1
|
Switala J, Donald L, Ivancich A. A remarkable peroxidase-like behavior of the catalase KatA from the pathogenic bacteria Helicobacter pylori: The oxidation reaction with formate as substrate and the stabilization of an [Fe(IV) = O Trp •] intermediate assessed by multifrequency EPR spectroscopy. J Inorg Biochem 2024; 257:112594. [PMID: 38749080 DOI: 10.1016/j.jinorgbio.2024.112594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 05/04/2024] [Indexed: 06/09/2024]
Abstract
We have characterized the catalytic cycle of the Helicobacter pylori KatA catalase (HPC). H. pylori is a human and animal pathogen responsible for gastrointestinal infections. Multifrequency (9-285 GHz) EPR spectroscopy was applied to identify the high-valent intermediates (5 ≤ pH ≤ 8.5). The broad (2000 G) 9-GHz EPR spectrum consistent with the [Fe(IV) = O Por•+] intermediate was detected, and showed a clear pH dependence on the exchange-coupling of the radical (delocalized over the porphyrin moiety) due to the magnetic interaction with the ferryl iron. In addition, Trp• (for pH ≤ 6) and Tyr• (for 5 ≤ pH ≤ 8.5) species were distinguished by the advantageous resolution of their g-values in the 285-GHz EPR spectrum. The unequivocal identification of the high-valent intermediates in HPC by their distinct EPR spectra allowed us to address their reactivity towards substrates. The stabilization of an [Fe(IV) = O Trp•] species in HPC, unprecedented in monofunctional catalases and possibly involved in the oxidation of formate to the formyloxyl radical at pH ≤ 6, is reminiscent of intermediates previously identified in the catalytic cycle of bifunctional catalase-peroxidases. The 2e- oxidation of formate by the [Fe(IV) = O Por•+] species, both at basic and acidic pH conditions, involving a 1H+/2e- oxidation in a cytochrome P450 peroxygenase-like reaction is proposed. Our findings demonstrate that moonlighting by the H. pylori catalase includes formate oxidation, an enzymatic reaction possibly related to the unique strategy of the neutrophile bacterium for gastric colonization, that is the release of CO2 to regulate the pH in the acidic environment.
Collapse
Affiliation(s)
- Jacek Switala
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Lynda Donald
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Anabella Ivancich
- Bioénergétique et Ingénierie des Protéines, UMR 7281 and IMM FR3479, CNRS, Aix-Marseille Univ., 31 chemin Joseph Aiguier, 13009 Marseille, France.
| |
Collapse
|
2
|
Jan F, Arshad H, Ahad M, Jamal A, Smith DL. In vitro assessment of Bacillus subtilis FJ3 affirms its biocontrol and plant growth promoting potential. FRONTIERS IN PLANT SCIENCE 2023; 14:1205894. [PMID: 37538061 PMCID: PMC10395516 DOI: 10.3389/fpls.2023.1205894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/23/2023] [Indexed: 08/05/2023]
Abstract
Bacillus species and their metabolites have potential alternative uses as chemical pesticides that can limit the growth of potential plant pathogens and enhance crop productivity. The aim of this study was to investigate the potential of Bacillus subtilis FJ3 for promoting plant growth and controlling fungal plant pathogens. The study evaluated the ability of the strain to promote plant growth in vitro by characterizing its growth-promoting traits, which included the production of hydrolytic enzymes, indole acetic acid, siderophores, biofilm formation, and phosphate solubilization. Polymerase Chain Reaction (PCR) testing revealed that strain FJ3 has the potential to produce lipopeptides such as fengycin, surfactin, mycosubtilin, and pilpastatin. Through in vitro antagonism testing it was demonstrated that strain FJ3 is able to inhibit Fusarium oxysporum by 52% compared to the untreated control and was antagonistic against Aspergillus flavus, Aspergillus niger, and Rhizopus oryzae using a dual method. The minimum inhibitory concentration of Bacillus crude extract resulted in a 92%, 90%, 81.5%, and 56% growth inhibition of Fusarium oxysporum, A. niger, A. flavus, and Rhizopus oryzae, respectively. In FT-IR and GC-MS analysis of crude LPs extract, the transmission and mass spectrum confirmed the existence of aforesaid lipopeptides containing β-fatty acids with chain lengths ranging from C14 to C21 in which the majority were saturated fatty acids. Greenhouse experimentation revealed that Bacillus strain FJ3 and its metabolites significantly diminished the disease incidence with an average reduction of 31.56%. In sterilized soil, FJ3 and its metabolites caused 24.01% and 10.46% growth promotion, respectively, in chickpea. The results demonstrated that Bacillus strain FJ3 has broad-spectrum antifungal and plant growth-promoting applications and could be a promising candidate for development into a commercialized biobased product for use in sustainable agriculture practice.
Collapse
Affiliation(s)
- Faisal Jan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Plant Science, McGill University, Ste. Anne de Bellevue, QC, Canada
| | - Hamza Arshad
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Mehreen Ahad
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Asif Jamal
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Donald L. Smith
- Department of Plant Science, McGill University, Ste. Anne de Bellevue, QC, Canada
| |
Collapse
|
3
|
Poljovka A, Musil M, Bednář D, Chovanová K, Bauerová-Hlinková V, Bellová J, Kohútová L, Baráth P, Zámocký M. Comparison of Fungal Thermophilic and Mesophilic Catalase-Peroxidases for Their Antioxidative Properties. Antioxidants (Basel) 2023; 12:1382. [PMID: 37507921 PMCID: PMC10376177 DOI: 10.3390/antiox12071382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Catalase-peroxidases (KatGs) are unique bifunctional oxidoreductases that contain heme in their active centers allowing both the peroxidatic and catalatic reaction modes. These originally bacterial enzymes are broadly distributed among various fungi allowing them to cope with reactive oxygen species present in the environment or inside the cells. We used various biophysical, biochemical, and bioinformatics methods to investigate differences between catalase-peroxidases originating in thermophilic and mesophilic fungi from different habitats. Our results indicate that the architecture of the active center with a specific post-translational modification is highly similar in mesophilic and thermophilic KatG and also the peroxidatic acitivity with ABTS, guaiacol, and L-DOPA. However, only the thermophilic variant CthedisKatG reveals increased manganese peroxidase activity at elevated temperatures. The catalatic activity releasing molecular oxygen is comparable between CthedisKatG and mesophilic MagKatG1 over a broad temperature range. Two constructed point mutations in the active center were performed selectively blocking the formation of described post-translational modification in the active center. They exhibited a total loss of catalatic activity and changes in the peroxidatic activity. Our results indicate the capacity of bifunctional heme enzymes in the variable reactivity for potential biotech applications.
Collapse
Affiliation(s)
- Andrej Poljovka
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 84551 Bratislava, Slovakia
| | - Miloš Musil
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
- International Clinical Research Centre, St. Anne's University Hospital Brno, 65691 Brno, Czech Republic
- Department of Information Systems, Faculty of Information Technology, Brno University of Technology, 61200 Brno, Czech Republic
| | - David Bednář
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
- International Clinical Research Centre, St. Anne's University Hospital Brno, 65691 Brno, Czech Republic
| | - Katarína Chovanová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 84551 Bratislava, Slovakia
| | - Vladena Bauerová-Hlinková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 84551 Bratislava, Slovakia
| | - Jana Bellová
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 84538 Bratislava, Slovakia
| | - Lenka Kohútová
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 84538 Bratislava, Slovakia
| | - Peter Baráth
- Department of Glycobiology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, 84538 Bratislava, Slovakia
| | - Marcel Zámocký
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 84551 Bratislava, Slovakia
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
4
|
Bhunia S, Rana A, Dey SG, Ivancich A, Dey A. A designed second-sphere hydrogen-bond interaction that critically influences the O-O bond activation for heterolytic cleavage in ferric iron-porphyrin complexes. Chem Sci 2020; 11:2681-2695. [PMID: 34084327 PMCID: PMC8157560 DOI: 10.1039/c9sc04388h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/26/2020] [Indexed: 12/18/2022] Open
Abstract
Heme hydroperoxidases catalyze the oxidation of substrates by H2O2. The catalytic cycle involves the formation of a highly oxidizing species known as Compound I, resulting from the two-electron oxidation of the ferric heme in the active site of the resting enzyme. This high-valent intermediate is formed upon facile heterolysis of the O-O bond in the initial FeIII-OOH complex. Heterolysis is assisted by the histidine and arginine residues present in the heme distal cavity. This chemistry has not been successfully modeled in synthetic systems up to now. In this work, we have used a series of iron(iii) porphyrin complexes (FeIIIL2(Br), FeIIIL3(Br) and FeIIIMPh(Br)) with covalently attached pendent basic groups (pyridine and primary amine) mimicking the histidine and arginine residues in the distal-pocket of natural heme enzymes. The presence of pendent basic groups, capable of 2nd sphere hydrogen bonding interactions, leads to almost 1000-fold enhancement in the rate of Compound I formation from peracids relative to analogous complexes without these residues. The short-lived Compound I intermediate formed at cryogenic temperatures could be detected using UV-vis electronic absorption spectroscopy and also trapped to be unequivocally identified by 9 GHz EPR spectroscopy at 4 K. The broad (2000 G) and axial EPR spectrum of an exchange-coupled oxoferryl-porphyrin radical species, [FeIV[double bond, length as m-dash]O Por˙+] with g eff ⊥ = 3.80 and g eff ‖ = 1.99, was observed upon a reaction of the FeIIIL3(Br) porphyrin complex with m-CPBA. The characterization of the reactivity of the FeIII porphyrin complexes with a substrate in the presence of an oxidant like m-CPBA by UV-vis electronic absorption spectroscopy showed that they are capable of oxidizing two equivalents of inorganic and organic substrate(s) like ferrocene, 2,4,6-tritertiary butyl phenol and o-phenylenediamine. These oxidations are catalytic with a turnover number (TON) as high as 350. Density Functional Theory (DFT) calculations show that the mechanism of O-O bond activation by 2nd sphere hydrogen bonding interaction from these pendent basic groups, which are protonated by a peracid, involves polarization of the O-O σ-bond, leading to lowering of the O-O σ*-orbital allowing enhanced back bonding from the iron center. These results demonstrate how inclusion of 2nd sphere hydrogen bonding interaction can play a critical role in O-O bond heterolysis.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Atanu Rana
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Somdatta Ghosh Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Anabella Ivancich
- CNRS, Aix-Marseille Univ, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR 7281), IMM FR3479 Marseille France
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| |
Collapse
|
5
|
Loewen P, De Silva PM, Donald LJ, Switala J, Villanueva J, Fita I, Kumar A. KatG-Mediated Oxidation Leading to Reduced Susceptibility of Bacteria to Kanamycin. ACS OMEGA 2018; 3:4213-4219. [PMID: 29732452 PMCID: PMC5928485 DOI: 10.1021/acsomega.8b00356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Resistance to antibiotics has become a serious problem for society, and there are increasing efforts to understand the reasons for and sources of resistance. Bacterial-encoded enzymes and transport systems, both innate and acquired, are the most frequent culprits for the development of resistance, although in Mycobacterium tuberculosis, the catalase-peroxidase, KatG, has been linked to the activation of the antitubercular drug isoniazid. While investigating a possible link between aminoglycoside antibiotics and the induction of oxidative bursts, we observed that KatG reduces susceptibility to aminoglycosides. Investigation revealed that kanamycin served as an electron donor for the peroxidase reaction, reducing the oxidized ferryl intermediates of KatG to the resting state. Loss of electrons from kanamycin was accompanied by the addition of a single oxygen atom to the aminoglycoside. The oxidized form of kanamycin proved to be less effective as an antibiotic. Kanamycin inhibited the crystallization of KatG, but the smaller, structurally related glycoside maltose did cocrystallize with KatG, providing a suggestion as to the possible binding site of kanamycin.
Collapse
Affiliation(s)
- Peter
C. Loewen
- Department
of Microbiology, University of Manitoba, 45 Chancellor’s Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - P. Malaka De Silva
- Department
of Microbiology, University of Manitoba, 45 Chancellor’s Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Lynda J. Donald
- Department
of Microbiology, University of Manitoba, 45 Chancellor’s Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Jacek Switala
- Department
of Microbiology, University of Manitoba, 45 Chancellor’s Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Jacylyn Villanueva
- Department
of Microbiology, University of Manitoba, 45 Chancellor’s Circle, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ignacio Fita
- Instituto
de Biologia Molecular de Barcelona (CSIC), Parc Científic de Barcelona, Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Ayush Kumar
- Department
of Microbiology, University of Manitoba, 45 Chancellor’s Circle, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
6
|
Vega-García V, Díaz-Vilchis A, Saucedo-Vázquez JP, Solano-Peralta A, Rudiño-Piñera E, Hansberg W. Structure, kinetics, molecular and redox properties of a cytosolic and developmentally regulated fungal catalase-peroxidase. Arch Biochem Biophys 2018; 640:17-26. [PMID: 29305053 DOI: 10.1016/j.abb.2017.12.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/24/2017] [Accepted: 12/29/2017] [Indexed: 11/18/2022]
Abstract
CAT-2, a cytosolic catalase-peroxidase (CP) from Neurospora crassa, which is induced during asexual spore formation, was heterologously expressed and characterized. CAT-2 had the Met-Tyr-Trp (M-Y-W) adduct required for catalase activity. Its KM for H2O2 was micromolar for peroxidase and millimolar for catalase activity. A Em = -158 mV reduction potential value was obtained and the Soret band shift suggested a mixture of low and high spin ferric iron. CAT-2 EPR spectrum at 10 K indicated an axial and a rhombic component. With peroxyacetic acid (PAA), formation of Compound I* was observed with EPR. CAT-2 homodimer crystallographic structure contained two K+ ions; Glu107 residues were displaced to bind them. CAT-2 showed the essential amino acid residues for activity in similar positions to other CPs. CAT-2 Arg426 is oriented towards the M-Y-W adduct, interacting with the deprotonated Tyr238 hydroxyl group. A perhydroxy modification of the indole nitrogen of Trp90 was oriented toward the catalytic His91. In contrast to cytochrome c peroxidase and ascorbate peroxidase, the catalase-peroxidase heme propionates are not exposed to the solvent. Together with other N. crassa enzymes that utilize H2O2 as a substrate, CAT-2 has many tryptophan and proline residues at its surface, probably related to H2O2 selection in water.
Collapse
Affiliation(s)
- Vanessa Vega-García
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, UNAM, Mexico
| | - Adelaida Díaz-Vilchis
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Mexico
| | - Juan Pablo Saucedo-Vázquez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, UNAM, Mexico
| | - Alejandro Solano-Peralta
- Unidad de Servicios de Apoyo a la Investigación y a la Industria, Facultad de Química, Universidad Nacional Autónoma de México, UNAM, Mexico
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, UNAM, Mexico
| | - Wilhelm Hansberg
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, UNAM, Mexico.
| |
Collapse
|
7
|
Laborde J, Deraeve C, Bernardes-Génisson V. Update of Antitubercular Prodrugs from a Molecular Perspective: Mechanisms of Action, Bioactivation Pathways, and Associated Resistance. ChemMedChem 2017; 12:1657-1676. [DOI: 10.1002/cmdc.201700424] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/12/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Julie Laborde
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205, route de Narbonne, BP 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse; UPS, INPT; 31077 Toulouse, Cedex 4 France
| | - Céline Deraeve
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205, route de Narbonne, BP 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse; UPS, INPT; 31077 Toulouse, Cedex 4 France
| | - Vania Bernardes-Génisson
- CNRS; LCC (Laboratoire de Chimie de Coordination); 205, route de Narbonne, BP 44099 31077 Toulouse, Cedex 4 France
- Université de Toulouse; UPS, INPT; 31077 Toulouse, Cedex 4 France
| |
Collapse
|
8
|
Njuma OJ, Davis I, Ndontsa EN, Krewall JR, Liu A, Goodwin DC. Mutual synergy between catalase and peroxidase activities of the bifunctional enzyme KatG is facilitated by electron hole-hopping within the enzyme. J Biol Chem 2017; 292:18408-18421. [PMID: 28972181 DOI: 10.1074/jbc.m117.791202] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/22/2017] [Indexed: 11/06/2022] Open
Abstract
KatG is a bifunctional, heme-dependent enzyme in the front-line defense of numerous bacterial and fungal pathogens against H2O2-induced oxidative damage from host immune responses. Contrary to the expectation that catalase and peroxidase activities should be mutually antagonistic, peroxidatic electron donors (PxEDs) enhance KatG catalase activity. Here, we establish the mechanism of synergistic cooperation between these activities. We show that at low pH values KatG can fully convert H2O2 to O2 and H2O only if a PxED is present in the reaction mixture. Stopped-flow spectroscopy results indicated rapid initial rates of H2O2 disproportionation slowing concomitantly with the accumulation of ferryl-like heme states. These states very slowly returned to resting (i.e. ferric) enzyme, indicating that they represented catalase-inactive intermediates. We also show that an active-site tryptophan, Trp-321, participates in off-pathway electron transfer. A W321F variant in which the proximal tryptophan was replaced with a non-oxidizable phenylalanine exhibited higher catalase activity and less accumulation of off-pathway heme intermediates. Finally, rapid freeze-quench EPR experiments indicated that both WT and W321F KatG produce the same methionine-tyrosine-tryptophan (MYW) cofactor radical intermediate at the earliest reaction time points and that Trp-321 is the preferred site of off-catalase protein oxidation in the native enzyme. Of note, PxEDs did not affect the formation of the MYW cofactor radical but could reduce non-productive protein-based radical species that accumulate during reaction with H2O2 Our results suggest that catalase-inactive intermediates accumulate because of off-mechanism oxidation, primarily of Trp-321, and PxEDs stimulate KatG catalase activity by preventing the accumulation of inactive intermediates.
Collapse
Affiliation(s)
- Olive J Njuma
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312
| | - Ian Davis
- the Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, and.,the Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Elizabeth N Ndontsa
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312
| | - Jessica R Krewall
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312
| | - Aimin Liu
- the Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, and
| | - Douglas C Goodwin
- From the Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849-5312,
| |
Collapse
|
9
|
Gasselhuber B, Graf MMH, Jakopitsch C, Zamocky M, Nicolussi A, Furtmüller PG, Oostenbrink C, Carpena X, Obinger C. Interaction with the Redox Cofactor MYW and Functional Role of a Mobile Arginine in Eukaryotic Catalase-Peroxidase. Biochemistry 2016; 55:3528-41. [PMID: 27293030 PMCID: PMC4928148 DOI: 10.1021/acs.biochem.6b00436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Catalase-peroxidases
(KatGs) are unique bifunctional heme peroxidases
with an additional posttranslationally formed redox-active Met-Tyr-Trp
cofactor that is essential for catalase activity. On the basis of
studies of bacterial KatGs, controversial mechanisms of hydrogen peroxide
oxidation were proposed. The recent discovery of eukaryotic KatGs
with differing pH optima of catalase activity now allows us to scrutinize
those postulated reaction mechanisms. In our study, secreted KatG
from the fungus Magnaporthe grisea (MagKatG2) was used to analyze the role of a remote KatG-typical mobile
arginine that was shown to interact with the Met-Tyr-Trp adduct in
a pH-dependent manner in bacterial KatGs. Here we present crystal
structures of MagKatG2 at pH 3.0, 5.5, and 7.0 and
investigate the mobility of Arg461 by molecular dynamics simulation.
Data suggest that at pH ≥4.5 Arg461 mostly interacts with the
deprotonated adduct Tyr. Elimination of Arg461 by mutation to Ala
slightly increases the thermal stability but does not alter the active
site architecture or the kinetics of cyanide binding. However, the
variant Arg461Ala lost the wild-type-typical optimum of catalase activity
at pH 5.25 (kcat = 6450 s–1) but exhibits a broad plateau between pH 4.5 and 7.5 (kcat = 270 s–1 at pH 5.5). Moreover,
significant differences in the kinetics of interconversion of redox
intermediates of wild-type and mutant protein mixed with either peroxyacetic
acid or hydrogen peroxide are observed. These findings together with
published data from bacterial KatGs allow us to propose a role of
Arg461 in the H2O2 oxidation reaction of KatG.
Collapse
Affiliation(s)
- Bernhard Gasselhuber
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Michael M H Graf
- Department of Material Sciences and Process Engineering, Institute for Molecular Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Christa Jakopitsch
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Marcel Zamocky
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria.,Institute of Molecular Biology, Slovak Academy of Sciences , Dubravska cesta 21, SK-84551 Bratislava, Slovakia
| | - Andrea Nicolussi
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, Institute for Molecular Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| | - Xavi Carpena
- Institut de Biologia Molecular (IBMB-CSIC) , Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences , Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
10
|
Hosseinzadeh P, Mirts EN, Pfister TD, Gao YG, Mayne C, Robinson H, Tajkhorshid E, Lu Y. Enhancing Mn(II)-Binding and Manganese Peroxidase Activity in a Designed Cytochrome c Peroxidase through Fine-Tuning Secondary-Sphere Interactions. Biochemistry 2016; 55:1494-502. [PMID: 26885726 DOI: 10.1021/acs.biochem.5b01299] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Noncovalent second-shell interactions are important in controlling metal-binding affinity and activity in metalloenzymes, but fine-tuning these interactions in designed metalloenzymes has not been fully explored. As a result, most designed metalloenzymes have low metal-binding affinity and activity. Here we identified three mutations in the second coordination shell of an engineered Mn(II)-binding site in cytochrome c peroxidase (called MnCcP.1, containing Glu45, Glu37, and Glu181 ligands) that mimics the native manganese peroxidase (MnP), and explored their effects on both Mn(II)-binding affinity and MnP activity. First, removing a hydrogen bond to Glu45 through Tyr36Phe mutation enhanced Mn(II)-binding affinity, as evidenced by a 2.8-fold decrease in the KM of Mn(II) oxidation. Second, introducing a salt bridge through Lys179Arg mutation improved Glu35 and Glu181 coordination to Mn(II), decreasing KM 2.6-fold. Third, eliminating a steric clash that prevented Glu37 from orienting toward Mn(II) resulted in an 8.6-fold increase in kcat/KM, arising primarily from a 3.6-fold decrease in KM, with a KM value comparable to that of the native enzyme (0.28 mM vs 0.19 mM for Pleurotus eryngii MnP PS3). We further demonstrated that while the effects of Tyr36Phe and Lys179Arg mutations are additive, because involved in secondary-shell interactions to different ligands, other combinations of mutations were antagonistic because they act on different aspects of the Mn(II) coordination at the same residues. Finally, we showed that these MnCcP variants are functional models of MnP that mimic its activity in both Mn(II) oxidation and degradation of a phenolic lignin model compound and kraft lignin. In addition to achieving KM in a designed protein that is similar to the that of native enzyme, our results offer molecular insight into the role of noncovalent interactions around metal-binding sites for improving metal binding and overall activity; such insight can be applied to rationally enhance these properties in other metalloenzymes and their models.
Collapse
Affiliation(s)
| | | | | | | | | | - Howard Robinson
- Department of Biology, Brookhaven National Laboratory , Upton, New York 11973, United States
| | | | | |
Collapse
|
11
|
Gasselhuber B, Carpena X, Graf MMH, Pirker KF, Nicolussi A, Sündermann A, Hofbauer S, Zamocky M, Furtmüller PG, Jakopitsch C, Oostenbrink C, Fita I, Obinger C. Eukaryotic Catalase-Peroxidase: The Role of the Trp-Tyr-Met Adduct in Protein Stability, Substrate Accessibility, and Catalysis of Hydrogen Peroxide Dismutation. Biochemistry 2015; 54:5425-38. [DOI: 10.1021/acs.biochem.5b00831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bernhard Gasselhuber
- Department
of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Xavi Carpena
- Institut de Biologia Molecular (IBMB-CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Michael M. H. Graf
- Department
of Material Sciences and Process Engineering, Institute for Molecular
Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Katharina F. Pirker
- Department
of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Andrea Nicolussi
- Department
of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Axel Sündermann
- Department
of Material Sciences and Process Engineering, Institute for Molecular
Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Stefan Hofbauer
- Department
for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Biocenter 5, A-1030 Vienna, Austria
| | - Marcel Zamocky
- Department
of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
- Institute
of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta
21, SK-84551 Bratislava, Slovakia
| | - Paul G. Furtmüller
- Department
of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christa Jakopitsch
- Department
of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Chris Oostenbrink
- Department
of Material Sciences and Process Engineering, Institute for Molecular
Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Ignacio Fita
- Institut de Biologia Molecular (IBMB-CSIC), Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Christian Obinger
- Department
of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
12
|
Kim SJ, Joo JC, Kim HS, Kwon I, Song BK, Yoo YJ, Kim YH. Development of the radical-stable Coprinus cinereus peroxidase (CiP) by blocking the radical attack. J Biotechnol 2014; 189:78-85. [DOI: 10.1016/j.jbiotec.2014.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/23/2014] [Accepted: 08/27/2014] [Indexed: 11/26/2022]
|
13
|
Njuma OJ, Ndontsa EN, Goodwin DC. Catalase in peroxidase clothing: Interdependent cooperation of two cofactors in the catalytic versatility of KatG. Arch Biochem Biophys 2013; 544:27-39. [PMID: 24280274 DOI: 10.1016/j.abb.2013.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 11/11/2013] [Accepted: 11/15/2013] [Indexed: 11/26/2022]
Abstract
Catalase-peroxidase (KatG) is found in eubacteria, archaea, and lower eukaryotae. The enzyme from Mycobacterium tuberculosis has received the greatest attention because of its role in activation of the antitubercular pro-drug isoniazid, and the high frequency with which drug resistance stems from mutations to the katG gene. Generally, the catalase activity of KatGs is striking. It rivals that of typical catalases, enzymes with which KatGs share no structural similarity. Instead, catalatic turnover is accomplished with an active site that bears a strong resemblance to a typical peroxidase (e.g., cytochrome c peroxidase). Yet, KatG is the only member of its superfamily with such capability. It does so using two mutually dependent cofactors: a heme and an entirely unique Met-Tyr-Trp (MYW) covalent adduct. Heme is required to generate the MYW cofactor. The MYW cofactor allows KatG to leverage heme intermediates toward a unique mechanism for H2O2 oxidation. This review evaluates the range of intermediates identified and their connection to the diverse catalytic processes KatG facilitates, including mechanisms of isoniazid activation.
Collapse
Affiliation(s)
- Olive J Njuma
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| | - Elizabeth N Ndontsa
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA
| | - Douglas C Goodwin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| |
Collapse
|