ONPX2) glycoside hydrolysis. The catalytic reaction exhibits a positive activation entropy, and an increase in ionic strength leads to a decrease in entropy without affecting the activation free energy, indicating that the entropy is predominantly influenced by electrostatic forces. Moreover, NMR measurements of electrostatic attractions within the active site demonstrate a positive entropy, aligning with molecular dynamics (MD) simulations showing that electrostatic interactions contribute to the entropic stabilization of the TS complex. These findings suggest that the positive entropy primarily originates from alterations in electrostatic interactions due to the formation of the oxocarbenium ion at C1 in the TS. Differences of electrostatic interactions in ES and TS modify hydrogen bonding of surrounding residues in the active site which causes their side chain dynamics and thus conformational entropy changes. Residues critical for the positive activation entropy are identified. A new BCX mutant with an increased activation entropy and catalytic activity is found.
Collapse
Affiliation(s)
- Xuchen Zhou
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liaoyuan An
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Ying Yang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Zhijun Liu
- National Facility for Protein Science, Zhangjiang Lab, Shanghai Advanced Research Institute, CAS, 201210, China
| | - Yefei Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| | - Lishan Yao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.
| |
Collapse
|
2
|
Sun Y, Ma YY, Shangguan S, Ruan Y, Bai T, Xue P, Zhuang H, Cao W, Cai H, Tang E, Wu Z, Yang M, Zeng Y, Sun J, Fan Y, Zeng X, Yan S. Metal ions-anchored bacterial outer membrane vesicles for enhanced ferroptosis induction and immune stimulation in targeted antitumor therapy. J Nanobiotechnology 2024; 22:474. [PMID: 39123234 PMCID: PMC11311927 DOI: 10.1186/s12951-024-02747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The activation of ferroptosis presents a versatile strategy for enhancing the antitumor immune responses in cancer therapy. However, developing ferroptosis inducers that combine high biocompatibility and therapeutic efficiency remains challenging. In this study, we propose a novel approach using biological nanoparticles derived from outer membrane vesicles (OMVs) of Escherichia coli for tumor treatment, aiming to activate ferroptosis and stimulate the immune responses. Specifically, we functionalize the OMVs by anchoring them with ferrous ions via electrostatic interactions and loading them with the STING agonist-4, followed by tumor-targeting DSPE-PEG-FA decoration, henceforth referred to as OMV/SaFeFA. The anchoring of ferrous ions endows the OMVs with peroxidase-like activity, capable of inducing cellular lipid peroxidation by catalyzing H2O2 to •OH. Furthermore, OMV/SaFeFA exhibits pH-responsive release of ferrous ions and the agonist, along with tumor-targeting capabilities, enabling tumor-specific therapy while minimizing side effects. Notably, the concurrent activation of the STING pathway and ferroptosis elicits robust antitumor responses in colon tumor-bearing mouse models, leading to exceptional therapeutic efficacy and prolonged survival. Importantly, no acute toxicity was observed in mice receiving OMV/SaFeFA treatments, underscoring its potential for future tumor therapy and clinical translation.
Collapse
Affiliation(s)
- Ying Sun
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Yan-Yan Ma
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Shijie Shangguan
- Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Yihang Ruan
- Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Tingjie Bai
- Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Panpan Xue
- Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Huilan Zhuang
- Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Wenyu Cao
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Huimei Cai
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China.
| | - Enqi Tang
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Zhou Wu
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Mingzhen Yang
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Yixin Zeng
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Juan Sun
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Yong Fan
- Department of Gastroenterology, Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou, Fujian, 350009, China
| | - Xuemei Zeng
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, Biomedical Research Center of South China, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Shuangqian Yan
- Straits Laboratory of Flexible Electronics (SLoFE), Straits Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China.
| |
Collapse
|
3
|
Roy JK, Ahn HW, Lee J, Kim JH, Yoo SH, Kim YW. Production of highly water-soluble genistein α-diglucoside using an engineered O-α-glycoligase with enhanced transglycosylation activity and altered substrate specificity. Food Chem 2024; 437:137898. [PMID: 37924766 DOI: 10.1016/j.foodchem.2023.137898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Genistein is one of isoflavones, showing various biological functions for human health. MalA-D416A, termed O-α-glycoligase, is an acid/base catalytic residue-deficient mutant of a α-glucosidase from Sulfolobus solfataricus, synthesizing genistein 7-O-α-glucoside using α-glucosyl fluoride as the donor substrate. Through mutagenesis toward MalA-D416A, an O-α-glycoligase variant with two mutations (D416R and Q450S) was identified as a biocatalyst with a 58.8-fold enhanced catalytic efficiency for genistein compared to the parent enzyme. The use of a 2:1 ratio of α-glucosyl fluoride and genistein at pH 9 facilitated the synthesis of genistein 7,4'-O-α-diglucoside by MalA-D416R/Q450S. The α-diglucoside exhibited 2,459-fold improved water solubility compared to genistein itself as well as facile deglycosylation by the intestinal α-glucosidase from rat, suggesting the potential of the α-diglucoside for improved bioavailability in human intestine. Through molecular docking analyses the modulation of the active site conformation by these mutations was expected for proper binding of both genistein and the monoglucoside.
Collapse
Affiliation(s)
- Jetendra Kumar Roy
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Hee-Won Ahn
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jaeick Lee
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jin-Hyo Kim
- Department of Agricultural Chemistry, Gyeongsang National University, Jinju 52727, Republic of Korea
| | - Sang-Ho Yoo
- Department of Food Science & Biotechnology and Carbohydrate Bioproduct Research Center, Sejong University, Seoul 05006, Republic of Korea
| | - Young-Wan Kim
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea,.
| |
Collapse
|
4
|
Leathard AS, Beales PA, Taylor AF. Design of oscillatory dynamics in numerical simulations of compartment-based enzyme systems. CHAOS (WOODBURY, N.Y.) 2023; 33:123128. [PMID: 38149992 DOI: 10.1063/5.0180256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
Enzymatic reactions that yield non-neutral products are known to involve feedback due to the bell-shaped pH-rate curve of the enzyme. Compartmentalizing the reaction has been shown to lead to transport-driven oscillations in theory; however, there have been few reproducible experimental examples. Our objective was to determine how the conditions could be optimized to achieve pH oscillations. We employed numerical simulations to investigate the hydrolysis of ethyl acetate in a confined esterase enzyme system, examining the influence of key factors on its behavior. Specific parameter ranges that lead to bistability and self-sustained pH oscillations and the importance of fast base transport for oscillations in this acid-producing system are highlighted. Suggestions are made to expand the parameter space for the occurrence of oscillations, including modifying the maximum of the enzyme pH-rate curve and increasing the negative feedback rate. This research not only sheds light on the programmable nature of enzyme-driven pH regulation but also furthers knowledge on the optimal design of such feedback systems for experimentalists.
Collapse
Affiliation(s)
- Anna S Leathard
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Paul A Beales
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Annette F Taylor
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
5
|
Li SF, Cheng F, Wang YJ, Zheng YG. Strategies for tailoring pH performances of glycoside hydrolases. Crit Rev Biotechnol 2023; 43:121-141. [PMID: 34865578 DOI: 10.1080/07388551.2021.2004084] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glycoside hydrolases (GHs) exhibit high activity and stability under harsh conditions, such as high temperatures and extreme pHs, given their wide use in industrial biotechnology. However, strategies for improving the acidophilic and alkalophilic adaptations of GHs are poorly summarized due to the complexity of the mechanisms of these adaptations. This review not only highlights the adaptation mechanisms of acidophilic and alkalophilic GHs under extreme pH conditions, but also summarizes the recent advances in engineering the pH performances of GHs with a focus on four strategies of protein engineering, enzyme immobilization, chemical modification, and medium engineering (additives). The examples described here summarize the methods used in modulating the pH performances of GHs and indicate that methods integrated in different protein engineering techniques or methods are efficient to generate industrial biocatalysts with the desired pH performance and other adapted enzyme properties.
Collapse
Affiliation(s)
- Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China.,The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
6
|
Benkoulouche M, Ben Imeddourene A, Barel LA, Le Heiget G, Pizzut S, Kulyk H, Bellvert F, Bozonnet S, Mulard LA, Remaud-Siméon M, Moulis C, André I. Redirecting substrate regioselectivity using engineered ΔN 123-GBD-CD2 branching sucrases for the production of pentasaccharide repeating units of S. flexneri 3a, 4a and 4b haptens. Sci Rep 2021; 11:2474. [PMID: 33510212 PMCID: PMC7844235 DOI: 10.1038/s41598-021-81719-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023] Open
Abstract
The (chemo-)enzymatic synthesis of oligosaccharides has been hampered by the lack of appropriate enzymatic tools with requisite regio- and stereo-specificities. Engineering of carbohydrate-active enzymes, in particular targeting the enzyme active site, has notably led to catalysts with altered regioselectivity of the glycosylation reaction thereby enabling to extend the repertoire of enzymes for carbohydrate synthesis. Using a collection of 22 mutants of ΔN123-GBD-CD2 branching sucrase, an enzyme from the Glycoside Hydrolase family 70, containing between one and three mutations in the active site, and a lightly protected chemically synthesized tetrasaccharide as an acceptor substrate, we showed that altered glycosylation product specificities could be achieved compared to the parental enzyme. Six mutants were selected for further characterization as they produce higher amounts of two favored pentasaccharides compared to the parental enzyme and/or new products. The produced pentasaccharides were shown to be of high interest as they are precursors of representative haptens of Shigella flexneri serotypes 3a, 4a and 4b. Furthermore, their synthesis was shown to be controlled by the mutations introduced in the active site, driving the glucosylation toward one extremity or the other of the tetrasaccharide acceptor. To identify the molecular determinants involved in the change of ΔN123-GBD-CD2 regioselectivity, extensive molecular dynamics simulations were carried out in combination with in-depth analyses of amino acid residue networks. Our findings help to understand the inter-relationships between the enzyme structure, conformational flexibility and activity. They also provide new insight to further engineer this class of enzymes for the synthesis of carbohydrate components of bacterial haptens.
Collapse
Affiliation(s)
- Mounir Benkoulouche
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Akli Ben Imeddourene
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Louis-Antoine Barel
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28, rue du Dr Roux, 75724, Paris Cedex 15, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Guillaume Le Heiget
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28, rue du Dr Roux, 75724, Paris Cedex 15, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Paris 13, Bobigny, France
| | - Sandra Pizzut
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Hanna Kulyk
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France.,MetaboHUB-MetaToul, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Floriant Bellvert
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France.,MetaboHUB-MetaToul, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Sophie Bozonnet
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Laurence A Mulard
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28, rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Magali Remaud-Siméon
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Claire Moulis
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France.
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France.
| |
Collapse
|
7
|
Li Z, Zhang X, Li C, Kovalevsky A, Wan Q. Studying the Role of a Single Mutation of a Family 11 Glycoside Hydrolase Using High-Resolution X-ray Crystallography. Protein J 2020; 39:671-680. [PMID: 33128114 DOI: 10.1007/s10930-020-09938-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2020] [Indexed: 01/16/2023]
Abstract
XynII is a family 11 glycoside hydrolase that uses the retaining mechanism for catalysis. In the active site, E177 works as the acid/base and E86 works as the nucleophile. Mutating an uncharged residue (N44) to an acidic residue (D) near E177 decreases the enzyme's optimal pH by ~ 1.0 unit. D44 was previously suggested to be a second proton carrier for catalysis. To test this hypothesis, we abolished the activity of E177 by mutating it to be Q, and mutated N44 to be D or E. These double mutants have dramatically decreased activities. Our high-resolution crystallographic structures and the microscopic pKa calculations show that D44 has similar position and pKa value during catalysis, indicating that D44 changes electrostatics around E177, which makes it prone to rotate as the acid/base in acidic conditions, thus decreases the pH optimum. Our results could be helpful to design enzymes with different pH optimum.
Collapse
Affiliation(s)
- Zhihong Li
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaoshuai Zhang
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Chunran Li
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Andrey Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Qun Wan
- College of Science, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
8
|
Fetter CM, Morrison ZA, Nagar M, Douglas CD, Bearne SL. Altering the Y137-K164-K166 triad of mandelate racemase and its effect on the observed pK a of the Brønsted base catalysts. Arch Biochem Biophys 2019; 666:116-126. [PMID: 30935886 DOI: 10.1016/j.abb.2019.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/16/2019] [Accepted: 03/25/2019] [Indexed: 11/16/2022]
Abstract
Mandelate racemase (MR) catalyzes the interconversion of the enantiomers of mandelate using a two-base mechanism with Lys 166 acting as the Brønsted base to abstract the α-proton from (S)-mandelate. The resulting intermediate is subsequently re-protonated by the conjugate acid of His 297 to yield (R)-mandelate. The roles of these amino acids are reversed when (R)-mandelate is the substrate. The side chains of Tyr 137, Lys 164, and Lys 166 form a H-bonding network and the proximity of the two ε-NH3+ groups is believed to lower the pKa of Lys 166. We used site-directed mutagenesis, kinetics, and pH-rate studies to explore the roles of Lys 164 (K164 C/M) and Tyr 137 (Y137 L/F/S/T) in catalysis. The efficiency (kcat/Km) was reduced ∼3.5 × 105-fold for K164C MR, relative to wild-type MR, indicating a major role for this residue in catalysis. The efficiency of Y137F MR, however, was reduced only 25-30-fold. pH-Rate profiles (log kcat vs. pH) revealed that substitution of Tyr 137 by Phe increased the kinetic pKa of Lys 166 from 5.88 ± 0.02 to 7.3 ± 0.2. Hence, Tyr 137 plays an important role in facilitating the reduction of the pKa of the Brønsted base Lys 166 by ∼1.4 units. Interestingly, the Phe substitution also increased the kinetic pKa of His 297 from 5.97 ± 0.04 to 7.1 ± 0.1. Thus, the Tyr 137-Lys 164-Lys 166 H-bonding network plays a broader role in modulating the pKa of catalytic residues by influencing the electrostatic character of the entire active site, not only by decreasing the observed pKa value of Lys 166, but also by decreasing the pKa of His 297 by 1.1 units.
Collapse
Affiliation(s)
- Christopher M Fetter
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Zachary A Morrison
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Mitesh Nagar
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Colin D Douglas
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Stephen L Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada; Department of Chemistry, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
9
|
Bergeron JRC, Brockerman JA, Vuckovic M, Deng W, Okon M, Finlay BB, McIntosh LP, Strynadka NCJ. Characterization of the two conformations adopted by the T3SS inner-membrane protein PrgK. Protein Sci 2018; 27:1680-1691. [PMID: 30095200 DOI: 10.1002/pro.3447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/07/2022]
Abstract
The pathogenic bacterium Salmonella enterica serovar Typhimurium utilizes two type III secretion systems (T3SS) to inject effector proteins into target cells upon infection. The T3SS secretion apparatus (the injectisome) is a large macromolecular assembly composed of over twenty proteins, many in highly oligomeric states. A sub-structure of the injectisome, termed the basal body, spans both membranes and the periplasmic space of the bacterium. It is primarily composed of three integral membranes proteins, InvG, PrgH, and PrgK, that form ring structures through which components are secreted. In particular, PrgK possesses a periplasmic region consisting of two globular domains joined by a linker polypeptide. We showed previously that in isolation, this region adopts two distinct conformations, of with only one is observed in the assembled basal body complex. Here, using NMR spectroscopy, we further characterize these two conformations. In particular, we demonstrate that the interaction of the linker region with the first globular domain, as found in the intact basal body, is dependent upon the cis conformation of the Leu77-Pro78 peptide. Furthermore, this interaction is pH-dependent due to coupling with hydrogen bond formation between Tyr75 and His42 in its neutral Nδ1 H tautomeric form. This pH-dependent interaction may play a role in the regulation of the secretion apparatus disassembly in the context of bacterial infection.
Collapse
Affiliation(s)
- Julien R C Bergeron
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jacob A Brockerman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Wanyin Deng
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mark Okon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - B Brett Finlay
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
10
|
Xiao K, Yu H. Rationalising pK a shifts in Bacillus circulans xylanase with computational studies. Phys Chem Chem Phys 2018; 18:30305-30312. [PMID: 27485091 DOI: 10.1039/c6cp02526a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacillus circulans xylanase (BcX), a family 11 glycoside hydrolase, catalyses the hydrolysis of xylose polymers with a net retention of stereochemistry. Glu172 in BcX is believed to act as a general acid by protonating the aglycone during glycosylation, and then as a general base to facilitate the deglycosylation step. The key to the dual role of this general acid/base lies in its protonation states, which depend on its intrinsic pKa value and the specific environment which it resides within. To fully understand the detailed molecular features in BcX to establish the dual role of Glu172, we present a combined study based on both atomistic simulations and empirical models to calculate pKa shifts for the general acid/base Glu172 in BcX at different functional states. Its pKa values and those of nearby residues, obtained based on QM/MM free energy calculations, MCCE and PROPKA, show a good agreement with available experimental data. Additionally, our study provides additional insights into the effects of structural and electrostatic perturbations caused by mutations and chemical modifications, suggesting that the local solvation environment and mutagenesis of the residues adjacent to Glu172 establish its dual role during hydrolysis. The strengths and limitations of various methods for calculating pKas and pKa shifts have also been discussed.
Collapse
Affiliation(s)
- Kela Xiao
- School of Chemistry, University of Wollongong, NSW 2522, Australia.
| | - Haibo Yu
- School of Chemistry, University of Wollongong, NSW 2522, Australia. and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| |
Collapse
|
11
|
Abdul Manas NH, Md Illias R, Mahadi NM. Strategy in manipulating transglycosylation activity of glycosyl hydrolase for oligosaccharide production. Crit Rev Biotechnol 2017; 38:272-293. [PMID: 28683572 DOI: 10.1080/07388551.2017.1339664] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The increasing market demand for oligosaccharides has intensified the need for efficient biocatalysts. Glycosyl hydrolases (GHs) are still gaining popularity as biocatalyst for oligosaccharides synthesis owing to its simple reaction and high selectivity. PURPOSE Over the years, research has advanced mainly directing to one goal; to reduce hydrolysis activity of GHs for increased transglycosylation activity in achieving high production of oligosaccharides. DESIGN AND METHODS This review concisely presents the strategies to increase transglycosylation activity of GHs for oligosaccharides synthesis, focusing on controlling the reaction equilibrium, and protein engineering. Various modifications of the subsites of GHs have been demonstrated to significantly modulate the hydrolysis and transglycosylation activity of the enzymes. The clear insight of the roles of each amino acid in these sites provides a platform for designing an enzyme that could synthesize a specific oligosaccharide product. CONCLUSIONS The key strategies presented here are important for future improvement of GHs as a biocatalyst for oligosaccharide synthesis.
Collapse
Affiliation(s)
- Nor Hasmaliana Abdul Manas
- a Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering , Universiti Malaysia Sarawak , Kota Samarahan , Malaysia.,b BioMolecular and Microbial Process Research Group , Health and Wellness Research Alliance, Universiti Teknologi Malaysia , Johor , Malaysia
| | - Rosli Md Illias
- b BioMolecular and Microbial Process Research Group , Health and Wellness Research Alliance, Universiti Teknologi Malaysia , Johor , Malaysia.,c Department of Bioprocess Engineering, Faculty of Chemical and Energy Engineering , Universiti Teknologi Malaysia , Skudai , Malaysia
| | - Nor Muhammad Mahadi
- d Comparative Genomics and Genetics Research Centre , Malaysia Genome Institute , Kajang , Malaysia
| |
Collapse
|
12
|
Montgomery AP, Xiao K, Wang X, Skropeta D, Yu H. Computational Glycobiology: Mechanistic Studies of Carbohydrate-Active Enzymes and Implication for Inhibitor Design. STRUCTURAL AND MECHANISTIC ENZYMOLOGY 2017; 109:25-76. [DOI: 10.1016/bs.apcsb.2017.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Gagné D, Narayanan C, Nguyen-Thi N, Roux LD, Bernard DN, Brunzelle JS, Couture JF, Agarwal PK, Doucet N. Ligand Binding Enhances Millisecond Conformational Exchange in Xylanase B2 from Streptomyces lividans. Biochemistry 2016; 55:4184-96. [PMID: 27387012 DOI: 10.1021/acs.biochem.6b00130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Xylanases catalyze the hydrolysis of xylan, an abundant carbon and energy source with important commercial ramifications. Despite tremendous efforts devoted to the catalytic improvement of xylanases, success remains limited because of our relatively poor understanding of their molecular properties. Previous reports suggested the potential role of atomic-scale residue dynamics in modulating the catalytic activity of GH11 xylanases; however, dynamics in these studies was probed on time scales orders of magnitude faster than the catalytic time frame. Here, we used nuclear magnetic resonance titration and relaxation dispersion experiments ((15)N-CPMG) in combination with X-ray crystallography and computational simulations to probe conformational motions occurring on the catalytically relevant millisecond time frame in xylanase B2 (XlnB2) and its catalytically impaired mutant E87A from Streptomyces lividans 66. Our results show distinct dynamical properties for the apo and ligand-bound states of the enzymes. The apo form of XlnB2 experiences conformational exchange for residues in the fingers and palm regions of the catalytic cleft, while the catalytically impaired E87A variant displays millisecond dynamics only in the fingers, demonstrating the long-range effect of the mutation on flexibility. Ligand binding induces enhanced conformational exchange of residues interacting with the ligand in the fingers and thumb loop regions, emphasizing the potential role of residue motions in the fingers and thumb loop regions for recognition, positioning, processivity, and/or stabilization of ligands in XlnB2. To the best of our knowledge, this work represents the first experimental characterization of millisecond dynamics in a GH11 xylanase family member. These results offer new insights into the potential role of conformational exchange in GH11 enzymes, providing essential dynamic information to help improve protein engineering and design applications.
Collapse
Affiliation(s)
- Donald Gagné
- INRS-Institut Armand-Frappier, Université du Québec , 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - Chitra Narayanan
- INRS-Institut Armand-Frappier, Université du Québec , 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - Nhung Nguyen-Thi
- INRS-Institut Armand-Frappier, Université du Québec , 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - Louise D Roux
- INRS-Institut Armand-Frappier, Université du Québec , 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - David N Bernard
- INRS-Institut Armand-Frappier, Université du Québec , 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada
| | - Joseph S Brunzelle
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University , 320 East Superior Street, Chicago, Illinois 60611, United States
| | - Jean-François Couture
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa , 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada.,PROTEO, Québec Network for Research on Protein Function, Engineering, and Applications, Université Laval , 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada.,GRASP, Groupe de Recherche Axé sur la Structure des Protéines, McGill University , 3649 Promenade Sir William Osler, Montréal, Québec H3G 0B1, Canada
| | - Pratul K Agarwal
- Computational Biology Institute and Computer Science and Mathematics Division, Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37830, United States.,Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Nicolas Doucet
- INRS-Institut Armand-Frappier, Université du Québec , 531 Boul. des Prairies, Laval, Québec H7V 1B7, Canada.,PROTEO, Québec Network for Research on Protein Function, Engineering, and Applications, Université Laval , 1045 Avenue de la Médecine, Québec, Québec G1V 0A6, Canada.,GRASP, Groupe de Recherche Axé sur la Structure des Protéines, McGill University , 3649 Promenade Sir William Osler, Montréal, Québec H3G 0B1, Canada
| |
Collapse
|
14
|
Boulton S, Melacini G. Advances in NMR Methods To Map Allosteric Sites: From Models to Translation. Chem Rev 2016; 116:6267-304. [PMID: 27111288 DOI: 10.1021/acs.chemrev.5b00718] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The last five years have witnessed major developments in the understanding of the allosteric phenomenon, broadly defined as coupling between remote molecular sites. Such advances have been driven not only by new theoretical models and pharmacological applications of allostery, but also by progress in the experimental approaches designed to map allosteric sites and transitions. Among these techniques, NMR spectroscopy has played a major role given its unique near-atomic resolution and sensitivity to the dynamics that underlie allosteric couplings. Here, we highlight recent progress in the NMR methods tailored to investigate allostery with the goal of offering an overview of which NMR approaches are best suited for which allosterically relevant questions. The picture of the allosteric "NMR toolbox" is provided starting from one of the simplest models of allostery (i.e., the four-state thermodynamic cycle) and continuing to more complex multistate mechanisms. We also review how such an "NMR toolbox" has assisted the elucidation of the allosteric molecular basis for disease-related mutations and the discovery of novel leads for allosteric drugs. From this overview, it is clear that NMR plays a central role not only in experimentally validating transformative theories of allostery, but also in tapping the full translational potential of allosteric systems.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology Department of Biochemistry and Biomedical Sciences, McMaster University , 1280 Main St. W., Hamilton L8S 4M1, Canada
| |
Collapse
|
15
|
Biochemical characterization of an acidophilic β-mannanase from Gloeophyllum trabeum CBS900.73 with significant transglycosylation activity and feed digesting ability. Food Chem 2016; 197:474-81. [DOI: 10.1016/j.foodchem.2015.10.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/06/2015] [Accepted: 10/24/2015] [Indexed: 02/05/2023]
|
16
|
Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int J Biol Macromol 2016; 82:1041-54. [DOI: 10.1016/j.ijbiomac.2015.10.086] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 01/07/2023]
|
17
|
Li H, Turunen O. Effect of acidic amino acids engineered into the active site cleft ofThermopolyspora flexuosaGH11 xylanase. Biotechnol Appl Biochem 2015; 62:433-40. [DOI: 10.1002/bab.1288] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/02/2014] [Indexed: 11/07/2022]
Affiliation(s)
- He Li
- Department of Biotechnology and Chemical Technology; School of Chemical Technology; Aalto University; Aalto 00076 Finland
| | - Ossi Turunen
- Department of Biotechnology and Chemical Technology; School of Chemical Technology; Aalto University; Aalto 00076 Finland
| |
Collapse
|
18
|
Iglesias-Fernández J, Raich L, Ardèvol A, Rovira C. The complete conformational free energy landscape of β-xylose reveals a two-fold catalytic itinerary for β-xylanases. Chem Sci 2015; 6:1167-1177. [PMID: 29560204 PMCID: PMC5811086 DOI: 10.1039/c4sc02240h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/27/2014] [Indexed: 01/28/2023] Open
Abstract
Unraveling the conformational catalytic itinerary of glycoside hydrolases (GHs) is a growing topic of interest in glycobiology, with major impact in the design of GH inhibitors. β-xylanases are responsible for the hydrolysis of glycosidic bonds in β-xylans, a group of hemicelluloses of high biotechnological interest that are found in plant cell walls. The precise conformations followed by the substrate during catalysis in β-xylanases have not been unambiguously resolved, with three different pathways being proposed from structural analyses. In this work, we compute the conformational free energy landscape (FEL) of β-xylose to predict the most likely catalytic itineraries followed by β-xylanases. The calculations are performed by means of ab initio metadynamics, using the Cremer-Pople puckering coordinates as collective variables. The computed FEL supports only two of the previously proposed itineraries, 2SO → [2,5B]ǂ → 5S1 and 1S3 → [4H3]ǂ → 4C1, which clearly appear in low energy regions of the FEL. Consistently, 2SO and 1S3 are conformations preactivated for catalysis in terms of free energy/anomeric charge and bond distances. The results however exclude the OE → [OS2]ǂ → B2,5 itinerary that has been recently proposed for a family 11 xylanase. Classical and ab initio QM/MM molecular dynamics simulations reveal that, in this case, the observed OE conformation has been enforced by enzyme mutation. These results add a word of caution on using modified enzymes to inform on catalytic conformational itineraries of glycoside hydrolases.
Collapse
Affiliation(s)
- Javier Iglesias-Fernández
- Departament de Química Orgànica and Institut de Química Teòrica i Computacional (IQTCUB) , Universitat de Barcelona , Martí i Franquès 1 , 08028 Barcelona , Spain .
| | - Lluís Raich
- Departament de Química Orgànica and Institut de Química Teòrica i Computacional (IQTCUB) , Universitat de Barcelona , Martí i Franquès 1 , 08028 Barcelona , Spain .
| | - Albert Ardèvol
- Department of Chemistry and Applied Biosciences , ETH Zürich , USI Campus , 6900 Lugano , Switzerland
| | - Carme Rovira
- Departament de Química Orgànica and Institut de Química Teòrica i Computacional (IQTCUB) , Universitat de Barcelona , Martí i Franquès 1 , 08028 Barcelona , Spain .
- Institució Catalana de Recerca i Estudis Avançats (ICREA) , Passeig Lluís Companys , 23 , 08018 Barcelona , Spain
| |
Collapse
|
19
|
Platzer G, Okon M, McIntosh LP. pH-dependent random coil (1)H, (13)C, and (15)N chemical shifts of the ionizable amino acids: a guide for protein pK a measurements. JOURNAL OF BIOMOLECULAR NMR 2014; 60:109-129. [PMID: 25239571 DOI: 10.1007/s10858-014-9862-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/09/2014] [Indexed: 06/03/2023]
Abstract
The pK a values and charge states of ionizable residues in polypeptides and proteins are frequently determined via NMR-monitored pH titrations. To aid the interpretation of the resulting titration data, we have measured the pH-dependent chemical shifts of nearly all the (1)H, (13)C, and (15)N nuclei in the seven common ionizable amino acids (X = Asp, Glu, His, Cys, Tyr, Lys, and Arg) within the context of a blocked tripeptide, acetyl-Gly-X-Gly-amide. Alanine amide and N-acetyl alanine were used as models of the N- and C-termini, respectively. Together, this study provides an essentially complete set of pH-dependent intra-residue and nearest-neighbor reference chemical shifts to help guide protein pK a measurements. These data should also facilitate pH-dependent corrections in algorithms used to predict the chemical shifts of random coil polypeptides. In parallel, deuterium isotope shifts for the side chain (15)N nuclei of His, Lys, and Arg in their positively-charged and neutral states were also measured. Along with previously published results for Asp, Glu, Cys, and Tyr, these deuterium isotope shifts can provide complementary experimental evidence for defining the ionization states of protein residues.
Collapse
Affiliation(s)
- Gerald Platzer
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | | | |
Collapse
|
20
|
Murata H, Cummings CS, Koepsel RR, Russell AJ. Rational Tailoring of Substrate and Inhibitor Affinity via ATRP Polymer-Based Protein Engineering. Biomacromolecules 2014; 15:2817-23. [DOI: 10.1021/bm5008629] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hironobu Murata
- Disruptive
Health Technology Institute, ICES, 1201 Hamburg Hall, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Chad S. Cummings
- Department
of Biomedical Engineering, Doherty Hall 2100, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Richard R. Koepsel
- Disruptive
Health Technology Institute, ICES, 1201 Hamburg Hall, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alan J. Russell
- Disruptive
Health Technology Institute, ICES, 1201 Hamburg Hall, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
- Department
of Biomedical Engineering, Doherty Hall 2100, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
21
|
Yu H, Griffiths TM. pKa cycling of the general acid/base in glycoside hydrolase families 33 and 34. Phys Chem Chem Phys 2014; 16:5785-92. [DOI: 10.1039/c4cp00351a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Bissaro B, Saurel O, Arab-Jaziri F, Saulnier L, Milon A, Tenkanen M, Monsan P, O'Donohue MJ, Fauré R. Mutation of a pH-modulating residue in a GH51 α-l-arabinofuranosidase leads to a severe reduction of the secondary hydrolysis of transfuranosylation products. Biochim Biophys Acta Gen Subj 2014; 1840:626-36. [DOI: 10.1016/j.bbagen.2013.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/23/2013] [Accepted: 10/04/2013] [Indexed: 12/18/2022]
|
23
|
Wan Q, Zhang Q, Hamilton-Brehm S, Weiss K, Mustyakimov M, Coates L, Langan P, Graham D, Kovalevsky A. X-ray crystallographic studies of family 11 xylanase Michaelis and product complexes: implications for the catalytic mechanism. ACTA ACUST UNITED AC 2013; 70:11-23. [PMID: 24419374 DOI: 10.1107/s1399004713023626] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/22/2013] [Indexed: 11/10/2022]
Abstract
Xylanases catalyze the hydrolysis of plant hemicellulose xylan into oligosaccharides by cleaving the main-chain glycosidic linkages connecting xylose subunits. To study ligand binding and to understand how the pH constrains the activity of the enzyme, variants of the Trichoderma reesei xylanase were designed to either abolish its activity (E177Q) or to change its pH optimum (N44H). An E177Q-xylohexaose complex structure was obtained at 1.15 Å resolution which represents a pseudo-Michaelis complex and confirmed the conformational movement of the thumb region owing to ligand binding. Co-crystallization of N44H with xylohexaose resulted in a hydrolyzed xylotriose bound in the active site. Co-crystallization of the wild-type enzyme with xylopentaose trapped an aglycone xylotriose and a transglycosylated glycone product. Replacing amino acids near Glu177 decreased the xylanase activity but increased the relative activity at alkaline pH. The substrate distortion in the E177Q-xylohexaose structure expands the possible conformational itinerary of this xylose ring during the enzyme-catalyzed xylan-hydrolysis reaction.
Collapse
Affiliation(s)
- Qun Wan
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Qiu Zhang
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Scott Hamilton-Brehm
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Kevin Weiss
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Marat Mustyakimov
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Leighton Coates
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Paul Langan
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - David Graham
- Biosciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Andrey Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| |
Collapse
|
24
|
Hediger MR, Steinmann C, De Vico L, Jensen JH. A computational method for the systematic screening of reaction barriers in enzymes: searching for Bacillus circulans xylanase mutants with greater activity towards a synthetic substrate. PeerJ 2013; 1:e111. [PMID: 23904990 PMCID: PMC3728886 DOI: 10.7717/peerj.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/03/2013] [Indexed: 12/04/2022] Open
Abstract
We present a semi-empirical (PM6-based) computational method for systematically estimating the effect of all possible single mutants, within a certain radius of the active site, on the barrier height of an enzymatic reaction. The intent of this method is not a quantitative prediction of the barrier heights, but rather to identify promising mutants for further computational or experimental study. The method is applied to identify promising single and double mutants of Bacillus circulans xylanase (BCX) with increased hydrolytic activity for the artificial substrate ortho-nitrophenyl β-xylobioside (ONPX2). The estimated reaction barrier for wild-type (WT) BCX is 18.5 kcal/mol, which is in good agreement with the experimental activation free energy value of 17.0 kcal/mol extracted from the observed k cat using transition state theory (Joshi et al., 2001). The PM6 reaction profiles for eight single point mutations are recomputed using FMO-MP2/PCM/6-31G(d) single points. PM6 predicts an increase in barrier height for all eight mutants while FMO predicts an increase for six of the eight mutants. Both methods predict that the largest change in barrier occurs for N35F, where PM6 and FMO predict a 9.0 and 15.8 kcal/mol increase, respectively. We thus conclude that PM6 is sufficiently accurate to identify promising mutants for further study. We prepared a set of all theoretically possible (342) single mutants in which every amino acid of the active site (except for the catalytically active residues E78 and E172) was mutated to every other amino acid. Based on results from the single mutants we construct a set of 111 double mutants consisting of all possible pairs of single mutants with the lowest barrier for a particular position and compute their reaction profile. None of the mutants have, to our knowledge, been prepared experimentally and therefore present experimentally testable predictions.
Collapse
Affiliation(s)
- Martin R. Hediger
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Casper Steinmann
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Luca De Vico
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Jan H. Jensen
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|