1
|
Saecker RM, Mueller AU, Malone B, Chen J, Budell WC, Dandey VP, Maruthi K, Mendez JH, Molina N, Eng ET, Yen LY, Potter CS, Carragher B, Darst SA. Early intermediates in bacterial RNA polymerase promoter melting visualized by time-resolved cryo-electron microscopy. Nat Struct Mol Biol 2024:10.1038/s41594-024-01349-9. [PMID: 38951624 DOI: 10.1038/s41594-024-01349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/06/2024] [Indexed: 07/03/2024]
Abstract
During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAPs), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, here we use time-resolved cryogenic electron microscopy (cryo-EM) to capture four intermediates populated 120 ms or 500 ms after mixing Escherichia coli σ70-RNAP and the λPR promoter. Cryo-EM snapshots revealed that the upstream edge of the transcription bubble unpairs rapidly, followed by stepwise insertion of two conserved nontemplate strand (nt-strand) bases into RNAP pockets. As the nt-strand 'read-out' extends, the RNAP clamp closes, expelling an inhibitory σ70 domain from the active-site cleft. The template strand is fully unpaired by 120 ms but remains dynamic, indicating that yet unknown conformational changes complete RPo formation in subsequent steps. Given that these events likely describe DNA opening at many bacterial promoters, this study provides insights into how DNA sequence regulates steps of RPo formation.
Collapse
Affiliation(s)
- Ruth M Saecker
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Andreas U Mueller
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Brandon Malone
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, USA
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - William C Budell
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Venkata P Dandey
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
- National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kashyap Maruthi
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Joshua H Mendez
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Nina Molina
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Edward T Eng
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Laura Y Yen
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Clinton S Potter
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Chan Zuckerberg Imaging Institute, San Francisco, CA, USA
| | - Bridget Carragher
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Chan Zuckerberg Imaging Institute, San Francisco, CA, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Saecker RM, Mueller AU, Malone B, Chen J, Budell WC, Dandey VP, Maruthi K, Mendez JH, Molina N, Eng ET, Yen LY, Potter CS, Carragher B, Darst SA. Early intermediates in bacterial RNA polymerase promoter melting visualized by time-resolved cryo-electron microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584744. [PMID: 38559232 PMCID: PMC10979975 DOI: 10.1101/2024.03.13.584744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAP), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, time-resolved cryo-electron microscopy (cryo-EM) was used to capture four intermediates populated 120 or 500 milliseconds (ms) after mixing Escherichia coli σ70-RNAP and the λPR promoter. Cryo-EM snapshots revealed the upstream edge of the transcription bubble unpairs rapidly, followed by stepwise insertion of two conserved nontemplate strand (nt-strand) bases into RNAP pockets. As nt-strand "read-out" extends, the RNAP clamp closes, expelling an inhibitory σ70 domain from the active-site cleft. The template strand is fully unpaired by 120 ms but remains dynamic, indicating yet unknown conformational changes load it in subsequent steps. Because these events likely describe DNA opening at many bacterial promoters, this study provides needed insights into how DNA sequence regulates steps of RPo formation.
Collapse
Affiliation(s)
- Ruth M. Saecker
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA
| | - Andreas U. Mueller
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA
| | - Brandon Malone
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA
| | - William C. Budell
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
| | - Venkata P. Dandey
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
| | - Kashyap Maruthi
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
| | - Joshua H. Mendez
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
| | - Nina Molina
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA
| | - Edward T. Eng
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
| | - Laura Y. Yen
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
| | - Clinton S. Potter
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY USA
| | - Bridget Carragher
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY USA
| | - Seth A. Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA
| |
Collapse
|
3
|
Deal C, De Wannemaeker L, De Mey M. Towards a rational approach to promoter engineering: understanding the complexity of transcription initiation in prokaryotes. FEMS Microbiol Rev 2024; 48:fuae004. [PMID: 38383636 PMCID: PMC10911233 DOI: 10.1093/femsre/fuae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024] Open
Abstract
Promoter sequences are important genetic control elements. Through their interaction with RNA polymerase they determine transcription strength and specificity, thereby regulating the first step in gene expression. Consequently, they can be targeted as elements to control predictability and tuneability of a genetic circuit, which is essential in applications such as the development of robust microbial cell factories. This review considers the promoter elements implicated in the three stages of transcription initiation, detailing the complex interplay of sequence-specific interactions that are involved, and highlighting that DNA sequence features beyond the core promoter elements work in a combinatorial manner to determine transcriptional strength. In particular, we emphasize that, aside from promoter recognition, transcription initiation is also defined by the kinetics of open complex formation and promoter escape, which are also known to be highly sequence specific. Significantly, we focus on how insights into these interactions can be manipulated to lay the foundation for a more rational approach to promoter engineering.
Collapse
Affiliation(s)
- Cara Deal
- Centre for Synthetic Biology, Ghent University. Coupure Links 653, BE-9000 Ghent, Belgium
| | - Lien De Wannemaeker
- Centre for Synthetic Biology, Ghent University. Coupure Links 653, BE-9000 Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University. Coupure Links 653, BE-9000 Ghent, Belgium
| |
Collapse
|
4
|
Turecka K, Firczuk M, Werel W. Alteration of the -35 and -10 sequences and deletion the upstream sequence of the -35 region of the promoter A1 of the phage T7 in dsDNA confirm the contribution of non-specific interactions with E. coli RNA polymerase to the transcription initiation process. Front Mol Biosci 2024; 10:1335409. [PMID: 38259683 PMCID: PMC10800924 DOI: 10.3389/fmolb.2023.1335409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Transcription initiation is a multi-step process, in which the RNA polymerase holoenzyme binds to the specific promoter sequences to form a closed complex, which, through intermediate stages, isomerizes into an open complex capable of initiating the productive phase of transcription. The aim of this work was to determine the contribution of the -10 and -35 regions of the promoter, as well as the role of non-specific interactions, in the binding of RNA polymerase and the formation of an active initiation complex capable of transcription. Therefore, fragments of promoter DNA, derived from the strong promoter A1 of the phage T7, containing completely and partially altered elements -35 and -10, and devoid of an upstream region, were constructed using genetic engineering methods. Functional analyses of modified promoter fragments were carried out, checking their ability to form binary complexes with Escherichia coli RNA polymerase (RNAP) and the efficiency of converting binary complexes into triple complexes characteristic of the productive phase of transcription. The obtained results suggest that, in relation to the A1 promoter of the T7 phage, the most important role of the -35 region is carrying the open complex through the next phases of transcription initiation. The weakening of specific impacts within the region -35 is a reason for the defect associated with the transformation of the open complex, formed by a DNA fragment containing the completely altered -35 region, into elongation and the impairment of RNA synthesis. This leads to breaking contacts with the RNA polymerase holoenzyme, and destabilization and disintegration of the complex in the initial phase of productive transcription. This confirms the hypothesis of the so-called stressed intermediate state associated with the stage of transition from the open complex to the elongation complex. The experiments carried out in this work confirm also that the process of promoter localization and recognition, as well as the formation of binary complexes, is sequential in nature, and that the region located upstream of the -35 hexamer, and the hexamer itself, plays here an additive role.
Collapse
Affiliation(s)
- Katarzyna Turecka
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Władysław Werel
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
5
|
Jensen D, Ruiz Manzano A, Rector M, Tomko E, Record M, Galburt E. High-throughput, fluorescent-aptamer-based measurements of steady-state transcription rates for the Mycobacterium tuberculosis RNA polymerase. Nucleic Acids Res 2023; 51:e99. [PMID: 37739412 PMCID: PMC10602862 DOI: 10.1093/nar/gkad761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
The first step in gene expression is the transcription of DNA sequences into RNA. Regulation at the level of transcription leads to changes in steady-state concentrations of RNA transcripts, affecting the flux of downstream functions and ultimately cellular phenotypes. Changes in transcript levels are routinely followed in cellular contexts via genome-wide sequencing techniques. However, in vitro mechanistic studies of transcription have lagged with respect to throughput. Here, we describe the use of a real-time, fluorescent-aptamer-based method to quantitate steady-state transcription rates of the Mycobacterium tuberculosis RNA polymerase. We present clear controls to show that the assay specifically reports on promoter-dependent, full-length RNA transcription rates that are in good agreement with the kinetics determined by gel-resolved, α-32P NTP incorporation experiments. We illustrate how the time-dependent changes in fluorescence can be used to measure regulatory effects of nucleotide concentrations and identity, RNAP and DNA concentrations, transcription factors, and antibiotics. Our data showcase the ability to easily perform hundreds of parallel steady-state measurements across varying conditions with high precision and reproducibility to facilitate the study of the molecular mechanisms of bacterial transcription.
Collapse
Affiliation(s)
- Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - Maxwell Rector
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Eric J Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| | - M Thomas Record
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO 63108, USA
| |
Collapse
|
6
|
Jensen D, Manzano AR, Rector M, Tomko EJ, Record MT, Galburt EA. High-throughput, fluorescent-aptamer-based measurements of steady-state transcription rates for Mycobacterium tuberculosis RNA polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532464. [PMID: 36993414 PMCID: PMC10054983 DOI: 10.1101/2023.03.13.532464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The first step in gene expression is the transcription of DNA sequences into RNA. Regulation at the level of transcription leads to changes in steady-state concentrations of RNA transcripts, affecting the flux of downstream functions and ultimately cellular phenotypes. Changes in transcript levels are routinely followed in cellular contexts via genome-wide sequencing techniques. However, in vitro mechanistic studies of transcription have lagged with respect to throughput. Here, we describe the use of a real-time, fluorescent-aptamer-based method to quantitate steady-state transcription rates of the Mycobacterium tuberculosis RNA polymerase. We present clear controls to show that the assay specifically reports on promoter-dependent, full-length RNA transcription rates that are in good agreement with the kinetics determined by gel-resolved, α- 32 P NTP incorporation experiments. We illustrate how the time-dependent changes in fluorescence can be used to measure regulatory effects of nucleotide concentrations and identity, RNAP and DNA concentrations, transcription factors, and antibiotics. Our data showcase the ability to easily perform hundreds of parallel steady-state measurements across varying conditions with high precision and reproducibility to facilitate the study of the molecular mechanisms of bacterial transcription. Significance Statement RNA polymerase transcription mechanisms have largely been determined from in vitro kinetic and structural biology methods. In contrast to the limited throughput of these approaches, in vivo RNA sequencing provides genome-wide measurements but lacks the ability to dissect direct biochemical from indirect genetic mechanisms. Here, we present a method that bridges this gap, permitting high-throughput fluorescence-based measurements of in vitro steady-state transcription kinetics. We illustrate how an RNA-aptamer-based detection system can be used to generate quantitative information on direct mechanisms of transcriptional regulation and discuss the far-reaching implications for future applications.
Collapse
Affiliation(s)
- Drake Jensen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Ana Ruiz Manzano
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Maxwell Rector
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric J. Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - M. Thomas Record
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric A. Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| |
Collapse
|
7
|
Plaskon D, Evensen C, Henderson K, Palatnik B, Ishikuri T, Wang HC, Doughty S, Thomas Record M. Step-by-Step Regulation of Productive and Abortive Transcription Initiation by Pyrophosphorolysis. J Mol Biol 2022; 434:167621. [DOI: 10.1016/j.jmb.2022.167621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
|
8
|
Myers KS, Noguera DR, Donohue TJ. Promoter Architecture Differences among Alphaproteobacteria and Other Bacterial Taxa. mSystems 2021; 6:e0052621. [PMID: 34254822 PMCID: PMC8407463 DOI: 10.1128/msystems.00526-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Much of our knowledge of bacterial transcription initiation has been derived from studying the promoters of Escherichia coli and Bacillus subtilis. Given the expansive diversity across the bacterial phylogeny, it is unclear how much of this knowledge can be applied to other organisms. Here, we report on bioinformatic analyses of promoter sequences of the primary σ factor (σ70) by leveraging publicly available transcription start site (TSS) sequencing data sets for nine bacterial species spanning five phyla. This analysis identifies previously unreported differences in the -35 and -10 elements of σ70-dependent promoters in several groups of bacteria. We found that Actinobacteria and Betaproteobacteria σ70-dependent promoters lack the TTG triad in their -35 element, which is predicted to be conserved across the bacterial phyla. In addition, the majority of the Alphaproteobacteria σ70-dependent promoters analyzed lacked the thymine at position -7 that is highly conserved in other phyla. Bioinformatic examination of the Alphaproteobacteria σ70-dependent promoters identifies a significant overrepresentation of essential genes and ones encoding proteins with common cellular functions downstream of promoters containing an A, C, or G at position -7. We propose that transcription of many σ70-dependent promoters in Alphaproteobacteria depends on the transcription factor CarD, which is an essential protein in several members of this phylum. Our analysis expands the knowledge of promoter architecture across the bacterial phylogeny and provides new information that can be used to engineer bacteria for use in medical, environmental, agricultural, and biotechnological processes. IMPORTANCE Transcription of DNA to RNA by RNA polymerase is essential for cells to grow, develop, and respond to stress. Understanding the process and control of transcription is important for health, disease, the environment, and biotechnology. Decades of research on a few bacteria have identified promoter DNA sequences that are recognized by the σ subunit of RNA polymerase. We used bioinformatic analyses to reveal previously unreported differences in promoter DNA sequences across the bacterial phylogeny. We found that many Actinobacteria and Betaproteobacteria promoters lack a sequence in their -35 DNA recognition element that was previously assumed to be conserved and that Alphaproteobacteria lack a thymine residue at position -7, also previously assumed to be conserved. Our work reports important new information about bacterial transcription, illustrates the benefits of studying bacteria across the phylogenetic tree, and proposes new lines of future investigation.
Collapse
Affiliation(s)
- Kevin S. Myers
- Wisconsin Energy Institute and Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- Wisconsin Energy Institute and Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Civil & Environmental Engineering, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- Wisconsin Energy Institute and Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
9
|
Abstract
Bioinformatic analysis showed previously that a majority of promoters in the photoheterotrophic alphaproteobacterium Rhodobacter sphaeroides lack the thymine at the last position of the -10 element (-7T), a base that is very highly conserved in promoters in bacteria other than alphaproteobacteria. The absence of -7T was correlated with low promoter activity using purified R. sphaeroides RNA polymerase (RNAP), but the transcription factor CarD compensated by activating almost all promoters lacking -7T tested in vitro, including rRNA promoters. Here, we show that a previously uncharacterized R. sphaeroides promoter, the promoter for carD itself, has high basal activity relative to other tested R. sphaeroides promoters despite lacking -7T, and its activity is inhibited rather than activated by CarD. This high basal activity is dependent on a consensus-extended -10 element (TGn) and specific features in the spacer immediately upstream of the extended -10 element. CarD negatively autoregulates its own promoter by producing abortive transcripts, limiting promoter escape, and reducing full-length mRNA synthesis. This mechanism of negative regulation differs from that employed by classical repressors, in which the transcription factor competes with RNA polymerase for binding to the promoter, and with the mechanism of negative regulation used by transcription factors like DksA/ppGpp and TraR that allosterically inhibit the rate of open complex formation. IMPORTANCE R. sphaeroides CarD activates many promoters by binding directly to RNAP and DNA just upstream of the -10 element. In contrast, we show here that CarD inhibits its own promoter using the same interactions with RNAP and DNA used for activation. Inhibition results from increasing abortive transcript formation, thereby decreasing promoter escape and full-length RNA synthesis. We propose that the combined interactions of RNAP with CarD, with the extended -10 element and with features in the adjacent -10/-35 spacer DNA, stabilize the promoter complex, reducing promoter clearance. These findings support previous predictions that the effects of CarD on transcription can be either positive or negative, depending on the kinetic properties of the specific promoter.
Collapse
|
10
|
Temperature effects on RNA polymerase initiation kinetics reveal which open complex initiates and that bubble collapse is stepwise. Proc Natl Acad Sci U S A 2021; 118:2021941118. [PMID: 34290140 DOI: 10.1073/pnas.2021941118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transcription initiation is highly regulated by promoter sequence, transcription factors, and ligands. All known transcription inhibitors, an important class of antibiotics, act in initiation. To understand regulation and inhibition, the biophysical mechanisms of formation and stabilization of the "open" promoter complex (OC), of synthesis of a short RNA-DNA hybrid upon nucleotide addition, and of escape of RNA polymerase (RNAP) from the promoter must be understood. We previously found that RNAP forms three different OC with λPR promoter DNA. The 37 °C RNAP-λPR OC (RPO) is very stable. At lower temperatures, RPO is less stable and in equilibrium with an intermediate OC (I3). Here, we report step-by-step rapid quench-flow kinetic data for initiation and growth of the RNA-DNA hybrid at 25 and 37 °C that yield rate constants for each step of productive nucleotide addition. Analyzed together, with previously published data at 19 °C, our results reveal that I3 and not RPO is the productive initiation complex at all temperatures. From the strong variations of rate constants and activation energies and entropies for individual steps of hybrid extension, we deduce that contacts of RNAP with the bubble strands are disrupted stepwise as the hybrid grows and translocates. Stepwise disruption of RNAP-strand contacts is accompanied by stepwise bubble collapse, base stacking, and duplex formation, as the hybrid extends to a 9-mer prior to disruption of upstream DNA-RNAP contacts and escape of RNAP from the promoter.
Collapse
|
11
|
The Context-Dependent Influence of Promoter Sequence Motifs on Transcription Initiation Kinetics and Regulation. J Bacteriol 2021; 203:JB.00512-20. [PMID: 33139481 DOI: 10.1128/jb.00512-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The fitness of an individual bacterial cell is highly dependent upon the temporal tuning of gene expression levels when subjected to different environmental cues. Kinetic regulation of transcription initiation is a key step in modulating the levels of transcribed genes to promote bacterial survival. The initiation phase encompasses the binding of RNA polymerase (RNAP) to promoter DNA and a series of coupled protein-DNA conformational changes prior to entry into processive elongation. The time required to complete the initiation phase can vary by orders of magnitude and is ultimately dictated by the DNA sequence of the promoter. In this review, we aim to provide the required background to understand how promoter sequence motifs may affect initiation kinetics during promoter recognition and binding, subsequent conformational changes which lead to DNA opening around the transcription start site, and promoter escape. By calculating the steady-state flux of RNA production as a function of these effects, we illustrate that the presence/absence of a consensus promoter motif cannot be used in isolation to make conclusions regarding promoter strength. Instead, the entire series of linked, sequence-dependent structural transitions must be considered holistically. Finally, we describe how individual transcription factors take advantage of the broad distribution of sequence-dependent basal kinetics to either increase or decrease RNA flux.
Collapse
|
12
|
Rova M, Hellberg Lindqvist M, Goetelen T, Blomqvist S, Nilsson T. Heterologous expression of the gene for chlorite dismutase from Ideonella dechloratans is induced by an FNR-type transcription factor. Microbiologyopen 2020; 9:e1049. [PMID: 32319739 PMCID: PMC7349173 DOI: 10.1002/mbo3.1049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 01/30/2023] Open
Abstract
Regulation of the expression of the gene for chlorite dismutase (cld), located on the chlorate reduction composite transposon of the chlorate reducer Ideonella dechloratans, was studied. A 200 bp upstream sequence of the cld gene, and mutated and truncated versions thereof, was used in a reporter system in Escherichia coli. It was found that a sequence within this upstream region, which is nearly identical to the canonical FNR-binding sequence of E. coli, is necessary for anaerobic induction of the reporter gene. Anaerobic induction was regained in an FNR-deficient strain of E. coli when supplemented either with the fnr gene from E. coli or with a candidate fnr gene cloned from I. dechloratans. In vivo transcription of the suggested fnr gene of I. dechloratans was demonstrated by qRT-PCR. Based on these results, the cld promoter of I. dechloratans is suggested to be a class II-activated promoter regulated by an FNR-type protein of I. dechloratans. No fnr-type genes have been found on the chlorate reduction composite transposon of I. dechloratans, making anaerobic upregulation of the cld gene after a gene transfer event dependent on the presence of an fnr-type gene in the recipient.
Collapse
Affiliation(s)
- Maria Rova
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| | | | - Thijs Goetelen
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| | - Shady Blomqvist
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| | - Thomas Nilsson
- Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden
| |
Collapse
|
13
|
Heyduk E, Heyduk T. DNA template sequence control of bacterial RNA polymerase escape from the promoter. Nucleic Acids Res 2019; 46:4469-4486. [PMID: 29546317 PMCID: PMC5961368 DOI: 10.1093/nar/gky172] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 02/28/2018] [Indexed: 01/09/2023] Open
Abstract
Promoter escape involves breaking of the favourable contacts between RNA polymerase (RNAP) and the promoter to allow transition to an elongation complex. The sequence of DNA template that is transcribed during promoter escape (ITS; Initially Transcribed Sequence) can affect promoter escape by mechanisms that are not yet fully understood. We employed a highly parallel strategy utilizing Next Generation Sequencing (NGS) to collect data on escape properties of thousands of ITS variants. We show that ITS controls promoter escape through a combination of position-dependent effects (most prominently, sequence-directed RNAP pausing), and position-independent effects derived from sequence encoded physical properties of the template (for example, RNA/DNA duplex stability). ITS often functions as an independent unit affecting escape in the same manner regardless of the promoter from which transcription initiates. However, in some cases, a strong dependence of ITS effects on promoter context was observed suggesting that promoters may have 'allosteric' abilities to modulate ITS effects. Large effects of ITS on promoter output and the observed interplay between promoter sequence and ITS effects suggests that the definition of bacterial promoter should include ITS sequence.
Collapse
Affiliation(s)
- Ewa Heyduk
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, 1100 S. Grand Blvd., St. Louis, MO 63104, USA
| | - Tomasz Heyduk
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, 1100 S. Grand Blvd., St. Louis, MO 63104, USA
| |
Collapse
|
14
|
Dyke S, Tang R, Felth LC, Henderson KL, Record MT. Roles of the Initial Transcribed Sequence on Productive and Non‐Productive Initiation. FASEB J 2019. [DOI: 10.1096/fasebj.2019.33.1_supplement.458.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sarah Dyke
- BiochemistryUniversity of Wisconsin‐MadisonMadisonWI
| | - Rebecca Tang
- BiochemistryUniversity of Wisconsin‐MadisonMadisonWI
| | | | | | - M. Thomas Record
- Biochemistry and ChemistryUniversity of Wisconsin‐MadisonMadisonWI
| |
Collapse
|
15
|
Vvedenskaya IO, Zhang Y, Goldman SR, Valenti A, Visone V, Taylor DM, Ebright RH, Nickels BE. Massively Systematic Transcript End Readout, "MASTER": Transcription Start Site Selection, Transcriptional Slippage, and Transcript Yields. Mol Cell 2015; 60:953-65. [PMID: 26626484 DOI: 10.1016/j.molcel.2015.10.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/14/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022]
Abstract
We report the development of a next-generation sequencing-based technology that entails construction of a DNA library comprising up to at least 4(7) (∼ 16,000) barcoded sequences, production of RNA transcripts, and analysis of transcript ends and transcript yields (massively systematic transcript end readout, "MASTER"). Using MASTER, we define full inventories of transcription start sites ("TSSomes") of Escherichia coli RNA polymerase for initiation at a consensus core promoter in vitro and in vivo; we define the TSS-region DNA sequence determinants for TSS selection, reiterative initiation ("slippage synthesis"), and transcript yield; and we define effects of DNA topology and NTP concentration. The results reveal that slippage synthesis occurs from the majority of TSS-region DNA sequences and that TSS-region DNA sequences have profound, up to 100-fold, effects on transcript yield. The results further reveal that TSSomes depend on DNA topology, consistent with the proposal that TSS selection involves transcription-bubble expansion ("scrunching") and transcription-bubble contraction ("anti-scrunching").
Collapse
Affiliation(s)
- Irina O Vvedenskaya
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA; Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Yuanchao Zhang
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA; Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19041, USA
| | - Seth R Goldman
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA; Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA
| | - Anna Valenti
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, Naples 80131, Italy
| | - Valeria Visone
- Institute of Biosciences and Bioresources, National Research Council of Italy, Via P. Castellino 111, Naples 80131, Italy
| | - Deanne M Taylor
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA; Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19041, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Richard H Ebright
- Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Bryce E Nickels
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA; Waksman Institute, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
16
|
Abstract
Transcription initiation is a highly regulated step of gene expression. Here, we discuss the series of large conformational changes set in motion by initial specific binding of bacterial RNA polymerase (RNAP) to promoter DNA and their relevance for regulation. Bending and wrapping of the upstream duplex facilitates bending of the downstream duplex into the active site cleft, nucleating opening of 13 bp in the cleft. The rate-determining opening step, driven by binding free energy, forms an unstable open complex, probably with the template strand in the active site. At some promoters, this initial open complex is greatly stabilized by rearrangements of the discriminator region between the -10 element and +1 base of the nontemplate strand and of mobile in-cleft and downstream elements of RNAP. The rate of open complex formation is regulated by effects on the rapidly-reversible steps preceding DNA opening, while open complex lifetime is regulated by effects on the stabilization of the initial open complex. Intrinsic DNA opening-closing appears less regulated. This noncovalent mechanism and its regulation exhibit many analogies to mechanisms of enzyme catalysis.
Collapse
|
17
|
Next Generation Sequencing-based analysis of RNA polymerase functions. Methods 2015; 86:37-44. [PMID: 25937393 DOI: 10.1016/j.ymeth.2015.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 01/11/2023] Open
Abstract
Next Generation Sequencing (NGS) that revolutionized genome wide studies allows analysis of complex nucleic acids mixtures containing thousands of sequences. This extraordinary analytical power of NGS can be harnessed for the analysis of in vitro experiments where DNA template sequence dependence of protein activity acting on DNA can be studied in a single reaction for thousands of DNA sequence variants. This allows a rapid accumulation of data on DNA sequence dependence of the process of interest to a depth not accessible by standard experimentation. We use an example of bacterial RNA polymerase promoter melting activity to describe the NGS-based methodology to study DNA template dependence of protein activity.
Collapse
|
18
|
Karpen ME, deHaseth PL. Base flipping in open complex formation at bacterial promoters. Biomolecules 2015; 5:668-78. [PMID: 25927327 PMCID: PMC4496690 DOI: 10.3390/biom5020668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 04/14/2015] [Indexed: 12/18/2022] Open
Abstract
In the process of transcription initiation, the bacterial RNA polymerase binds double-stranded (ds) promoter DNA and subsequently effects strand separation of 12 to 14 base pairs (bp), including the start site of transcription, to form the so-called "open complex" (also referred to as RP(o)). This complex is competent to initiate RNA synthesis. Here we will review the role of σ70 and its homologs in the strand separation process, and evidence that strand separation is initiated at the -11A (the A of the non-template strand that is 11 bp upstream from the transcription start site) of the promoter. By using the fluorescent adenine analog, 2-aminopurine, it was demonstrated that the -11A on the non-template strand flips out of the DNA helix and into a hydrophobic pocket where it stacks with tyrosine 430 of σ70. Open complexes are remarkably stable, even though in vivo, and under most experimental conditions in vitro, dsDNA is much more stable than its strand-separated form. Subsequent structural studies of other researchers have confirmed that in the open complex the -11A has flipped into a hydrophobic pocket of σ70. It was also revealed that RPo was stabilized by three additional bases of the non-template strand being flipped out of the helix and into hydrophobic pockets, further preventing re-annealing of the two complementary DNA strands.
Collapse
Affiliation(s)
- Mary E Karpen
- Department of Chemistry, Grand Valley State University, 1 Campus Drive, 312 Padnos Hall, Allendale, MI 49401, USA.
| | - Pieter L deHaseth
- Center for RNA Molecular Biology, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA.
- Department of Biochemistry, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA.
| |
Collapse
|
19
|
Differential role of base pairs on gal promoters strength. J Mol Biol 2014; 427:792-806. [PMID: 25543084 DOI: 10.1016/j.jmb.2014.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/16/2014] [Accepted: 12/18/2015] [Indexed: 11/23/2022]
Abstract
Sequence alignments of promoters in prokaryotes postulated that the frequency of occurrence of a base pair at a given position of promoter elements reflects its contribution to intrinsic promoter strength. We directly assessed the contribution of the four base pairs in each position in the intrinsic promoter strength by keeping the context constant in Escherichia coli cAMP-CRP (cAMP receptor protein) regulated gal promoters by in vitro transcription assays. First, we show that base pair frequency within known consensus elements correlates well with promoter strength. Second, we observe some substitutions upstream of the ex-10 TG motif that are important for promoter function. Although the galP1 and P2 promoters overlap, only three positions where substitutions inactivated both promoters were found. We propose that RNA polymerase binds to the -12T base pair as part of double-stranded DNA while opening base pairs from -11A to +3 to form the single-stranded transcription bubble DNA during isomerization. The cAMP-CRP complex rescued some deleterious substitutions in the promoter region. The base pair roles and their flexibilities reported here for E. coli gal promoters may help construction of synthetic promoters in gene circuitry experiments in which overlapping promoters with differential controls may be warranted.
Collapse
|
20
|
Heyduk E, Heyduk T. Ribosome display enhanced by next generation sequencing: a tool to identify antibody-specific peptide ligands. Anal Biochem 2014; 464:73-82. [PMID: 25058925 DOI: 10.1016/j.ab.2014.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/28/2014] [Accepted: 07/14/2014] [Indexed: 11/18/2022]
Abstract
Detection of antibodies in serum has many important applications. Our goal was to develop a facile general experimental approach for identifying antibody-specific peptide ligands that could be used as the reagents for antibody detection. Our emphasis was on an approach that would allow identification of peptide ligands for antibodies in serum without the need to isolate the target antibody or to know the identity of its antigen. We combined ribosome display (RD) with the analysis of peptide libraries by next generation sequencing (NGS) of their coding RNA to facilitate identification of antibody-specific peptide ligands from random sequence peptide library. We first demonstrated, using purified antibodies, that with our approach-specific peptide ligands for antibodies with simple linear epitopes, as well as peptide mimotopes for antibodies recognizing complex epitopes, were readily identified. Inclusion of NGS analysis reduced the number of RD selection rounds that were required to identify specific ligands and facilitated discrimination between specific and spurious nonspecific sequences. We then used a model of human serum spiked with a known target antibody to develop NGS-based analysis that allowed identification of specific ligands for a target antibody in the context of an overwhelming amount of unrelated immunoglobins present in serum.
Collapse
Affiliation(s)
- Ewa Heyduk
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, St. Louis, MO 63104, USA
| | - Tomasz Heyduk
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St. Louis University Medical School, St. Louis, MO 63104, USA.
| |
Collapse
|