1
|
Srivastava P, Johns ST, Voice A, Morley K, Escorcia AM, Miller DJ, Allemann RK, van der Kamp MW. Simulation-Guided Engineering Enables a Functional Switch in Selinadiene Synthase toward Hydroxylation. ACS Catal 2024; 14:11034-11043. [PMID: 39050902 PMCID: PMC11264211 DOI: 10.1021/acscatal.4c02032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
Engineering sesquiterpene synthases to form predefined alternative products is a major challenge due to their diversity in cyclization mechanisms and our limited understanding of how amino acid changes affect the steering of these mechanisms. Here, we use a combination of atomistic simulation and site-directed mutagenesis to engineer a selina-4(15),7(11)-diene synthase (SdS) such that its final reactive carbocation is quenched by trapped active site water, resulting in the formation of a complex hydroxylated sesquiterpene (selin-7(11)-en-4-ol). Initially, the SdS G305E variant produced 20% selin-7(11)-en-4-ol. As suggested by modeling of the enzyme-carbocation complex, selin-7(11)-en-4-ol production could be further improved by varying the pH, resulting in selin-7(11)-en-4-ol becoming the major product (48%) at pH 6.0. We incorporated the SdS G305E variant along with genes from the mevalonate pathway into bacterial BL21(DE3) cells and demonstrated the production of selin-7(11)-en-4-ol at a scale of 10 mg/L in batch fermentation. These results highlight opportunities for the simulation-guided engineering of terpene synthases to produce predefined complex hydroxylated sesquiterpenes.
Collapse
Affiliation(s)
| | - Sam T. Johns
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
| | - Angus Voice
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
| | - Katharine Morley
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
| | - Andrés M. Escorcia
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
| | - David J. Miller
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Rudolf K. Allemann
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K.
| | - Marc W. van der Kamp
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K.
| |
Collapse
|
2
|
González Requena V, Srivastava PL, Miller DJ, Allemann RK. Single Point Mutation Abolishes Water Capture in Germacradien-4-ol Synthase. Chembiochem 2024:e202400290. [PMID: 39031755 DOI: 10.1002/cbic.202400290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
The high-fidelity sesquiterpene cyclase (-)-germacradien-4-ol synthase (GdolS) converts farnesyl diphosphate into the macrocyclic alcohol (-)-germacradien-4-ol. Site-directed mutagenesis was used to decipher the role of key residues in the water control mechanism. Replacement of Ala176, located in the G1/2 helix, with non-polar aliphatic residues of increasing size (valine, leucine, isoleucine and methionine) resulted in the accumulation of the non-hydroxylated products germacrene A and germacrene D. In contrast, hydroxylation was maintained when the polar residues threonine, glutamine or aspartate replaced Ala176. Additionally, although a contribution of His150 to the nucleophilic water addition could be ruled out, the imidazole ring of His150 appears to assist carbocation stabilisation. The results presented here shed light on how hydroxylating sesquiterpene synthases can be engineered to design modified sesquiterpene synthases to reduce the need for further steps in the biocatalytic production of oxygenated sesquiterpenoids.
Collapse
Affiliation(s)
- Víctor González Requena
- School of Chemistry, Main Building, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Prabhakar L Srivastava
- School of Chemistry, Main Building, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - David J Miller
- School of Chemistry, Main Building, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Rudolf K Allemann
- School of Chemistry, Main Building, Cardiff University, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
3
|
Huang ZY, Ye RY, Yu HL, Li AT, Xu JH. Mining methods and typical structural mechanisms of terpene cyclases. BIORESOUR BIOPROCESS 2021; 8:66. [PMID: 38650244 PMCID: PMC10992375 DOI: 10.1186/s40643-021-00421-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/24/2021] [Indexed: 12/13/2022] Open
Abstract
Terpenoids, formed by cyclization and/or permutation of isoprenes, are the most diverse and abundant class of natural products with a broad range of significant functions. One family of the critical enzymes involved in terpenoid biosynthesis is terpene cyclases (TCs), also known as terpene synthases (TSs), which are responsible for forming the ring structure as a backbone of functionally diverse terpenoids. With the recent advances in biotechnology, the researches on terpene cyclases have gradually shifted from the genomic mining of novel enzyme resources to the analysis of their structures and mechanisms. In this review, we summarize both the new methods for genomic mining and the structural mechanisms of some typical terpene cyclases, which are helpful for the discovery, engineering and application of more and new TCs.
Collapse
Affiliation(s)
- Zheng-Yu Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ru-Yi Ye
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China
| | - Ai-Tao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
4
|
Srivastava PL, Escorcia AM, Huynh F, Miller DJ, Allemann RK, van der Kamp MW. Redesigning the Molecular Choreography to Prevent Hydroxylation in Germacradien-11-ol Synthase Catalysis. ACS Catal 2021; 11:1033-1041. [PMID: 33614194 PMCID: PMC7886051 DOI: 10.1021/acscatal.0c04647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/26/2020] [Indexed: 12/04/2022]
Abstract
![]()
Natural sesquiterpene synthases have evolved to make complex terpenoids by quenching
reactive carbocations either by proton transfer or by hydroxylation (water capture),
depending on their active site. Germacradien-11-ol synthase (Gd11olS) from
Streptomyces coelicolor catalyzes the cyclization of farnesyl
diphosphate (FDP) into the hydroxylated sesquiterpene germacradien-11-ol. Here, we
combine experiment and simulation to guide the redesign of its active site pocket to
avoid hydroxylation of the product. Molecular dynamics simulations indicate two regions
between which water molecules can flow that are responsible for hydroxylation. Point
mutations of selected residues result in variants that predominantly form a complex
nonhydroxylated product, which we identify as isolepidozene. Our results indicate how
these mutations subtly change the molecular choreography in the Gd11olS active site and
thereby pave the way for the engineering of terpene synthases to make complex terpenoid
products.
Collapse
Affiliation(s)
- Prabhakar L. Srivastava
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Andrés M. Escorcia
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Florence Huynh
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - David J. Miller
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Rudolf K. Allemann
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Marc W. van der Kamp
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
5
|
Chen Q, Cui W, Zhou Z, Han L. Exploration of key residues and conformational change of anti-terminator protein GlpP for ligand and RNA binding. Proteins 2021; 89:623-631. [PMID: 33455022 DOI: 10.1002/prot.26045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022]
Abstract
Anti-terminator protein GlpP regulates gene expression of glycerol uptake operon at post-transcriptional level in a number of bacteria. By now, the molecular dynamics details of ligand and RNA binding by GlpP are still obscure. In this study, we employed the molecular dynamic (MD) simulation and constructed a functional verification platform of GlpP to resolve these puzzles. By combining molecular docking, MD simulation and alanine scanning mutagenesis, a ligand binding pocket consisting of R14, R104 and R157 was identified. Among these residues with positive charge, R14 was dominant for binding glycerol-3-phosphate (G3P). Moreover, the "parallel to crossed" conformational change of the predicted RNA binding region was observed in MD simulation. In this process, the interaction between R104 and E129 was crucial to trigger the conformational change. To further verify this speculation, three ligand independent mutants were obtained by error-prone PCR. The MD simulation indicated that the conformational change happened in all the three mutants, confirming the "parallel to crossed" conformational change endowed GlpP the activity of binding RNA. In recent years, as a potable biological part, anti-terminator was more and more widely used to regulate gene expression in metabolic engineering and synthetic biology. The work in this study deepened our understanding to the typical anti-terminator GlpP, contributing to the further engineering and application of this type of regulator.
Collapse
Affiliation(s)
- Qiaoqing Chen
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenjing Cui
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhemin Zhou
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China.,Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, Jiangsu, China
| | - Laichuang Han
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
6
|
Raz K, Driller R, Dimos N, Ringel M, Brück T, Loll B, Major DT. The Impression of a Nonexisting Catalytic Effect: The Role of CotB2 in Guiding the Complex Biosynthesis of Cyclooctat-9-en-7-ol. J Am Chem Soc 2020; 142:21562-21574. [PMID: 33289561 DOI: 10.1021/jacs.0c11348] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Terpene synthases generate terpenes employing diversified carbocation chemistry, including highly specific ring formations, proton and hydride transfers, and methyl as well as methylene migrations, followed by reaction quenching. In this enzyme family, the main catalytic challenge is not rate enhancement, but rather structural and reactive control of intrinsically unstable carbocations in order to guide the resulting product distribution. Here we employ multiscale modeling within classical and quantum dynamics frameworks to investigate the reaction mechanism in the diterpene synthase CotB2, commencing with the substrate geranyl geranyl diphosphate and terminating with the carbocation precursor to the final product cyclooctat-9-en-7-ol. The 11-step in-enzyme carbocation cascade is compared with the same reaction in the absence of the enzyme. Remarkably, the free energy profiles in gas phase and in CotB2 are surprisingly similar. This similarity contrasts the multitude of strong π-cation, dipole-cation, and ion-pair interactions between all intermediates in the reaction cascade and the enzyme, suggesting a remarkable balance of interactions in CotB2. We ascribe this balance to the similar magnitude of the interactions between the carbocations along the reaction coordinate and the enzyme environment. The effect of CotB2 mutations is studied using multiscale mechanistic docking, machine learning, and X-ray crystallography, pointing the way for future terpene synthase design.
Collapse
Affiliation(s)
- Keren Raz
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ronja Driller
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Nicole Dimos
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Marion Ringel
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching, Germany
| | - Bernhard Loll
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Dan Thomas Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
7
|
Zhuang J, Zhang F, Zhou J, Deng W, Wu R. Residue-Orientation-Dependent Dynamics and Selectivity of Active Pocket in Microbe Class I Terpene Cyclases. J Chem Inf Model 2020; 60:4985-4994. [PMID: 32786702 DOI: 10.1021/acs.jcim.0c00159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microbe class I terpene cyclases (TPCs) are responsible for deriving numerous functionally and structurally diverse groups of terpenoid natural products. The conformational change of their active pockets from "open" state to "closed" state upon substrate binding has been clarified. However, the key structural basis relevant to this active pocket dynamics and its detailed molecular mechanism are still unclear. In this work, on the basis of the molecular dynamics (MD) on two microbe class I TPCs (SdS and bCinS), we propose that the active pocket dynamics is highly dependent on the residue orientation of two conserved structural bases R-D dyad and X-R-D triad, rather than the previously suggested flexibility of kink region. Actually, we considered that the flexibility of kink region is synchronous with the R residue orientation of the X-R-D triad, which could regulate the entrance size of active pocket and thus affect the substrate selectivity of active pocket by utilizing the promiscuity of the X-R-D triad. Furthermore, to better understand the function of the two structural bases, two intelligible models of "PPi catcher-locker" and "selector-PPi sensor-orienter" are proposed to, respectively, describe the R-D dyad and X-R-D triad and broadened to more microbe class I TPCs. These findings exhibit the dynamics of active pocket inaccessible in static crystal structures and provide useful structural basis knowledge for further design of microbe class I TPCs with different cyclization ability.
Collapse
Affiliation(s)
- Jingyuan Zhuang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Fan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jingwei Zhou
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, P. R. China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
8
|
Raz K, Levi S, Gupta PK, Major DT. Enzymatic control of product distribution in terpene synthases: insights from multiscale simulations. Curr Opin Biotechnol 2020; 65:248-258. [PMID: 32679412 DOI: 10.1016/j.copbio.2020.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/03/2020] [Accepted: 06/07/2020] [Indexed: 11/25/2022]
Abstract
In this opinion, we review some recent work on terpene biosynthesis using multiscale simulation approaches, with special focus on contributions from our group. Terpene synthases generate terpenes employing rich carbocation chemistry, including highly specific ring formations, proton, hydride, methyl, and methylene migrations, followed by reaction quenching. In these enzymes, the main catalytic challenge is not rate enhancement, but rather control of intrinsically reactive carbocations and the resulting product distribution. Herein, we review multiscale simulations of selected mono-, sesqui-, and diterpene synthases. We point to the many tools adopted by terpene synthases to achieve correct substrate fold, carbocation formation, carbocation reaction environment, and reaction quenching. A better understanding of the toolbox employed by terpene synthases is expected to aid in the search for new enzymatic and biomimetic synthetic routes to natural and unnatural terpenes.
Collapse
Affiliation(s)
- Keren Raz
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Shani Levi
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Prashant Kumar Gupta
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
9
|
Leferink NGH, Ranaghan KE, Karuppiah V, Currin A, van der Kamp MW, Mulholland AJ, Scrutton NS. Experiment and Simulation Reveal How Mutations in Functional Plasticity Regions Guide Plant Monoterpene Synthase Product Outcome. ACS Catal 2019; 8:3780-3791. [PMID: 31157124 PMCID: PMC6542672 DOI: 10.1021/acscatal.8b00692] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Monoterpenes (C10 isoprenoids) are a structurally diverse group of natural compounds that are attractive to industry as flavours and fragrances. Monoterpenes are produced from a single linear substrate, geranyl diphosphate, by a group of enzymes called the monoterpene cyclases/synthases (mTC/Ss) that catalyse high-energy cyclisation reactions involving unstable carbocation intermediates. Efforts towards producing monoterpenes via biocatalysis or metabolic engineering often result in the formation of multiple products due to the nature of the highly branched reaction mechanism of mTC/Ss. Rational engineering of mTC/Ss is hampered by the lack of correlation between the active site sequence and cyclisation type. We used available mutagenesis data to show that amino acids involved in product outcome are clustered and spatially conserved within the mTC/S family. Consensus sequences for three such plasticity regions were introduced in different mTC/S with increasingly complex cyclisation cascades, including the model enzyme limonene synthase (LimS). In all three mTC/S studied, mutations in the first two regions mostly give rise to products that result from premature quenching of the linalyl or α-terpinyl cations, suggesting that both plasticity regions are involved in the formation and stabilisation of cations early in the reaction cascade. A LimS variant with mutations in the second region (S454G, C457V, M458I), produced mainly more complex bicyclic products. QM/MM MD simulations reveal that the second cyclisation is not due to compression of the C2-C7 distance in the α-terpinyl cation, but is the result of an increased distance between C8 of the α-terpinyl cation and two putative bases (W324, H579) located on the other side of the active site, preventing early termination by deprotonation. Such insights into the impact of mutations can only be obtained using integrated experimental and computational approaches, and will aid the design of altered mTC/S activities towards clean monoterpenoid products.
Collapse
Affiliation(s)
- Nicole G. H. Leferink
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Kara E. Ranaghan
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Vijaykumar Karuppiah
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Andrew Currin
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| | - Marc W. van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, U.K
| | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Nigel S. Scrutton
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
10
|
van Rijn JPM, Escorcia AM, Thiel W. QM/MM study of the taxadiene synthase mechanism. J Comput Chem 2019; 40:1902-1910. [DOI: 10.1002/jcc.25846] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/05/2019] [Accepted: 04/15/2019] [Indexed: 01/10/2023]
Affiliation(s)
| | - Andrés M. Escorcia
- Max‐Planck‐Institut für Kohlenforschung Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim Germany
| | - Walter Thiel
- Max‐Planck‐Institut für Kohlenforschung Kaiser‐Wilhelm‐Platz 1, 45470 Mülheim Germany
| |
Collapse
|
11
|
Pahima E, Zhang Q, Tiefenbacher K, Major DT. Discovering Monoterpene Catalysis Inside Nanocapsules with Multiscale Modeling and Experiments. J Am Chem Soc 2019; 141:6234-6246. [PMID: 30907083 DOI: 10.1021/jacs.8b13411] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Large-scale production of natural products, such as terpenes, presents a significant scientific and technological challenge. One promising approach to tackle this problem is chemical synthesis inside nanocapsules, although enzyme-like control of such chemistry has not yet been achieved. In order to better understand the complex chemistry inside nanocapsules, we design a multiscale nanoreactor simulation approach. The nanoreactor simulation protocol consists of hybrid quantum mechanics-molecular mechanics-based high temperature Langevin molecular dynamics simulations. Using this approach we model the tail-to-head formation of monoterpenes inside a resorcin[4]arene-based capsule (capsule I). We provide a rationale for the experimentally observed kinetics of monoterpene product formation and product distribution using capsule I, and we explain why additional stable monoterpenes, like camphene, are not observed. On the basis of the in-capsule I simulations, and mechanistic insights, we propose that feeding the capsule with pinene can yield camphene, and this proposal is verified experimentally. This suggests that the capsule may direct the dynamic reaction cascades by virtue of π-cation interactions.
Collapse
Affiliation(s)
- Efrat Pahima
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 52900 , Israel
| | - Qi Zhang
- Department of Chemistry , University of Basel , Mattenstrasse 24a , 4058 Basel , Switzerland
| | - Konrad Tiefenbacher
- Department of Chemistry , University of Basel , Mattenstrasse 24a , 4058 Basel , Switzerland.,Department of Biosystems Science and Engineering , ETH Zurich , Mattenstrasse 24 , 4058 Basel , Switzerland
| | - Dan T Major
- Department of Chemistry , Bar-Ilan University , Ramat-Gan 52900 , Israel
| |
Collapse
|
12
|
Loizzi M, Miller DJ, Allemann RK. Silent catalytic promiscuity in the high-fidelity terpene cyclase δ-cadinene synthase. Org Biomol Chem 2019; 17:1206-1214. [PMID: 30652178 PMCID: PMC6369673 DOI: 10.1039/c8ob02821d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aza-analogues of carbocations inhibit δ-cadinene synthase: 1,6-cyclisation.
δ-Cadinene synthase (DCS) is a high-fidelity sesquiterpene synthase that generates δ-cadinene as the sole detectable organic product from its natural substrate (E,E)-FDP. Previous work with this enzyme using substrate analogues revealed the ability of DCS to catalyse both 1,10- and 1,6-cyclisations of substrate analogues. To test whether this apparent promiscuity was an artefact of alternate substrate use or an inherent property of the enzyme, aza analogues of the proposed α-bisabolyl cation intermediate were prepared since this cation would be formed after an initial 1,6-cyclisation of FDP. In the presence of 250 μM inorganic disphosphate both (R)- and (S)-aza-bisaboyl cations were potent competitive inhibitors of DCS (Ki = 2.5 ± 0.5 mM and 3.44 ± 1.43 μM, respectively). These compounds were also shown to be potent inhibitors of the 1,6-cyclase amorpha-4,11-diene synthase but not of the 1,10-cyclase aristolochene synthase from Penicillium roquefortii, demonstrating that the 1,6-cyclase activity of DCS is most likely an inherent property of the enzyme even when the natural substrate is used and not an artefact of the use of substrate analogues.
Collapse
Affiliation(s)
- Marianna Loizzi
- School of Chemistry, Cardiff University Main Building, Park Place, Cardiff, CF10 3AT, UK.
| | | | | |
Collapse
|
13
|
Mondal S, Verma A, Saha S. Conformationally Restricted Triarylmethanes: Synthesis, Photophysical Studies, and Applications. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sankalan Mondal
- Department of Chemistry; Institute of Science; Banaras Hindu University; 221005 Varanasi India
| | - Abhineet Verma
- Department of Chemistry; Institute of Science; Banaras Hindu University; 221005 Varanasi India
| | - Satyen Saha
- Department of Chemistry; Institute of Science; Banaras Hindu University; 221005 Varanasi India
| |
Collapse
|
14
|
Driller R, Janke S, Fuchs M, Warner E, Mhashal AR, Major DT, Christmann M, Brück T, Loll B. Towards a comprehensive understanding of the structural dynamics of a bacterial diterpene synthase during catalysis. Nat Commun 2018; 9:3971. [PMID: 30266969 PMCID: PMC6162201 DOI: 10.1038/s41467-018-06325-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/28/2018] [Indexed: 11/24/2022] Open
Abstract
Terpenes constitute the largest and structurally most diverse natural product family. Most terpenoids exhibit a stereochemically complex macrocyclic core, which is generated by C–C bond forming of aliphatic oligo-prenyl precursors. This reaction is catalysed by terpene synthases (TPSs), which are capable of chaperoning highly reactive carbocation intermediates through an enzyme-specific reaction. Due to the instability of carbocation intermediates, the proteins’ structural dynamics and enzyme:substrate interactions during TPS catalysis remain elusive. Here, we present the structure of the diterpene synthase CotB2, in complex with an in crystallo cyclised abrupt reaction product and a substrate-derived diphosphate. We captured additional snapshots of the reaction to gain an overview of CotB2’s catalytic mechanism. To enhance insights into catalysis, structural information is augmented with multiscale molecular dynamic simulations. Our data represent fundamental TPS structure dynamics during catalysis, which ultimately enable rational engineering towards tailored terpene macrocycles that are inaccessible by conventional chemical synthesis. The bacterial diterpene synthase CotB2 catalyses the cyclisation of geranylgeranyl diphosphate to cyclooctat-9-en7-ol. Here the authors present various CotB2 structures including a trapped abrupt reaction product that were used for molecular dynamic simulations and allowed them to model all intermediates along the reaction cascade.
Collapse
Affiliation(s)
- Ronja Driller
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany
| | - Sophie Janke
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Monika Fuchs
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching, Germany
| | - Evelyn Warner
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Anil R Mhashal
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Mathias Christmann
- Institut für Chemie und Biochemie, Organische Chemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Thomas Brück
- Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching, Germany
| | - Bernhard Loll
- Institut für Chemie und Biochemie, Strukturbiochemie, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany.
| |
Collapse
|
15
|
Huynh F, Grundy DJ, Jenkins RL, Miller DJ, Allemann RK. Sesquiterpene Synthase-Catalysed Formation of a New Medium-Sized Cyclic Terpenoid Ether from Farnesyl Diphosphate Analogues. Chembiochem 2018; 19:1834-1838. [PMID: 29802753 PMCID: PMC6334173 DOI: 10.1002/cbic.201800218] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 11/08/2022]
Abstract
Terpene synthases catalyse the first step in the conversion of prenyl diphosphates to terpenoids. They act as templates for their substrates to generate a reactive conformation, from which a Mg2+ -dependent reaction creates a carbocation-PPi ion pair that undergoes a series of rearrangements and (de)protonations to give the final terpene product. This tight conformational control was exploited for the (R)-germacrene A synthase- and germacradien-4-ol synthase-catalysed formation of a medium-sized cyclic terpenoid ether from substrates containing nucleophilic functional groups. Farnesyl diphosphate analogues with a 10,11-epoxide or an allylic alcohol were efficiently converted to a 11-membered cyclic terpenoid ether that was characterised by HRMS and NMR spectroscopic analyses. Further experiments showed that other sesquiterpene synthases, including aristolochene synthase, δ-cadinene synthase and amorphadiene synthase, yielded this novel terpenoid from the same substrate analogues. This work illustrates the potential of terpene synthases for the efficient generation of structurally and functionally novel medium-sized terpene ethers.
Collapse
Affiliation(s)
- Florence Huynh
- School of ChemistryCardiff UniversityMain BuildingPark PlaceCardiffCF10 3ATUK
| | - Daniel J. Grundy
- School of ChemistryCardiff UniversityMain BuildingPark PlaceCardiffCF10 3ATUK
| | - Robert L. Jenkins
- School of ChemistryCardiff UniversityMain BuildingPark PlaceCardiffCF10 3ATUK
| | - David J. Miller
- School of ChemistryCardiff UniversityMain BuildingPark PlaceCardiffCF10 3ATUK
| | - Rudolf K. Allemann
- School of ChemistryCardiff UniversityMain BuildingPark PlaceCardiffCF10 3ATUK
| |
Collapse
|
16
|
Santos-Martins D, Calixto AR, Fernandes PA, Ramos MJ. A Buried Water Molecule Influences Reactivity in α-Amylase on a Subnanosecond Time Scale. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04400] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Diogo Santos-Martins
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ana R. Calixto
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A. Fernandes
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO@REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
17
|
Escorcia AM, van Rijn JPM, Cheng GJ, Schrepfer P, Brück TB, Thiel W. Molecular dynamics study of taxadiene synthase catalysis. J Comput Chem 2018; 39:1215-1225. [PMID: 29450907 DOI: 10.1002/jcc.25184] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 01/10/2023]
Abstract
Molecular dynamics (MD) simulations have been performed to study the dynamic behavior of noncovalent enzyme carbocation complexes involved in the cyclization of geranylgeranyl diphosphate to taxadiene catalyzed by taxadiene synthase (TXS). Taxadiene and the observed four side products originate from the deprotonation of carbocation intermediates. The MD simulations of the TXS carbocation complexes provide insights into potential deprotonation mechanisms of such carbocations. The MD results do not support a previous hypothesis that carbocation tumbling is a key factor in the deprotonation of the carbocations by pyrophosphate. Instead water bridges are identified which may allow the formation of side products via multiple proton transfer reactions. A novel reaction path for taxadiene formation is proposed on the basis of the simulations. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrés M Escorcia
- Max-Planck-Institut fu¨r Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mu¨lheim, 45470, Germany
| | | | - Gui-Juan Cheng
- Max-Planck-Institut fu¨r Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mu¨lheim, 45470, Germany
| | - Patrick Schrepfer
- Professorship of Industrial Biocatalysis, Department of Chemistry, Technical University Munich, Lichtenberg Str. 4, Garching, 85748, Germany
| | - Thomas B Brück
- Professorship of Industrial Biocatalysis, Department of Chemistry, Technical University Munich, Lichtenberg Str. 4, Garching, 85748, Germany
| | - Walter Thiel
- Max-Planck-Institut fu¨r Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mu¨lheim, 45470, Germany
| |
Collapse
|
18
|
Loizzi M, González V, Miller DJ, Allemann RK. Nucleophilic Water Capture or Proton Loss: Single Amino Acid Switch Converts δ-Cadinene Synthase into Germacradien-4-ol Synthase. Chembiochem 2018; 19:100-105. [PMID: 29115742 PMCID: PMC5814876 DOI: 10.1002/cbic.201700531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Indexed: 11/07/2022]
Abstract
δ-Cadinene synthase is a sesquiterpene cyclase that utilises the universal achiral precursor farnesyl diphosphate (FDP) to generate predominantly the bicyclic sesquiterpene δ-cadinene and about 2 % germacradien-4-ol, which is also generated from FDP by the cyclase germacradien-4-ol synthase. Herein, the mechanism by which sesquiterpene synthases discriminate between deprotonation and reaction with a nucleophilic water molecule was investigated by site-directed mutagenesis of δ-cadinene synthase. If W279 in δ-cadinene synthase was replaced with various smaller amino acids, the ratio of alcohol versus hydrocarbon product was directly proportional to the van der Waals volume of the amino acid side chain. DCS-W279A is a catalytically highly efficient germacradien-4-ol synthase (kcat /KM =1.4×10-3 μm s-1 ) that produces predominantly germacradien-4-ol in addition to 11 % δ-cadinene. Water capture is not achieved through strategic positioning of a water molecule in the active site, but through a coordinated series of loop movements that allow bulk water access to the final carbocation in the active site prior to product release.
Collapse
Affiliation(s)
- Marianna Loizzi
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Veronica González
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - David J. Miller
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Rudolf K. Allemann
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
19
|
Xu J, Xu J, Ai Y, Farid RA, Tong L, Yang D. Mutational analysis and dynamic simulation of S-limonene synthase reveal the importance of Y573: Insight into the cyclization mechanism in monoterpene synthases. Arch Biochem Biophys 2017; 638:27-34. [PMID: 29225126 DOI: 10.1016/j.abb.2017.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 10/18/2022]
Abstract
Monoterpene synthases carry out complex reactions to produce multiple products from a sole substrate, geranyl pyrophosphate (GPP). S-limonene synthase (LS) is a model monoterpene synthase that can be explored to understand the catalytic mechanism of these enzymes. In this study, we have identified an active site tyrosine residue (Y573) is crucial for the enzyme activity and mutational analysis indicates that both the aromatic ring and hydroxyl group are essential for the catalysis. Dynamic simulations found a hydrogen bond between Y573 and D496 and also a significant conformational change in the helical form of the LPP intermediate. Further mutagenesis suggested that this hydrogen bond is essential for catalysis. Sequence analysis suggested Y573 is completely conserved among cyclic monoterpene synthases but variable in acyclic enzymes, indicating this residue may be involved in cyclization. Subsequent studies by using neryl diphosphate (NPP) as the substrate ruled out the possibility that Y573 functions solely at the substrate isomerization step. Therefore, a more complicated role may be played by this residue. We proposed that Y573 may be involved in the earlier steps of the reaction, probably by controlling the conformation of the helical LPP intermediate. Our study provides important insights not only on the catalytic mechanism of LS, but also on the cyclization of monoterpene synthases in general.
Collapse
Affiliation(s)
- Jinkun Xu
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875 China
| | - Jingwei Xu
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875 China
| | - Ying Ai
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875 China
| | - Roba A Farid
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875 China
| | - Li Tong
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875 China
| | - Dong Yang
- Gene Engineering and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875 China.
| |
Collapse
|
20
|
Karuppiah V, Ranaghan KE, Leferink NGH, Johannissen LO, Shanmugam M, Ní Cheallaigh A, Bennett NJ, Kearsey LJ, Takano E, Gardiner JM, van der Kamp MW, Hay S, Mulholland AJ, Leys D, Scrutton NS. Structural Basis of Catalysis in the Bacterial Monoterpene Synthases Linalool Synthase and 1,8-Cineole Synthase. ACS Catal 2017; 7:6268-6282. [PMID: 28966840 PMCID: PMC5617326 DOI: 10.1021/acscatal.7b01924] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/04/2017] [Indexed: 02/02/2023]
Abstract
Terpenoids form the largest and stereochemically most diverse class of natural products, and there is considerable interest in producing these by biocatalysis with whole cells or purified enzymes, and by metabolic engineering. The monoterpenes are an important class of terpenes and are industrially important as flavors and fragrances. We report here structures for the recently discovered Streptomyces clavuligerus monoterpene synthases linalool synthase (bLinS) and 1,8-cineole synthase (bCinS), and we show that these are active biocatalysts for monoterpene production using biocatalysis and metabolic engineering platforms. In metabolically engineered monoterpene-producing E. coli strains, use of bLinS leads to 300-fold higher linalool production compared with the corresponding plant monoterpene synthase. With bCinS, 1,8-cineole is produced with 96% purity compared to 67% from plant species. Structures of bLinS and bCinS, and their complexes with fluorinated substrate analogues, show that these bacterial monoterpene synthases are similar to previously characterized sesquiterpene synthases. Molecular dynamics simulations suggest that these monoterpene synthases do not undergo large-scale conformational changes during the reaction cycle, making them attractive targets for structured-based protein engineering to expand the catalytic scope of these enzymes toward alternative monoterpene scaffolds. Comparison of the bLinS and bCinS structures indicates how their active sites steer reactive carbocation intermediates to the desired acyclic linalool (bLinS) or bicyclic 1,8-cineole (bCinS) products. The work reported here provides the analysis of structures for this important class of monoterpene synthase. This should now guide exploitation of the bacterial enzymes as gateway biocatalysts for the production of other monoterpenes and monoterpenoids.
Collapse
Affiliation(s)
- Vijaykumar Karuppiah
- BBSRC/EPSRC
Manchester Synthetic Biology Research Centre for Fine and Specialty
Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School
of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Kara E. Ranaghan
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Nicole G. H. Leferink
- BBSRC/EPSRC
Manchester Synthetic Biology Research Centre for Fine and Specialty
Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School
of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Linus O. Johannissen
- BBSRC/EPSRC
Manchester Synthetic Biology Research Centre for Fine and Specialty
Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School
of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Muralidharan Shanmugam
- BBSRC/EPSRC
Manchester Synthetic Biology Research Centre for Fine and Specialty
Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School
of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Aisling Ní Cheallaigh
- BBSRC/EPSRC
Manchester Synthetic Biology Research Centre for Fine and Specialty
Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School
of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Nathan J. Bennett
- BBSRC/EPSRC
Manchester Synthetic Biology Research Centre for Fine and Specialty
Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School
of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Lewis J. Kearsey
- BBSRC/EPSRC
Manchester Synthetic Biology Research Centre for Fine and Specialty
Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School
of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Eriko Takano
- BBSRC/EPSRC
Manchester Synthetic Biology Research Centre for Fine and Specialty
Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School
of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - John M. Gardiner
- BBSRC/EPSRC
Manchester Synthetic Biology Research Centre for Fine and Specialty
Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School
of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Marc W. van der Kamp
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Sam Hay
- BBSRC/EPSRC
Manchester Synthetic Biology Research Centre for Fine and Specialty
Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School
of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - David Leys
- BBSRC/EPSRC
Manchester Synthetic Biology Research Centre for Fine and Specialty
Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School
of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Nigel S. Scrutton
- BBSRC/EPSRC
Manchester Synthetic Biology Research Centre for Fine and Specialty
Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School
of Chemistry, Faculty of Science and Engineering, University of Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
21
|
Styles MQ, Nesbitt EA, Marr S, Hutchby M, Leak DJ. Characterization of the first naturally thermostable terpene synthases and development of strategies to improve thermostability in this family of enzymes. FEBS J 2017; 284:1700-1711. [PMID: 28371548 PMCID: PMC6849719 DOI: 10.1111/febs.14072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/20/2017] [Accepted: 03/27/2017] [Indexed: 12/24/2022]
Abstract
The terpenoid family of natural products is being targeted for heterologous microbial production as a cheaper and more reliable alternative to extraction from plants. The key enzyme responsible for diversification of terpene structure is the class-I terpene synthase (TS), and these often require engineering to improve properties such as thermostability, robustness and catalytic activity before they are suitable for industrial use. Improving thermostability typically relies on screening a large number of mutants, as there are no naturally thermostable TSs described upon which to base rational design decisions. We have characterized the first examples of natural TSs exhibiting thermostability, which catalyse the formation of the sesquiterpene τ-muurolol at temperatures up to 78 °C. We also report an enzyme with a kcat value of 0.95 s-1 at 65 °C, the highest kcat recorded for a bacterial sesquiterpene synthase. In turn, these thermostable enzymes were used as a model to inform the rational engineering of another TS, with the same specificity but low sequence identity to the model. The newly engineered variant displayed increased thermostability and turnover. Given the high structural homology of the class-I TS domain, this approach could be generally applicable to improving the properties of other enzymes in this class. DATABASE Model data are available in the PMDB database under the accession number PM0080780.
Collapse
Affiliation(s)
| | | | - Scott Marr
- Department of Biology and Biochemistry, University of Bath, UK
| | | | - David J Leak
- Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
22
|
Abdallah II, Czepnik M, van Merkerk R, Quax WJ. Insights into the Three-Dimensional Structure of Amorpha-4,11-diene Synthase and Probing of Plasticity Residues. JOURNAL OF NATURAL PRODUCTS 2016; 79:2455-2463. [PMID: 27673334 DOI: 10.1021/acs.jnatprod.6b00236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Amorphadiene synthase (ADS) is known for its vital role as a key enzyme in the biosynthesis of the antimalarial drug artemisinin. Despite the vast research targeting this enzyme, an X-ray crystal structure of the enzyme has not yet been reported. In spite of the remarkable difference in product profile among various sesquiterpene synthases, they all share a common α-helical fold with many highly conserved regions especially the bivalent metal ion binding motifs. Hence, to better understand the structural basis of the mechanism of ADS, a reliable 3D homology model representing the conformation of the ADS enzyme and the position of its substrate, farnesyl diphosphate, in the active site was constructed. The model was generated using the reported crystal structure of α-bisabolol synthase mutant, an enzyme with high sequence identity with ADS, as a template. Site-directed mutagenesis was used to probe the active site residues. Seven residues were probed showing their vital role in the ADS mechanism and/or their effect on product profile. The generated variants confirmed the validity of the ADS model. This model will serve as a basis for exploring structure-function relationships of all residues in the active site to obtain further insight into the ADS mechanism.
Collapse
Affiliation(s)
- Ingy I Abdallah
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen , 9713 AV, Groningen, The Netherlands
| | - Magdalena Czepnik
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen , 9713 AV, Groningen, The Netherlands
| | - Ronald van Merkerk
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen , 9713 AV, Groningen, The Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen , 9713 AV, Groningen, The Netherlands
| |
Collapse
|
23
|
Zhang F, Chen N, Zhou J, Wu R. Protonation-Dependent Diphosphate Cleavage in FPP Cyclases and Synthases. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fan Zhang
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Nanhao Chen
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Jingwei Zhou
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Ruibo Wu
- School
of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| |
Collapse
|
24
|
Chen M, Chou WKW, Al-Lami N, Faraldos JA, Allemann RK, Cane DE, Christianson DW. Probing the Role of Active Site Water in the Sesquiterpene Cyclization Reaction Catalyzed by Aristolochene Synthase. Biochemistry 2016; 55:2864-74. [PMID: 27172425 PMCID: PMC4879067 DOI: 10.1021/acs.biochem.6b00343] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Aristolochene synthase (ATAS) is a high-fidelity terpenoid cyclase that converts farnesyl diphosphate exclusively into the bicyclic hydrocarbon aristolochene. Previously determined crystal structures of ATAS complexes revealed trapped active site water molecules that could potentially interact with catalytic intermediates: water "w" hydrogen bonds with S303 and N299, water molecules "w1" and "w2" hydrogen bond with Q151, and a fourth water molecule coordinates to the Mg(2+)C ion. There is no obvious role for water in the ATAS mechanism because the enzyme exclusively generates a hydrocarbon product. Thus, these water molecules are tightly controlled so that they cannot react with carbocation intermediates. Steady-state kinetics and product distribution analyses of eight ATAS mutants designed to perturb interactions with active site water molecules (S303A, S303H, S303D, N299A, N299L, N299A/S303A, Q151H, and Q151E) indicate relatively modest effects on catalysis but significant effects on sesquiterpene product distributions. X-ray crystal structures of S303A, N299A, N299A/S303A, and Q151H mutants reveal minimal perturbation of active site solvent structure. Seven of the eight mutants generate farnesol and nerolidol, possibly resulting from addition of the Mg(2+)C-bound water molecule to the initially formed farnesyl cation, but no products are generated that would suggest enhanced reactivity of other active site water molecules. However, intermediate germacrene A tends to accumulate in these mutants. Thus, apart from the possible reactivity of Mg(2+)C-bound water, active site water molecules in ATAS are not directly involved in the chemistry of catalysis but instead contribute to the template that governs the conformation of the flexible substrate and carbocation intermediates.
Collapse
Affiliation(s)
- Mengbin Chen
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Wayne K. W. Chou
- Department of Chemistry, Brown University, Box H, Providence, Rhode Island 02912-9108, United States
| | - Naeemah Al-Lami
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Juan A. Faraldos
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Rudolf K. Allemann
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - David E. Cane
- Department of Chemistry, Brown University, Box H, Providence, Rhode Island 02912-9108, United States
| | - David W. Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States,Radcliffe Institute for Advanced Study and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States,To whom correspondence should be addressed to: Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA, 19104-6323. Tel: 215-898-5714;
| |
Collapse
|
25
|
Zhang F, Chen N, Wu R. Molecular Dynamics Simulations Elucidate Conformational Dynamics Responsible for the Cyclization Reaction in TEAS. J Chem Inf Model 2016; 56:877-85. [PMID: 27082764 DOI: 10.1021/acs.jcim.6b00091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Mg-dependent 5-epi-aristolochene synthase from Nicotiana tabacum (called TEAS) could catalyze the linear farnesyl pyrophosphate (FPP) substrate to form bicyclic hydrocarbon 5-epi-aristolochene. The cyclization reaction mechanism of TEAS was proposed based on static crystal structures and quantum chemistry calculations in a few previous studies, but substrate FPP binding kinetics and protein conformational dynamics responsible for the enzymatic catalysis are still unclear. Herein, by elaborative and extensive molecular dynamics simulations, the loop conformation change and several crucial residues promoting the cyclization reaction in TEAS are elucidated. It is found that the unusual noncatalytic NH2-terminal domain is essential to stabilize Helix-K and the adjoining J-K loop of the catalytic COOH-terminal domain. It is also illuminated that the induce-fit J-K/A-C loop dynamics is triggered by Y527 and the optimum substrate binding mode in a "U-shape" conformation. The U-shaped ligand binding pose is maintained well with the cooperative interaction of the three Mg(2+)-containing coordination shell and conserved residue W273. Furthermore, the conserved Arg residue pair R264/R266 and aromatic residue pair Y527/W273, whose spatial orientations are also crucial to promote the closure of the active site to a hydrophobic pocket, as well as to form π-stacking interactions with the ligand, would facilitate the carbocation migration and electrophilic attack involving the catalytic reaction. Our investigation more convincingly proves the greater roles of the protein local conformational dynamics than do hints from the static crystal structure observations. Thus, these findings can act as a guide to new protein engineering strategies on diversifying the sesquiterpene products for drug discovery.
Collapse
Affiliation(s)
- Fan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, Guangdong, P.R. China
| | - Nanhao Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, Guangdong, P.R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou 510006, Guangdong, P.R. China
| |
Collapse
|
26
|
Grundy DJ, Chen M, González V, Leoni S, Miller DJ, Christianson DW, Allemann RK. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture. Biochemistry 2016; 55:2112-21. [PMID: 26998816 PMCID: PMC4829482 DOI: 10.1021/acs.biochem.6b00115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D(80)DQFD and N(218)DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H2(18)O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-(2)H2]FDP and (R)-[1-(2)H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues were observed, the final carbocation may be captured by a water molecule from bulk solvent.
Collapse
Affiliation(s)
- Daniel J Grundy
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, United Kingdom
| | - Mengbin Chen
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Verónica González
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, United Kingdom
| | - Stefano Leoni
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, United Kingdom
| | - David J Miller
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, United Kingdom
| | - David W Christianson
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States.,Radcliffe Institute for Advanced Study and Department of Chemistry and Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Rudolf K Allemann
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
27
|
Roy M, Roy S, Singh KS, Kalita J, Singh SS. Synthesis, characterization and anti-diabetic assay of diorganotin(iv) azo-carboxylates: crystal structure and topological studies of azo-dicarboxylic acid ligand and its cyclic tetranuclear dimethyltin(iv) complex. NEW J CHEM 2016. [DOI: 10.1039/c5nj02637g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel cyclic tetranuclear and a cyclic dimeric diorganotin(iv) azo-dicarboxylates have been reported. The complexes exhibited effective anti-diabetic activity.
Collapse
Affiliation(s)
- Manojit Roy
- Department of Chemistry
- National Institute of Technology Agartala
- Jirania
- India
| | - Subhadip Roy
- Department of Chemistry
- National Institute of Technology Agartala
- Jirania
- India
| | | | - Janmoni Kalita
- Department of Forestry
- North Eastern Regional Institute of Science and Technology
- Nirjuli
- India
| | - S. Sureshkumar Singh
- Department of Forestry
- North Eastern Regional Institute of Science and Technology
- Nirjuli
- India
| |
Collapse
|
28
|
González V, Grundy DJ, Faraldos JA, Allemann RK. The amino-terminal segment in the β-domain of δ-cadinene synthase is essential for catalysis. Org Biomol Chem 2016; 14:7451-4. [DOI: 10.1039/c6ob01398h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The β-domain of δ-cadinene synthase (DCS) directs desolvation of the active site.
Collapse
|
29
|
Liu Z, Zhou J, Wu R, Xu J. Mechanism of Assembling Isoprenoid Building Blocks 1. Elucidation of the Structural Motifs for Substrate Binding in Geranyl Pyrophosphate Synthase. J Chem Theory Comput 2015; 10:5057-67. [PMID: 26584386 DOI: 10.1021/ct500607n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Terpenes (isoprenoids) represent the most functionally and structurally diverse group of natural products. Terpenes are assembled from two building blocks, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP or DPP), by prenyltransferases (PTSs). Geranyl pyrophosphate synthase (GPPS) is the enzyme that assembles DPP and IPP in the first step of chain elongation during isoprenoid biosynthesis. The mechanism by which GPPS assembles the terpene precursor remains unknown; elucidating this mechanism will help in development of new technology to generate novel natural product-like scaffolds. With classic and QM/MM MD simulations, an "open-closed" conformation change of the catalytic pocket was observed in the GPPS active site at its large subunit (LSU), and a critical salt bridge between Asp91(in loop 1) and Lys239(in loop 2) was identified. The salt bridge is responsible for opening or closing the catalytic pocket. Meanwhile, the small subunit (SSU) regulates the size and shape of the hydrophobic pocket to flexibly host substrates with different shapes and sizes (DPP/GPP/FPP, C5/C10/C15). Further QM/MM MD simulations were carried out to explore the binding modes for the different substrates catalyzed by GPPS. Our simulations suggest that the key residues (Asp91, Lys239, and Gln156) are good candidates for site-directed mutagenesis and may help in protein engineering.
Collapse
Affiliation(s)
- Zhihong Liu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University , 132 East Circle at University City, Guangzhou 510006, China
| | - Jingwei Zhou
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University , 132 East Circle at University City, Guangzhou 510006, China
| | - Ruibo Wu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University , 132 East Circle at University City, Guangzhou 510006, China
| | - Jun Xu
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University , 132 East Circle at University City, Guangzhou 510006, China
| |
Collapse
|
30
|
Kersten R, Diedrich JK, Yates JR, Noel JP. Mechanism-Based Post-Translational Modification and Inactivation in Terpene Synthases. ACS Chem Biol 2015; 10:2501-11. [PMID: 26378620 PMCID: PMC4655415 DOI: 10.1021/acschembio.5b00539] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/20/2015] [Indexed: 12/14/2022]
Abstract
Terpenes are ubiquitous natural chemicals with diverse biological functions spanning all three domains of life. In specialized metabolism, the active sites of terpene synthases (TPSs) evolve in shape and reactivity to direct the biosynthesis of a myriad of chemotypes for organismal fitness. As most terpene biosynthesis mechanistically involves highly reactive carbocationic intermediates, the protein surfaces catalyzing these cascade reactions possess reactive regions possibly prone to premature carbocation capture and potentially enzyme inactivation. Here, we show using proteomic and X-ray crystallographic analyses that cationic intermediates undergo capture by conserved active site residues leading to inhibitory self-alkylation. Moreover, the level of cation-mediated inactivation increases with mutation of the active site, upon changes in the size and structure of isoprenoid diphosphate substrates, and alongside increases in reaction temperatures. TPSs that individually synthesize multiple products are less prone to self-alkylation then TPSs possessing relatively high product specificity. In total, the results presented suggest that mechanism-based alkylation represents an overlooked mechanistic pressure during the evolution of cation-derived terpene biosynthesis.
Collapse
Affiliation(s)
- Roland
D. Kersten
- Howard
Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology
& Proteomics, The Salk Institute for
Biological Studies, La Jolla, California 92037, United States
| | - Jolene K. Diedrich
- Department
of Chemical Physiology, The Scripps Research
Institute, La Jolla, California 92037, United States
- Vincent
J. Coates Mass Spectrometry Center, The
Salk Institute of Biological Studies, La Jolla, California 92037, United States
| | - John R. Yates
- Department
of Chemical Physiology, The Scripps Research
Institute, La Jolla, California 92037, United States
- Vincent
J. Coates Mass Spectrometry Center, The
Salk Institute of Biological Studies, La Jolla, California 92037, United States
| | - Joseph P. Noel
- Howard
Hughes Medical Institute, Jack H. Skirball Center for Chemical Biology
& Proteomics, The Salk Institute for
Biological Studies, La Jolla, California 92037, United States
| |
Collapse
|
31
|
Zhou J, Wang X, Kuang M, Wang L, Luo HB, Mo Y, Wu R. Protonation-Triggered Carbon-Chain Elongation in Geranyl Pyrophosphate Synthase (GPPS). ACS Catal 2015. [DOI: 10.1021/acscatal.5b00947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingwei Zhou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Xiaoming Wang
- Program in Public Health, College of Healthy Sciences, University of California—Irvine, Irvine, California 92697,United States
| | - Ming Kuang
- Institute of Chinese Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Laiyou Wang
- Institute of Chinese Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, P.R. China
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yirong Mo
- Department of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
32
|
Catalytic control in terpenoid cyclases: multiscale modeling of thermodynamic, kinetic, and dynamic effects. Curr Opin Chem Biol 2014; 21:25-33. [DOI: 10.1016/j.cbpa.2014.03.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/09/2014] [Indexed: 02/08/2023]
|