1
|
Török P, Lakk-Bogáth D, Unjaroen D, Browne WR, Kaizer J. Effect of monodentate heterocycle co-ligands on the μ-1,2-peroxo-diiron(III) mediated aldehyde deformylation reactions. J Inorg Biochem 2024; 258:112620. [PMID: 38824901 DOI: 10.1016/j.jinorgbio.2024.112620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
Peroxo-diiron(III) species are present in the active sites of many metalloenzymes that carry out challenging organic transformations. The reactivity of these species is influenced by various factors, such as the structure and topology of the supporting ligands, the identity of the axial and equatorial co-ligands, and the oxidation states of the metal ion(s). In this study, we aim to diversify the importance of equatorial ligands in controlling the reactivity of peroxo-diiron(III) species. As a model compound, we chose the previously published and fully characterized [(PBI)2(CH3CN)FeIII(μ-O2)FeIII(CH3CN)(PBI)2]4+ complex, where the steric effect of the four PBI ligands is minimal, so the labile CH3CN molecules easily can be replaced by different monodentate co-ligands (substituted pyridines and N-donor heterocyclic compounds). Thus, their effect on the electronic and spectral properties of peroxo-divas(III) intermediates could be easily investigated. The relationship between structure and reactivity was also investigated in the stoichiometric deformylation of PPA mediated by peroxo-diiron(III) complexes. It was found that the deformylation rates are influenced by the Lewis acidity and redox properties of the metal centers, and showed a linear correlation with the FeIII/FeII redox potentials (in the range of 197 to 415 mV).
Collapse
Affiliation(s)
- Patrik Török
- Research Group of Bioorganic and Biocoordination Chemistry, Universtiy of Pannonia, 8201 Veszprém, Hungary
| | - Dóra Lakk-Bogáth
- Research Group of Bioorganic and Biocoordination Chemistry, Universtiy of Pannonia, 8201 Veszprém, Hungary
| | - Duenpen Unjaroen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Wesley R Browne
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - József Kaizer
- Research Group of Bioorganic and Biocoordination Chemistry, Universtiy of Pannonia, 8201 Veszprém, Hungary.
| |
Collapse
|
2
|
Wirtz DA, Schneberger N, Klöppel S, Richarz R, Geyer M, König GM, Hagelueken G, Crüsemann M. Adenylation Domain-Guided Recruitment of Trans-Acting Nonheme Monooxygenases in Nonribosomal Peptide Biosynthesis. ACS Chem Biol 2023; 18:1748-1759. [PMID: 37366538 DOI: 10.1021/acschembio.3c00106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Nonheme diiron monooxygenases (NHDMs) interact with nonribosomal peptide synthetase (NRPS) assembly lines to install β-hydroxylations at thiolation-domain-bound amino acids during nonribosomal peptide biosynthesis. The high potential of this enzyme family to diversify the products of engineered assembly lines is disproportionate to the currently small knowledge about their structures and mechanisms of substrate recognition. Here, we report the crystal structure of FrsH, the NHDM which catalyzes the β-hydroxylation of l-leucines during biosynthesis of the depsipeptide G protein inhibitor FR900359. Using biophysical approaches, we provide evidence that FrsH interacts with the cognate monomodular NRPS FrsA. By AlphaFold modeling and mutational studies, we detect and examine structural features within the assembly line crucial to recruit FrsH for leucine β-hydroxylation. These are, in contrast to cytochrome-dependent NRPS β-hydroxylases, not located on the thiolation domain, but on the adenylation domain. FrsH can be functionally substituted by homologous enzymes from biosyntheses of the cell-wall-targeting antibiotics lysobactin and hypeptin, indicating that these features are generally applicable to members of the family of trans-acting NHDMs. These insights give important directions for the construction of artificial assembly lines to yield bioactive and chemically complex peptide products.
Collapse
Affiliation(s)
- Daniel A Wirtz
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Niels Schneberger
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Sophie Klöppel
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - René Richarz
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Gregor Hagelueken
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Max Crüsemann
- Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
3
|
Wang Y, Dong L, Su H, Liu Y. Dioxygen Activation and N δ,N ε-Dihydroxylation Mechanism Involved in the Formation of N-Nitrosourea Pharmacophore in Streptozotocin Catalyzed by Nonheme Diiron Enzyme SznF. Inorg Chem 2022; 61:15721-15734. [PMID: 36148800 DOI: 10.1021/acs.inorgchem.2c02814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
SznF is a nonheme diiron-dependent enzyme that catalyzes the critical N-nitrosation involved in the formation of the N-nitrosourea moiety in the pancreatic cancer drug streptozotocin. The N-nitrosation contains two successive N-hydroxylation and N-nitrosation steps, which are carried out by two separate active sites, namely, the central domain and cupin domain. Recently, the crystal structure of SznF was obtained, and the central domain was proved to contain a diiron cofactor to catalyze the N-hydroxylation. In this work, to gain insights into the O2 activation and the successive N-hydroxylation mechanism, on the basis of the high-resolution crystal structure, the enzyme-substrate complex models were constructed, and a series of combined QM/MM calculations were performed. Based on our calculations, the activation of O2 starts from the diiron(II,III)-superoxo (S) to generate the diiron(IV)-oxo species (Q) via a diiron(III,III)-peroxo (P)-like transition state or unstable intermediate (P'), and species P' can be described as a hybridization of diiron(IV)-oxo species and diiron(III,III)-peroxo (P) owing to the long distances of Fe1-Fe2 (4.22 Å) and O1-O2 (1.89 Å), which is different from those of other nonheme diiron enzymes. In the following hydroxylation of Nδ and Nε, the Nδ-hydroxylation was confirmed to occur first, agreeing with the experimental observations. Because the diiron(IV)-oxo species (Q) is responsible for hydroxylation, the reaction follows the H-abstraction/OH rebound mechanism, and the first abstraction occurs on the Nδ-H rather than Nε-H, which may be attributed to the different orientation of Fe(IV)-oxo relative to N-H as well as the bond dissociation enthalpies of two N-H bonds. The hydroxylation of N-methyl-L-arginine does not employ the diiron(III,III)-hydroperoxo (P″) to trigger the electrophilic attack of the guanidine to directly form the N-O bond, as previously suggested. In addition, our calculations also revealed that the direct attack of the Fe(IV)═O unit to the Nδ of the substrate corresponds to a higher barrier than that in the H-abstraction/OH rebound mechanism. These results may provide useful information for understanding the formation of the di-hydroxylation intermediate involved in the biosynthesis of N-nitrosation.
Collapse
Affiliation(s)
- Yijing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Lihua Dong
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan, Shandong 250013, China
| | - Hao Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Science, Tianjin 300308, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
4
|
Zhou TP, Deng WH, Wu Y, Liao RZ. QM/MM Calculations Suggested Concerted O‒O Bond Cleavage and Substrate Oxidation by Nonheme Diiron Toluene/o‐xylene Monooxygenase. Chem Asian J 2022; 17:e202200490. [DOI: 10.1002/asia.202200490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/01/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Tai-Ping Zhou
- Huazhong University of Science and Technology School of chemistry and chemical engineering CHINA
| | - Wen-Hao Deng
- Huazhong University of Science and Technology School of chemistry and chemical engineering CHINA
| | - Yuzhou Wu
- Huazhong University of Science and Technology School of chemistry and chemical engineering CHINA
| | - Rong-Zhen Liao
- Huazhong University of Science and technology College of Chemistry and Chemical Engeneering Luoyulu 1037 430074 Wuhan CHINA
| |
Collapse
|
5
|
Zhang S, Li X, Wang Y, Yan L, Wei J, Liu Y. Computational Study of the C5-Hydroxylation Mechanism Catalyzed by the Diiron Monooxygenase PtmU3 as Part of the Platensimycin Biosynthesis. Inorg Chem 2021; 60:17783-17796. [PMID: 34762413 DOI: 10.1021/acs.inorgchem.1c02407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PtmU3 is a newly identified nonheme diiron monooxygenase, which installs a C-5 β-hydroxyl group into the C-19 CoA-ester intermediate involved in the biosynthesis of unique diterpene-derived scaffolds of platensimycin and platencin. PtmU3 possesses a noncanonical diiron active site architecture of a saturated six-coordinate iron center and lacks the μ-oxo bridge. Although the hydroxylation process is a simple reaction for nonheme mononuclear iron-dependent enzymes, how PtmU3 employs the diiron center to catalyze the H-abstraction and OH-rebound is still unknown. In particular, the electronic characteristic of diiron is also unclear. To understand the catalytic mechanism of PtmU3, we constructed two reactant models in which both the Fe1II-Fe2III-superoxo and Fe1II-Fe2IV═O are considered to trigger the H-abstraction and performed a series of quantum mechanics/molecular mechanics calculations. Our calculation results reveal that PtmU3 is a special monooxygenase, that is, both atoms of the dioxygen molecule can be incorporated into two molecules of the substrate by the successive reactions. In the first-round reaction, PtmU3 uses the Fe1II-Fe2III-superoxo to install a hydroxyl group into the substrate, generating the high-reactive Fe1II-Fe2IV═O complex. In the second-round reaction, the Fe1II-Fe2IV═O species is responsible for the hydroxylation of another molecule of the substrate. In the diiron center, Fe2 adopts the high spin state (S = 5/2) during the catalysis, whereas for Fe1, in addition to its structural role, it may also play an assistant role for Fe1 catalysis. In the two successive OH-installing steps, the H-abstraction is always the rate-liming step. E241 and D308 not only act as bridging ligands to connect two Fe ions but also take part in the electron reorganization. Owing to the high reactivity of Fe1II-Fe2IV═O compared to Fe1II-Fe2III-superoxo, besides the C5-hydroxylation, the C3- or C18-hydroxylation was also calculated to be feasible.
Collapse
Affiliation(s)
- Shiqing Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Xinyi Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Yijing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Lijuan Yan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China
| |
Collapse
|
6
|
|
7
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
8
|
Perez-Garcia P, Kobus S, Gertzen CGW, Hoeppner A, Holzscheck N, Strunk CH, Huber H, Jaeger KE, Gohlke H, Kovacic F, Smits SHJ, Streit WR, Chow J. A promiscuous ancestral enzyme´s structure unveils protein variable regions of the highly diverse metallo-β-lactamase family. Commun Biol 2021; 4:132. [PMID: 33514861 PMCID: PMC7846560 DOI: 10.1038/s42003-021-01671-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/06/2021] [Indexed: 01/30/2023] Open
Abstract
The metallo-β-lactamase fold is an ancient protein structure present in numerous enzyme families responsible for diverse biological processes. The crystal structure of the hyperthermostable crenarchaeal enzyme Igni18 from Ignicoccus hospitalis was solved at 2.3 Å and could resemble a possible first archetype of a multifunctional metallo-β-lactamase. Ancestral enzymes at the evolutionary origin are believed to be promiscuous all-rounders. Consistently, Igni18´s activity can be cofactor-dependently directed from β-lactamase to lactonase, lipase, phosphodiesterase, phosphotriesterase or phospholipase. Its core-domain is highly conserved within metallo-β-lactamases from Bacteria, Archaea and Eukarya and gives insights into evolution and function of enzymes from this superfamily. Structural alignments with diverse metallo-β-lactamase-fold-containing enzymes allowed the identification of Protein Variable Regions accounting for modulation of activity, specificity and oligomerization patterns. Docking of different substrates within the active sites revealed the basis for the crucial cofactor dependency of this enzyme superfamily.
Collapse
Affiliation(s)
- Pablo Perez-Garcia
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany
| | - Stefanie Kobus
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Christoph G W Gertzen
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Astrid Hoeppner
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Nicholas Holzscheck
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany
| | - Christoph Heinrich Strunk
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, 52426, Jülich, Germany
| | - Harald Huber
- Institute for Microbiology and Archaeal Center, Regensburg University, 93035, Regensburg, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, 52426, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52426, Jülich, Germany
| | - Holger Gohlke
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC) & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Filip Kovacic
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, 52426, Jülich, Germany
| | - Sander H J Smits
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany
| | - Jennifer Chow
- Department of Microbiology and Biotechnology, University of Hamburg, Ohnhorststrasse 18, 22609, Hamburg, Germany.
| |
Collapse
|
9
|
Walleck S, Glaser T. A Dinucleating Ligand System with Varying Terminal Donors to Mimic Diiron Active Sites. Isr J Chem 2020. [DOI: 10.1002/ijch.201900097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Stephan Walleck
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany
| | - Thorsten Glaser
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie Universität Bielefeld Universitätsstrasse 25 D-33615 Bielefeld Germany
| |
Collapse
|
10
|
Kaniusaite M, Goode RJA, Schittenhelm RB, Makris TM, Cryle MJ. The Diiron Monooxygenase CmlA from Chloramphenicol Biosynthesis Allows Reconstitution of β-Hydroxylation during Glycopeptide Antibiotic Biosynthesis. ACS Chem Biol 2019; 14:2932-2941. [PMID: 31774267 PMCID: PMC6929969 DOI: 10.1021/acschembio.9b00862] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022]
Abstract
β-Hydroxylation plays an important role in the nonribosomal peptide biosynthesis of many important natural products, including bleomycin, chloramphenicol, and the glycopeptide antibiotics (GPAs). Various oxidative enzymes have been implicated in such a process, with the mechanism of incorporation varying from installation of hydroxyl groups in amino acid precursors prior to adenylation to direct amino acid oxidation during peptide assembly. In this work, we demonstrate the in vitro utility and scope of the unusual nonheme diiron monooxygenase CmlA from chloramphenicol biosynthesis for the β-hydroxylation of a diverse range of carrier protein bound substrates by adapting this enzyme as a non-native trans-acting enzyme within NRPS-mediated GPA biosynthesis. The results from our study show that CmlA has a broad substrate specificity for modified phenylalanine/tyrosine residues as substrates and can be used in a practical strategy to functionally cross complement compatible NRPS biosynthesis pathways in vitro.
Collapse
Affiliation(s)
- Milda Kaniusaite
- The
Monash Biomedicine Discovery Institute, Department of Biochemistry
and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- EMBL
Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Robert J. A. Goode
- The
Monash Biomedicine Discovery Institute, Department of Biochemistry
and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Monash
Biomedical Proteomics Facility, Monash University, Clayton, Victoria 3800, Australia
| | - Ralf B. Schittenhelm
- The
Monash Biomedicine Discovery Institute, Department of Biochemistry
and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Monash
Biomedical Proteomics Facility, Monash University, Clayton, Victoria 3800, Australia
| | - Thomas M. Makris
- Department
of Chemistry and Biochemistry, University
of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Max J. Cryle
- The
Monash Biomedicine Discovery Institute, Department of Biochemistry
and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- EMBL
Australia, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
11
|
Dong LB, Liu YC, Cepeda AJ, Kalkreuter E, Deng MR, Rudolf JD, Chang C, Joachimiak A, Phillips GN, Shen B. Characterization and Crystal Structure of a Nonheme Diiron Monooxygenase Involved in Platensimycin and Platencin Biosynthesis. J Am Chem Soc 2019; 141:12406-12412. [PMID: 31291107 DOI: 10.1021/jacs.9b06183] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonheme diiron monooxygenases make up a rapidly growing family of oxygenases that are rarely identified in secondary metabolism. Herein, we report the in vivo, in vitro, and structural characterizations of a nonheme diiron monooxygenase, PtmU3, that installs a C-5 β-hydroxyl group in the unified biosynthesis of platensimycin and platencin, two highly functionalized diterpenoids that act as potent and selective inhibitors of bacterial and mammalian fatty acid synthases. This hydroxylation sets the stage for the subsequent A-ring cleavage step key to the unique diterpene-derived scaffolds of platensimycin and platencin. PtmU3 adopts an unprecedented triosephosphate isomerase (TIM) barrel structural fold for this class of enzymes and possesses a noncanonical diiron active site architecture with a saturated six-coordinate iron center lacking a μ-oxo bridge. This study reveals the first member of a previously unidentified superfamily of TIM-barrel-fold enzymes for metal-dependent dioxygen activation, with the majority predicted to act on CoA-linked substrates, thus expanding our knowledge of nature's repertoire of nonheme diiron monooxygenases and TIM-barrel-fold enzymes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changsoo Chang
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - George N Phillips
- Department of Biosciences , Rice University , Houston , Texas 77030 , United States
| | | |
Collapse
|
12
|
Borges PT, Romão CV, Saraiva LM, Gonçalves VL, Carrondo MA, Teixeira M, Frazão C. Analysis of a new flavodiiron core structural arrangement in Flv1-ΔFlR protein from Synechocystis sp. PCC6803. J Struct Biol 2019; 205:91-102. [DOI: 10.1016/j.jsb.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/24/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022]
|
13
|
Wei W, Siegbahn PEM, Liao R. Mechanism of the Dinuclear Iron Enzymep‐Aminobenzoate N‐oxygenase from Density Functional Calculations. ChemCatChem 2018. [DOI: 10.1002/cctc.201801072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen‐Jie Wei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Per E. M. Siegbahn
- Department of Organic Chemistry, Arrhenius LaboratoryStockholm University Stockholm SE-10691 Sweden
| | - Rong‐Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical EngineeringHuazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
14
|
Komor AJ, Jasniewski AJ, Que L, Lipscomb JD. Diiron monooxygenases in natural product biosynthesis. Nat Prod Rep 2018; 35:646-659. [PMID: 29552683 PMCID: PMC6051903 DOI: 10.1039/c7np00061h] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to 2017 The participation of non-heme dinuclear iron cluster-containing monooxygenases in natural product biosynthetic pathways has been recognized only recently. At present, two families have been discovered. The archetypal member of the first family, CmlA, catalyzes β-hydroxylation of l-p-aminophenylalanine (l-PAPA) covalently linked to the nonribosomal peptide synthetase (NRPS) CmlP, thereby effecting the first step in the biosynthesis of chloramphenicol by Streptomyces venezuelae. CmlA houses the diiron cluster in a metallo-β-lactamase protein fold instead of the 4-helix bundle fold of nearly every other diiron monooxygenase. CmlA couples O2 activation and substrate hydroxylation via a structural change caused by formation of the l-PAPA-loaded CmlP:CmlA complex. The other new diiron family is typified by two enzymes, AurF and CmlI, which catalyze conversion of aryl-amine substrates to aryl-nitro products with incorporation of oxygen from O2. AurF from Streptomyces thioluteus catalyzes the formation of p-nitrobenzoate from p-aminobenzoate as a precursor to the biostatic compound aureothin, whereas CmlI from S. venezuelae catalyzes the ultimate aryl-amine to aryl-nitro step in chloramphenicol biosynthesis. Both enzymes stabilize a novel type of peroxo-intermediate as the reactive species. The rare 6-electron N-oxygenation reactions of CmlI and AurF involve two progressively oxidized pathway intermediates. The enzymes optimize efficiency by utilizing one of the reaction pathway intermediates as an in situ reductant for the diiron cluster, while simultaneously generating the next pathway intermediate. For CmlI, this reduction allows mid-pathway regeneration of the peroxo intermediate required to complete the biosynthesis. CmlI ensures specificity by carrying out the multistep aryl-amine oxygenation without dissociating intermediate products.
Collapse
Affiliation(s)
- Anna J Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - Andrew J Jasniewski
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
15
|
Jasniewski AJ, Que L. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Chem Rev 2018; 118:2554-2592. [PMID: 29400961 PMCID: PMC5920527 DOI: 10.1021/acs.chemrev.7b00457] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A growing subset of metalloenzymes activates dioxygen with nonheme diiron active sites to effect substrate oxidations that range from the hydroxylation of methane and the desaturation of fatty acids to the deformylation of fatty aldehydes to produce alkanes and the six-electron oxidation of aminoarenes to nitroarenes in the biosynthesis of antibiotics. A common feature of their reaction mechanisms is the formation of O2 adducts that evolve into more reactive derivatives such as diiron(II,III)-superoxo, diiron(III)-peroxo, diiron(III,IV)-oxo, and diiron(IV)-oxo species, which carry out particular substrate oxidation tasks. In this review, we survey the various enzymes belonging to this unique subset and the mechanisms by which substrate oxidation is carried out. We examine the nature of the reactive intermediates, as revealed by X-ray crystallography and the application of various spectroscopic methods and their associated reactivity. We also discuss the structural and electronic properties of the model complexes that have been found to mimic salient aspects of these enzyme active sites. Much has been learned in the past 25 years, but key questions remain to be answered.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
16
|
Crüsemann M, Reher R, Schamari I, Brachmann AO, Ohbayashi T, Kuschak M, Malfacini D, Seidinger A, Pinto‐Carbó M, Richarz R, Reuter T, Kehraus S, Hallab A, Attwood M, Schiöth HB, Mergaert P, Kikuchi Y, Schäberle TF, Kostenis E, Wenzel D, Müller CE, Piel J, Carlier A, Eberl L, König GM. Heterologous Expression, Biosynthetic Studies, and Ecological Function of the Selective Gq‐Signaling Inhibitor FR900359. Angew Chem Int Ed Engl 2018; 57:836-840. [DOI: 10.1002/anie.201707996] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/25/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Max Crüsemann
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Germany
| | - Raphael Reher
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Germany
| | - Isabella Schamari
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Germany
| | - Alexander O. Brachmann
- Institut für MikrobiologieEidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog Weg 4 8093 Zürich Switzerland
| | - Tsubasa Ohbayashi
- Institute for Integrative Biology of the Cell, UMR9198CNRSUniversité Paris‐Sud, CEA Avenue de la Terrasse Gif-sur-Yvette 91198 France
| | - Markus Kuschak
- PharmaCenter BonnPharmazeutisches InstitutPharmazeutische Chemie IUniversität Bonn An der Immenburg 4 53121 Bonn Germany
| | - Davide Malfacini
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Germany
| | - Alexander Seidinger
- Institut für Physiologie I, Medizinische FakultätUniversität Bonn, Life&Brain Center Sigmund-Freud-Str. 25 53127 Bonn Germany
| | - Marta Pinto‐Carbó
- Institut für Pflanzen- und MikrobiologieUniversität Zürich Zollikerstr. 107 8008 Zürich Switzerland
| | - René Richarz
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Germany
| | - Tatjana Reuter
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Germany
| | - Stefan Kehraus
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Germany
| | - Asis Hallab
- Pflanzenwissenschaften (IBG-2) Forschungszentrum Jülich Wilhelm-Johnen-Str. 52428 Jülich Germany
| | - Misty Attwood
- Department of Neuroscience, Biomedical CenterUppsala University 751 24 Uppsala Sweden
| | - Helgi B. Schiöth
- Department of Neuroscience, Biomedical CenterUppsala University 751 24 Uppsala Sweden
| | - Peter Mergaert
- Institute for Integrative Biology of the Cell, UMR9198CNRSUniversité Paris‐Sud, CEA Avenue de la Terrasse Gif-sur-Yvette 91198 France
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute AIST Hokkaido Tsukisamu-higashi 2-17-2-1 Sapporo 062-8517 Japan
| | - Till F. Schäberle
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Germany
- Institut für InsektenbiotechnologieUniversität Gießen Heinrich-Buff-Ring 26–32 35392 Gießen Germany
| | - Evi Kostenis
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Germany
| | - Daniela Wenzel
- Institut für Physiologie I, Medizinische FakultätUniversität Bonn, Life&Brain Center Sigmund-Freud-Str. 25 53127 Bonn Germany
| | - Christa E. Müller
- PharmaCenter BonnPharmazeutisches InstitutPharmazeutische Chemie IUniversität Bonn An der Immenburg 4 53121 Bonn Germany
| | - Jörn Piel
- Institut für MikrobiologieEidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog Weg 4 8093 Zürich Switzerland
| | - Aurélien Carlier
- Department of Biochemistry and MicrobiologyUniversity of Gent K.L. Ledeganckstraat 35, L9 9000 Gent Belgium
| | - Leo Eberl
- Institut für Pflanzen- und MikrobiologieUniversität Zürich Zollikerstr. 107 8008 Zürich Switzerland
| | - Gabriele M. König
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Germany
| |
Collapse
|
17
|
Crüsemann M, Reher R, Schamari I, Brachmann AO, Ohbayashi T, Kuschak M, Malfacini D, Seidinger A, Pinto‐Carbó M, Richarz R, Reuter T, Kehraus S, Hallab A, Attwood M, Schiöth HB, Mergaert P, Kikuchi Y, Schäberle TF, Kostenis E, Wenzel D, Müller CE, Piel J, Carlier A, Eberl L, König GM. Heterologe Expression, Biosynthese und ökologische Funktion des selektiven Gq‐Signaltransduktionsinhibitors FR900359. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Max Crüsemann
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Deutschland
| | - Raphael Reher
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Deutschland
| | - Isabella Schamari
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Deutschland
| | - Alexander O. Brachmann
- Institut für MikrobiologieEidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 4 8093 Zürich Schweiz
| | - Tsubasa Ohbayashi
- Institute for Integrative Biology of the Cell, UMR9198CNRSUniversité Paris‐Sud, CEA Avenue de la Terrasse Gif-sur-Yvette 91198 Frankreich
| | - Markus Kuschak
- PharmaCenter BonnPharmazeutisches InstitutPharmazeutische Chemie IUniversität Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Davide Malfacini
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Deutschland
| | - Alexander Seidinger
- Institut für Physiologie I, Medizinische FakultätUniversität Bonn, Life&Brain Center Sigmund-Freud-Str.25 53127 Bonn Deutschland
| | - Marta Pinto‐Carbó
- Institut für Pflanzen- und MikrobiologieUniversität Zürich Zollikerstrasse 107 8008 Zürich Schweiz
| | - René Richarz
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Deutschland
| | - Tatjana Reuter
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Deutschland
| | - Stefan Kehraus
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Deutschland
| | - Asis Hallab
- Institut für Bio- und GeowissenschaftenPflanzenwissenschaften (IBG-2) Forschungszentrum Jülich Wilhelm-Johnen-Straße 52428 Jülich Deutschland
| | - Misty Attwood
- Department of Neuroscience, Biomedical CenterUppsala University 751 24 Uppsala Schweden
| | - Helgi B. Schiöth
- Department of Neuroscience, Biomedical CenterUppsala University 751 24 Uppsala Schweden
| | - Peter Mergaert
- Institute for Integrative Biology of the Cell, UMR9198CNRSUniversité Paris‐Sud, CEA Avenue de la Terrasse Gif-sur-Yvette 91198 Frankreich
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute AIST Hokkaido Tsukisamu-higashi 2-17-2-1 Sapporo 062-8517 Japan
| | - Till F. Schäberle
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Deutschland
- Institut für InsektenbiotechnologieUniversität Gießen Heinrich-Buff-Ring 26–32 35392 Gießen Deutschland
| | - Evi Kostenis
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Deutschland
| | - Daniela Wenzel
- Institut für Physiologie I, Medizinische FakultätUniversität Bonn, Life&Brain Center Sigmund-Freud-Str.25 53127 Bonn Deutschland
| | - Christa E. Müller
- PharmaCenter BonnPharmazeutisches InstitutPharmazeutische Chemie IUniversität Bonn An der Immenburg 4 53121 Bonn Deutschland
| | - Jörn Piel
- Institut für MikrobiologieEidgenössische Technische Hochschule (ETH) Zürich Vladimir-Prelog-Weg 4 8093 Zürich Schweiz
| | - Aurélien Carlier
- Department of Biochemistry and MicrobiologyUniversity of Gent K.L. Ledeganckstraat 35, L9 9000 Gent Belgien
| | - Leo Eberl
- Institut für Pflanzen- und MikrobiologieUniversität Zürich Zollikerstrasse 107 8008 Zürich Schweiz
| | - Gabriele M. König
- Institut für Pharmazeutische BiologieUniversität Bonn Nussallee 6 53115 Bonn Deutschland
| |
Collapse
|
18
|
Komor AJ, Rivard BS, Fan R, Guo Y, Que L, Lipscomb JD. CmlI N-Oxygenase Catalyzes the Final Three Steps in Chloramphenicol Biosynthesis without Dissociation of Intermediates. Biochemistry 2017; 56:4940-4950. [PMID: 28823151 PMCID: PMC5605456 DOI: 10.1021/acs.biochem.7b00695] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CmlI catalyzes the six-electron oxidation of an aryl-amine precursor (NH2-CAM) to the aryl-nitro group of chloramphenicol (CAM). The active site of CmlI contains a (hydr)oxo- and carboxylate-bridged dinuclear iron cluster. During catalysis, a novel diferric-peroxo intermediate P is formed and is thought to directly effect oxygenase chemistry. Peroxo intermediates can facilitate at most two-electron oxidations, so the biosynthetic pathway of CmlI must involve at least three steps. Here, kinetic techniques are used to characterize the rate and/or dissociation constants for each step by taking advantage of the remarkable stability of P in the absence of substrates (decay t1/2 = 3 h at 4 °C) and the visible chromophore of the diiron cluster. It is found that diferrous CmlI (CmlIred) can react with NH2-CAM and O2 in either order to form a P-NH2-CAM intermediate. P-NH2-CAM undergoes rapid oxygen transfer to form a diferric CmlI (CmlIox) complex with the aryl-hydroxylamine [NH(OH)-CAM] pathway intermediate. CmlIox-NH(OH)-CAM undergoes a rapid internal redox reaction to form a CmlIred-nitroso-CAM (NO-CAM) complex. O2 binding results in formation of P-NO-CAM that converts to CmlIox-CAM by enzyme-mediated oxygen atom transfer. The kinetic analysis indicates that there is little dissociation of pathway intermediates as the reaction progresses. Reactions initiated by adding pathway intermediates from solution occur much more slowly than those in which the intermediate is generated in the active site as part of the catalytic process. Thus, CmlI is able to preserve efficiency and specificity while avoiding adventitious chemistry by performing the entire six-electron oxidation in one active site.
Collapse
Affiliation(s)
- Anna J. Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Brent S. Rivard
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Ruixi Fan
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
19
|
Jasniewski AJ, Komor AJ, Lipscomb JD, Que L. Unprecedented (μ-1,1-Peroxo)diferric Structure for the Ambiphilic Orange Peroxo Intermediate of the Nonheme N-Oxygenase CmlI. J Am Chem Soc 2017; 139:10472-10485. [PMID: 28673082 PMCID: PMC5568637 DOI: 10.1021/jacs.7b05389] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The final step in the biosynthesis of the antibiotic chloramphenicol is the oxidation of an aryl-amine substrate to an aryl-nitro product catalyzed by the N-oxygenase CmlI in three two-electron steps. The CmlI active site contains a diiron cluster ligated by three histidine and four glutamate residues and activates dioxygen to perform its role in the biosynthetic pathway. It was previously shown that the active oxidant used by CmlI to facilitate this chemistry is a peroxo-diferric intermediate (CmlIP). Spectroscopic characterization demonstrated that the peroxo binding geometry of CmlIP is not consistent with the μ-1,2 mode commonly observed in nonheme diiron systems. Its geometry was tentatively assigned as μ-η2:η1 based on comparison with resonance Raman (rR) features of mixed-metal model complexes in the absence of appropriate diiron models. Here, X-ray absorption spectroscopy (XAS) and rR studies have been used to establish a refined structure for the diferric cluster of CmlIP. The rR experiments carried out with isotopically labeled water identified the symmetric and asymmetric vibrations of an Fe-O-Fe unit in the active site at 485 and 780 cm-1, respectively, which was confirmed by the 1.83 Å Fe-O bond observed by XAS. In addition, a unique Fe···O scatterer at 2.82 Å observed from XAS analysis is assigned as arising from the distal O atom of a μ-1,1-peroxo ligand that is bound symmetrically between the irons. The (μ-oxo)(μ-1,1-peroxo)diferric core structure associated with CmlIP is unprecedented among diiron cluster-containing enzymes and corresponding biomimetic complexes. Importantly, it allows the peroxo-diferric intermediate to be ambiphilic, acting as an electrophilic oxidant in the initial N-hydroxylation of an arylamine and then becoming a nucleophilic oxidant in the final oxidation of an aryl-nitroso intermediate to the aryl-nitro product.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Anna J. Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
20
|
Wise CE, Makris TM. Recruitment and Regulation of the Non-ribosomal Peptide Synthetase Modifying Cytochrome P450 Involved in Nikkomycin Biosynthesis. ACS Chem Biol 2017; 12:1316-1326. [PMID: 28300390 DOI: 10.1021/acschembio.7b00081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The β-hydroxylation of l-histidine is the first step in the biosynthesis of the imidazolone base of the antifungal drug nikkomycin. The cytochrome P450 (NikQ) hydroxylates the amino acid while it is appended via a phosphopantetheine linker to the non-ribosomal peptide synthetase (NRPS) NikP1. The latter enzyme is comprised of an MbtH and single adenylation and thiolation domains, a minimal composition that allows for detailed binding and kinetics studies using an intact and homogeneous NRPS substrate. Electron paramagnetic resonance studies confirm that a stable complex is formed with NikQ and NikP1 when the amino acid is tethered. Size exclusion chromatography is used to further refine the principal components that are required for this interaction. NikQ binds NikP1 in the fully charged state, but binding also occurs when NikP1 is lacking both the phosphopantetheine arm and appended amino acid. This demonstrates that the interaction is mainly guided by presentation of the thiolation domain interface, rather than the attached amino acid. Electrochemistry and transient kinetics have been used to probe the influence of l-His-NikP1 binding on catalysis by NikQ. Unlike many P450s, the binding of substrate fails to induce significant changes on the redox potential and autoxidation properties of NikQ and slows down the binding of dioxygen to the ferrous enzyme to initiate catalysis. Collectively, these studies demonstrate a complex interplay between the NRPS maturation process and the recruitment and regulation of an auxiliary tailoring enzyme required for natural product biosynthesis.
Collapse
Affiliation(s)
- Courtney E. Wise
- Department of Chemistry and
Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Thomas M. Makris
- Department of Chemistry and
Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
21
|
Oxo- and hydroxo-bridged diiron(III) porphyrin dimers: Inorganic and bio-inorganic perspectives and effects of intermacrocyclic interactions. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Jasniewski AJ, Knoot CJ, Lipscomb JD, Que L. A Carboxylate Shift Regulates Dioxygen Activation by the Diiron Nonheme β-Hydroxylase CmlA upon Binding of a Substrate-Loaded Nonribosomal Peptide Synthetase. Biochemistry 2016; 55:5818-5831. [PMID: 27668828 PMCID: PMC5258830 DOI: 10.1021/acs.biochem.6b00834] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The first step in the nonribosomal peptide synthetase (NRPS)-based biosynthesis of chloramphenicol is the β-hydroxylation of the precursor l-p-aminophenylalanine (l-PAPA) catalyzed by the monooxygenase CmlA. The active site of CmlA contains a dinuclear iron cluster that is reduced to the diferrous state (WTR) to initiate O2 activation. However, rapid O2 activation occurs only when WTR is bound to CmlP, the NRPS to which l-PAPA is covalently attached. Here the X-ray crystal structure of WTR is reported, which is very similar to that of the as-isolated diferric enzyme in which the irons are coordinately saturated. X-ray absorption spectroscopy is used to investigate the WTR cluster ligand structure as well as the structures of WTR in complex with a functional CmlP variant (CmlPAT) with and without l-PAPA attached. It is found that formation of the active WTR:CmlPAT-l-PAPA complex converts at least one iron of the cluster from six- to five-coordinate by changing a bidentately bound amino acid carboxylate to monodentate on Fe1. The only bidentate carboxylate in the structure of WTR is E377. The crystal structure of the CmlA variant E377D shows only monodentate carboxylate coordination. Reduced E377D reacts rapidly with O2 in the presence or absence of CmlPAT-l-PAPA, showing loss of regulation. However, this variant fails to catalyze hydroxylation, suggesting that E377 has the dual role of coupling regulation of O2 reactivity with juxtaposition of the substrate and the reactive oxygen species. The carboxylate shift in response to substrate binding represents a novel regulatory strategy for oxygen activation in diiron oxygenases.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Cory J. Knoot
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - John D. Lipscomb
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
- Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
23
|
Nakashima Y, Egami Y, Kimura M, Wakimoto T, Abe I. Metagenomic Analysis of the Sponge Discodermia Reveals the Production of the Cyanobacterial Natural Product Kasumigamide by 'Entotheonella'. PLoS One 2016; 11:e0164468. [PMID: 27732651 PMCID: PMC5061366 DOI: 10.1371/journal.pone.0164468] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022] Open
Abstract
Sponge metagenomes are a useful platform to mine cryptic biosynthetic gene clusters responsible for production of natural products involved in the sponge-microbe association. Since numerous sponge-derived bioactive metabolites are biosynthesized by the symbiotic bacteria, this strategy may concurrently reveal sponge-symbiont produced compounds. Accordingly, a metagenomic analysis of the Japanese marine sponge Discodermia calyx has resulted in the identification of a hybrid type I polyketide synthase-nonribosomal peptide synthetase gene (kas). Bioinformatic analysis of the gene product suggested its involvement in the biosynthesis of kasumigamide, a tetrapeptide originally isolated from freshwater free-living cyanobacterium Microcystis aeruginosa NIES-87. Subsequent investigation of the sponge metabolic profile revealed the presence of kasumigamide in the sponge extract. The kasumigamide producing bacterium was identified as an ‘Entotheonella’ sp. Moreover, an in silico analysis of kas gene homologs uncovered the presence of kas family genes in two additional bacteria from different phyla. The production of kasumigamide by distantly related multiple bacterial strains implicates horizontal gene transfer and raises the potential for a wider distribution across other bacterial groups.
Collapse
Affiliation(s)
- Yu Nakashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yoko Egami
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Miki Kimura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Toshiyuki Wakimoto
- Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo, Japan
- * E-mail: (TW); (IA)
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail: (TW); (IA)
| |
Collapse
|
24
|
A growing family of O2 activating dinuclear iron enzymes with key catalytic diiron(III)-peroxo intermediates: Biological systems and chemical models. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Jasniewski AJ, Engstrom LM, Vu VV, Park MH, Que L. X-ray absorption spectroscopic characterization of the diferric-peroxo intermediate of human deoxyhypusine hydroxylase in the presence of its substrate eIF5a. J Biol Inorg Chem 2016; 21:605-18. [PMID: 27380180 PMCID: PMC4990465 DOI: 10.1007/s00775-016-1373-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/16/2016] [Indexed: 11/29/2022]
Abstract
Human deoxyhypusine hydroxylase (hDOHH) is an enzyme that is involved in the critical post-translational modification of the eukaryotic translation initiation factor 5A (eIF5A). Following the conversion of a lysine residue on eIF5A to deoxyhypusine (Dhp) by deoxyhypusine synthase, hDOHH hydroxylates Dhp to yield the unusual amino acid residue hypusine (Hpu), a modification that is essential for eIF5A to promote peptide synthesis at the ribosome, among other functions. Purification of hDOHH overexpressed in E. coli affords enzyme that is blue in color, a feature that has been associated with the presence of a peroxo-bridged diiron(III) active site. To gain further insight into the nature of the diiron site and how it may change as hDOHH goes through the catalytic cycle, we have conducted X-ray absorption spectroscopic studies of hDOHH on five samples that represent different species along its reaction pathway. Structural analysis of each species has been carried out, starting with the reduced diferrous state, proceeding through its O2 adduct, and ending with a diferric decay product. Our results show that the Fe⋯Fe distances found for the five samples fall within a narrow range of 3.4-3.5 Å, suggesting that hDOHH has a fairly constrained active site. This pattern differs significantly from what has been associated with canonical dioxygen activating nonheme diiron enzymes, such as soluble methane monooxygenase and Class 1A ribonucleotide reductases, for which the Fe⋯Fe distance can change by as much as 1 Å during the redox cycle. These results suggest that the O2 activation mechanism for hDOHH deviates somewhat from that associated with the canonical nonheme diiron enzymes, opening the door to new mechanistic possibilities for this intriguing family of enzymes.
Collapse
Affiliation(s)
- Andrew J Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Lisa M Engstrom
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
| | - Van V Vu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City, Vietnam
| | - Myung Hee Park
- National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
26
|
Knoot CJ, Kovaleva EG, Lipscomb JD. Crystal structure of CmlI, the arylamine oxygenase from the chloramphenicol biosynthetic pathway. J Biol Inorg Chem 2016; 21:589-603. [PMID: 27229511 PMCID: PMC4994471 DOI: 10.1007/s00775-016-1363-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/16/2016] [Indexed: 11/28/2022]
Abstract
The diiron cluster-containing oxygenase CmlI catalyzes the conversion of the aromatic amine precursor of chloramphenicol to the nitroaromatic moiety of the active antibiotic. The X-ray crystal structures of the fully active, N-terminally truncated CmlIΔ33 in the chemically reduced Fe(2+)/Fe(2+) state and a cis μ-1,2(η (1):η (1))-peroxo complex are presented. These structures allow comparison with the homologous arylamine oxygenase AurF as well as other types of diiron cluster-containing oxygenases. The structural model of CmlIΔ33 crystallized at pH 6.8 lacks the oxo-bridge apparent from the enzyme optical spectrum in solution at higher pH. In its place, residue E236 forms a μ-1,3(η (1):η (2)) bridge between the irons in both models. This orientation of E236 stabilizes a helical region near the cluster which closes the active site to substrate binding in contrast to the open site found for AurF. A very similar closed structure was observed for the inactive dimanganese form of AurF. The observation of this same structure in different arylamine oxygenases may indicate that there are two structural states that are involved in regulation of the catalytic cycle. Both the structural studies and single crystal optical spectra indicate that the observed cis μ-1,2(η (1):η (1))-peroxo complex differs from the μ-η (1):η (2)-peroxo proposed from spectroscopic studies of a reactive intermediate formed in solution by addition of O2 to diferrous CmlI. It is proposed that the structural changes required to open the active site also drive conversion of the µ-1,2-peroxo species to the reactive form.
Collapse
Affiliation(s)
- Cory J Knoot
- Department of Biochemistry Molecular Biology and Biophysics and the Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Elena G Kovaleva
- Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - John D Lipscomb
- Department of Biochemistry Molecular Biology and Biophysics and the Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
27
|
Lo FC, Hsieh CC, Maestre-Reyna M, Chen CY, Ko TP, Horng YC, Lai YC, Chiang YW, Chou CM, Chiang CH, Huang WN, Lin YH, Bohle DS, Liaw WF. Crystal Structure Analysis of the Repair of Iron Centers Protein YtfE and Its Interaction with NO. Chemistry 2016; 22:9768-76. [DOI: 10.1002/chem.201600990] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Feng-Chun Lo
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Chang-Chih Hsieh
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| | | | - Chin-Yu Chen
- Department of Life Sciences; National Central University; Taoyuan Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry; Academia Sinica; Taipei Taiwan
| | - Yih-Chern Horng
- Department of Chemistry; National Changhua University of Education; Changhua Taiwan
| | - Yei-Chen Lai
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| | - Chih-Mao Chou
- Department of Life Sciences; National Central University; Taoyuan Taiwan
| | | | - Wei-Ning Huang
- Department of Biotechnology; Yuanpei University; Hsinchu Taiwan
| | - Yi-Hung Lin
- National Synchrotron Radiation Research Center Hsinchu; Taiwan
| | - D. Scott Bohle
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal QC H3A2K6 Canada
| | - Wen-Feng Liaw
- Department of Chemistry; National Tsing Hua University; Hsinchu 30013 Taiwan
| |
Collapse
|
28
|
Romão CV, Vicente JB, Borges PT, Frazão C, Teixeira M. The dual function of flavodiiron proteins: oxygen and/or nitric oxide reductases. J Biol Inorg Chem 2016; 21:39-52. [PMID: 26767750 DOI: 10.1007/s00775-015-1329-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/28/2015] [Indexed: 12/27/2022]
Abstract
Flavodiiron proteins have emerged in the last two decades as a newly discovered family of oxygen and/or nitric oxide reductases widespread in the three life domains, and present in both aerobic and anaerobic organisms. Herein we present the main features of these fascinating enzymes, with a particular emphasis on the metal sites, as more appropriate for this special issue in memory of the exceptional bioinorganic scientist R. J. P. Williams who pioneered the notion of (metal) element availability-driven evolution. We also compare the flavodiiron proteins with the other oxygen and nitric oxide reductases known until now, highlighting how throughout evolution Nature arrived at different solutions for similar functions, in some cases adding extra features, such as energy conservation. These enzymes are an example of the (bioinorganic) unpredictable diversity of the living world.
Collapse
Affiliation(s)
- Célia V Romão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157, Oeiras, Portugal
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157, Oeiras, Portugal
| | - Patrícia T Borges
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157, Oeiras, Portugal
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157, Oeiras, Portugal
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República (EAN), 2780-157, Oeiras, Portugal.
| |
Collapse
|
29
|
Liao RZ, Siegbahn PEM. Mechanism and selectivity of the dinuclear iron benzoyl-coenzyme A epoxidase BoxB. Chem Sci 2015; 6:2754-2764. [PMID: 28706665 PMCID: PMC5489048 DOI: 10.1039/c5sc00313j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Abstract
DFT calculations are used to elucidate the reaction mechanism and selectivity of BoxB catalyzed benzoyl-CoA epoxidation.
Benzoyl-CoA epoxidase is a dinuclear iron enzyme that catalyzes the epoxidation reaction of the aromatic ring of benzoyl-CoA with chemo-, regio- and stereo-selectivity. It has been suggested that this enzyme may also catalyze the deoxygenation reaction of epoxide, suggesting a unique bifunctionality among the diiron enzymes. We report a density functional theory study of this enzyme aimed at elucidating its mechanism and the various selectivities. The epoxidation is suggested to start with the binding of the O2 molecule to the diferrous center to generate a diferric peroxide complex, followed by concerted O–O bond cleavage and epoxide formation. Two different pathways have been located, leading to (2S,3R)-epoxy and (2R,3S)-epoxy products, with barriers of 17.6 and 20.4 kcal mol–1, respectively. The barrier difference is 2.8 kcal mol–1, corresponding to a diastereomeric excess of about 99 : 1. Further isomerization from epoxide to phenol is found to have quite a high barrier, which cannot compete with the product release step. After product release into solution, fast epoxide–oxepin isomerization and racemization can take place easily, leading to a racemic mixture of (2S,3R) and (2R,3S) products. The deoxygenation of epoxide to regenerate benzoyl-CoA by a diferrous form of the enzyme proceeds via a stepwise mechanism. The C2–O bond cleavage happens first, coupled with one electron transfer from one iron center to the substrate, to form a radical intermediate, which is followed by the second C3–O bond cleavage. The first step is rate-limiting with a barrier of only 10.8 kcal mol–1. Further experimental studies are encouraged to verify our results.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Key Laboratory for Large-Format Battery Materials and System , Ministry of Education , School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , China .
| | - Per E M Siegbahn
- Department of Organic Chemistry , Arrhenius Laboratory , Stockholm University , SE-10691 Stockholm , Sweden .
| |
Collapse
|
30
|
Affiliation(s)
- John D Lipscomb
- From the Department of Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
31
|
Karsisiotis AI, Damblon CF, Roberts GCK. A variety of roles for versatile zinc in metallo-β-lactamases. Metallomics 2014; 6:1181-97. [DOI: 10.1039/c4mt00066h] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
β-Lactamases inactivate the important β-lactam antibiotics by catalysing the hydrolysis of the β-lactam ring, thus. One class of these enzymes, the metallo-β-lactamases, bind two zinc ions at the active site and these play important roles in the catalytic mechanism.
Collapse
Affiliation(s)
| | - C. F. Damblon
- Chimie Biologique Structurale
- Institut de Chimie
- Université de Liège
- 4000 Liège, Belgium
| | - G. C. K. Roberts
- The Henry Wellcome Laboratories of Structural Biology
- Department of Biochemistry
- University of Leicester
- Leicester LE1 9HN, UK
| |
Collapse
|