1
|
Glucocorticoid receptor complexes form cooperatively with the Hsp90 co-chaperones Pp5 and FKBPs. Sci Rep 2020; 10:10733. [PMID: 32612187 PMCID: PMC7329908 DOI: 10.1038/s41598-020-67645-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/29/2020] [Indexed: 01/24/2023] Open
Abstract
The function of steroid receptors in the cell depends on the chaperone machinery of Hsp90, as Hsp90 primes steroid receptors for hormone binding and transcriptional activation. Several conserved proteins are known to additionally participate in receptor chaperone assemblies, but the regulation of the process is not understood in detail. Also, it is unknown to what extent the contribution of these cofactors is conserved in other eukaryotes. We here examine the reconstituted C. elegans and human chaperone assemblies. We find that the nematode phosphatase PPH-5 and the prolyl isomerase FKB-6 facilitate the formation of glucocorticoid receptor (GR) complexes with Hsp90. Within these complexes, Hsp90 can perform its closing reaction more efficiently. By combining chemical crosslinking and mass spectrometry, we define contact sites within these assemblies. Compared to the nematode Hsp90 system, the human system shows less cooperative client interaction and a stricter requirement for the co-chaperone p23 to complete the closing reaction of GR·Hsp90·Pp5/Fkbp51/Fkbp52 complexes. In both systems, hormone binding to GR is accelerated by Hsp90 alone and in the presence of its cofactors. Our results show that cooperative complex formation and hormone binding patterns are, in many aspects, conserved between the nematode and human systems.
Collapse
|
2
|
Cox MB, Johnson JL. Evidence for Hsp90 Co-chaperones in Regulating Hsp90 Function and Promoting Client Protein Folding. Methods Mol Biol 2018; 1709:397-422. [PMID: 29177674 DOI: 10.1007/978-1-4939-7477-1_28] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular chaperones are a diverse group of highly conserved proteins that transiently interact with partially folded polypeptide chains during normal cellular processes such as protein translation, translocation, and disassembly of protein complexes. Prior to folding or after denaturation, hydrophobic residues that are normally sequestered within a folded protein are exposed to the aqueous environment and are prone to aggregation or misfolding. Multiple classes of molecular chaperones, such as Hsp70s and Hsp40s, recognize and transiently bind polypeptides with exposed hydrophobic stretches in order to prevent misfolding. Other types of chaperones, such as Hsp90, have more specialized functions in that they appear to interact with only a subset of cellular proteins. This chapter focuses on the role of Hsp90 and partner co-chaperones in promoting the folding and activation of a diverse group of proteins with critical roles in cellular signaling and function.
Collapse
Affiliation(s)
- Marc B Cox
- Department of Biological Sciences, University of Texas at El Paso and the Border Biomedical Research Center, El Paso, TX, 79968, USA
| | - Jill L Johnson
- Department of Biological Sciences and the Center for Reproductive Biology, University of Idaho, Moscow, ID, 83844-3051, USA.
| |
Collapse
|
3
|
Sahasrabudhe P, Rohrberg J, Biebl MM, Rutz DA, Buchner J. The Plasticity of the Hsp90 Co-chaperone System. Mol Cell 2017; 67:947-961.e5. [PMID: 28890336 DOI: 10.1016/j.molcel.2017.08.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/10/2017] [Accepted: 08/08/2017] [Indexed: 11/20/2022]
Abstract
The Hsp90 system in the eukaryotic cytosol is characterized by a cohort of co-chaperones that bind to Hsp90 and affect its function. Although progress has been made regarding the underlying biochemical mechanisms, how co-chaperones influence Hsp90 client proteins in vivo has remained elusive. By investigating the effect of 12 Hsp90 co-chaperones on the activity of different client proteins in yeast, we find that deletion of co-chaperones can have a neutral or negative effect on client activity but can also lead to more active clients. Only a few co-chaperones are active on all clients studied. Closely related clients and even point mutants can depend on different co-chaperones. These effects are direct because differences in client-co-chaperone interactions can be reconstituted in vitro. Interestingly, some co-chaperones affect client conformation in vivo. Thus, co-chaperones adapt the Hsp90 cycle to the requirements of the client proteins, ensuring optimal activation.
Collapse
Affiliation(s)
- Priyanka Sahasrabudhe
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Julia Rohrberg
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Maximillian M Biebl
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Daniel A Rutz
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science at the Department of Chemistry, Technische Universität München, 85748 Garching, Germany.
| |
Collapse
|
4
|
Willhoft O, Kerr R, Patel D, Zhang W, Al-Jassar C, Daviter T, Millson SH, Thalassinos K, Vaughan CK. The crystal structure of the Sgt1-Skp1 complex: the link between Hsp90 and both SCF E3 ubiquitin ligases and kinetochores. Sci Rep 2017; 7:41626. [PMID: 28139700 PMCID: PMC5282575 DOI: 10.1038/srep41626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/21/2016] [Indexed: 12/05/2022] Open
Abstract
The essential cochaperone Sgt1 recruits Hsp90 chaperone activity to a range of cellular factors including SCF E3 ubiquitin ligases and the kinetochore in eukaryotes. In these pathways Sgt1 interacts with Skp1, a small protein that heterodimerizes with proteins containing the F-box motif. We have determined the crystal structure of the interacting domains of Saccharomyces cerevisiae Sgt1 and Skp1 at 2.8 Å resolution and validated the interface in the context of the full-length proteins in solution. The BTB/POZ domain of Skp1 associates with Sgt1 via the concave surface of its TPR domain using residues that are conserved in humans. Dimerization of yeast Sgt1 occurs via an insertion that is absent from monomeric human Sgt1. We identify point mutations that disrupt dimerization and Skp1 binding in vitro and find that the interaction with Skp1 is an essential function of Sgt1 in yeast. Our data provide a structural rationale for understanding the phenotypes of temperature-sensitive Sgt1 mutants and for linking Skp1-associated proteins to Hsp90-dependent pathways.
Collapse
Affiliation(s)
- Oliver Willhoft
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| | - Richard Kerr
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Division of Biosciences, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Dipali Patel
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| | - Wenjuan Zhang
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| | - Caezar Al-Jassar
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| | - Tina Daviter
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| | - Stefan H Millson
- School of Life Sciences, Joseph Banks Laboratory, University of Lincoln, Lincoln, LN6 7TS, UK
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Division of Biosciences, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Cara K Vaughan
- Institute of Structural and Molecular Biology, University College London and Birkbeck, Biological Sciences, Malet Street, London, WC1E 7HX, UK
| |
Collapse
|
5
|
Nucleotide-Free sB-Raf is Preferentially Bound by Hsp90 and Cdc37 In Vitro. J Mol Biol 2016; 428:4185-4196. [PMID: 27620500 DOI: 10.1016/j.jmb.2016.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/27/2016] [Accepted: 09/01/2016] [Indexed: 01/10/2023]
Abstract
The molecular chaperone Hsp90 and its cofactor Cdc37 are required for the stability of protein kinases in the cellular environment. Upon pharmacological inhibition of Hsp90, the Hsp90-dependent kinases are degraded quickly by the proteasome. Clear physiological evidence for the formation of heterooligomeric complexes between the chaperone system and its kinase clients exist, but the mechanisms of client processing are still enigmatic. Here, we investigate the interaction of the chaperone system with a stabilized fragment of the Hsp90-dependent protein kinase B-Raf (sB-Raf). sB-Raf is aggregation prone at elevated temperatures. We find that nucleotide binding strongly stabilizes the folded state of sB-Raf and suppresses its aggregation. Also, Cdc37 and Hsp90 in combination can suppress sB-Raf aggregation while forming a ternary complex with the kinase. The presence of nucleotides leads to the dissociation of the kinase from the ternary chaperone complex, implying that the stabilization of the kinase by nucleotides reduces its affinity toward the chaperone machinery. Human Cdc37-Hsp90 complexes can bind to kinase, if the NM domain of the chaperone is present. Nematode Cdc37, which does not require the N-terminal Hsp90 domain for binding, can form a ternary complex with the MC construct of Hsp90, which lacks the aggregation propensity of sB-Raf. Like the full-length complex, this interaction is sensitive to ATP binding to sB-Raf. We thus find that the interaction between sB-Raf and the Hsp90 chaperone system is based on contacts with the M domain of Hsp90, which contributes in forming the ternary complex with CeCdc37 as long as the kinase is not stabilized by nucleotide.
Collapse
|
6
|
The activity of protein phosphatase 5 towards native clients is modulated by the middle- and C-terminal domains of Hsp90. Sci Rep 2015; 5:17058. [PMID: 26593036 PMCID: PMC4655416 DOI: 10.1038/srep17058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/23/2015] [Indexed: 01/07/2023] Open
Abstract
Protein phosphatase 5 is involved in the regulation of kinases and transcription factors. The dephosphorylation activity is modulated by the molecular chaperone Hsp90, which binds to the TPR-domain of protein phosphatase 5. This interaction is dependent on the C-terminal MEEVD motif of Hsp90. We show that C-terminal Hsp90 fragments differ in their regulation of the phosphatase activity hinting to a more complex interaction. Also hydrodynamic parameters from analytical ultracentrifugation and small-angle X-ray scattering data suggest a compact structure for the Hsp90-protein phosphatase 5 complexes. Using crosslinking experiments coupled with mass spectrometric analysis and structural modelling we identify sites, which link the middle/C-terminal domain interface of C. elegans Hsp90 to the phosphatase domain of the corresponding kinase. Studying the relevance of the domains of Hsp90 for turnover of native substrates we find that ternary complexes with the glucocorticoid receptor (GR) are cooperatively formed by full-length Hsp90 and PPH-5. Our data suggest that the direct stimulation of the phosphatase activity by C-terminal Hsp90 fragments leads to increased dephosphorylation rates. These are further modulated by the binding of clients to the N-terminal and middle domain of Hsp90 and their presentation to the phosphatase within the phosphatase-Hsp90 complex.
Collapse
|
7
|
Eckl JM, Scherr MJ, Freiburger L, Daake MA, Sattler M, Richter K. Hsp90·Cdc37 Complexes with Protein Kinases Form Cooperatively with Multiple Distinct Interaction Sites. J Biol Chem 2015; 290:30843-54. [PMID: 26511315 DOI: 10.1074/jbc.m115.693150] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Indexed: 01/06/2023] Open
Abstract
Protein kinases are the most prominent group of heat shock protein 90 (Hsp90) clients and are recruited to the molecular chaperone by the kinase-specific cochaperone cell division cycle 37 (Cdc37). The interaction between Hsp90 and nematode Cdc37 is mediated by binding of the Hsp90 middle domain to an N-terminal region of Caenorhabditis elegans Cdc37 (CeCdc37). Here we map the binding site by NMR spectroscopy and define amino acids relevant for the interaction between CeCdc37 and the middle domain of Hsp90. Apart from these distinct Cdc37/Hsp90 interfaces, binding of the B-Raf protein kinase to the cochaperone is conserved between mammals and nematodes. In both cases, the C-terminal part of Cdc37 is relevant for kinase binding, whereas the N-terminal domain displaces the nucleotide from the kinase. This interaction leads to a cooperative formation of the ternary complex of Cdc37 and kinase with Hsp90. For the mitogen-activated protein kinase extracellular signal-regulated kinase 2 (Erk2), we observe that certain features of the interaction with Cdc37·Hsp90 are conserved, but the contribution of Cdc37 domains varies slightly, implying that different kinases may utilize distinct variations of this binding mode to interact with the Hsp90 chaperone machinery.
Collapse
Affiliation(s)
- Julia M Eckl
- From the Center for Integrated Protein Science München at Department of Chemistry, Technische Universität München, 85748 Garching, Germany and
| | - Matthias J Scherr
- From the Center for Integrated Protein Science München at Department of Chemistry, Technische Universität München, 85748 Garching, Germany and
| | - Lee Freiburger
- From the Center for Integrated Protein Science München at Department of Chemistry, Technische Universität München, 85748 Garching, Germany and Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Marina A Daake
- From the Center for Integrated Protein Science München at Department of Chemistry, Technische Universität München, 85748 Garching, Germany and
| | - Michael Sattler
- From the Center for Integrated Protein Science München at Department of Chemistry, Technische Universität München, 85748 Garching, Germany and Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Klaus Richter
- From the Center for Integrated Protein Science München at Department of Chemistry, Technische Universität München, 85748 Garching, Germany and
| |
Collapse
|
8
|
Horikawa M, Sural S, Hsu AL, Antebi A. Co-chaperone p23 regulates C. elegans Lifespan in Response to Temperature. PLoS Genet 2015; 11:e1005023. [PMID: 25830239 PMCID: PMC4382338 DOI: 10.1371/journal.pgen.1005023] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/25/2015] [Indexed: 11/19/2022] Open
Abstract
Temperature potently modulates various physiologic processes including organismal motility, growth rate, reproduction, and ageing. In ectotherms, longevity varies inversely with temperature, with animals living shorter at higher temperatures. Thermal effects on lifespan and other processes are ascribed to passive changes in metabolic rate, but recent evidence also suggests a regulated process. Here, we demonstrate that in response to temperature, daf-41/ZC395.10, the C. elegans homolog of p23 co-chaperone/prostaglandin E synthase-3, governs entry into the long-lived dauer diapause and regulates adult lifespan. daf-41 deletion triggers constitutive entry into the dauer diapause at elevated temperature dependent on neurosensory machinery (daf-10/IFT122), insulin/IGF-1 signaling (daf-16/FOXO), and steroidal signaling (daf-12/FXR). Surprisingly, daf-41 mutation alters the longevity response to temperature, living longer than wild-type at 25°C but shorter than wild-type at 15°C. Longevity phenotypes at 25°C work through daf-16/FOXO and heat shock factor hsf-1, while short lived phenotypes converge on daf-16/FOXO and depend on the daf-12/FXR steroid receptor. Correlatively daf-41 affected expression of DAF-16 and HSF-1 target genes at high temperature, and nuclear extracts from daf-41 animals showed increased occupancy of the heat shock response element. Our studies suggest that daf-41/p23 modulates key transcriptional changes in longevity pathways in response to temperature.
Collapse
Affiliation(s)
- Makoto Horikawa
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Surojit Sural
- University of Michigan, Department of Internal Medicine, Division of Geriatric and Palliative Medicine, Ann Arbor, Michigan, United States of America
- University of Michigan, Department of Molecular and Integrative Physiology, Ann Arbor, Michigan, United States of America
| | - Ao-Lin Hsu
- University of Michigan, Department of Internal Medicine, Division of Geriatric and Palliative Medicine, Ann Arbor, Michigan, United States of America
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Department of Molecular and Cellular Biology, Huffington Center on Ageing, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
9
|
Frumkin A, Dror S, Pokrzywa W, Bar-Lavan Y, Karady I, Hoppe T, Ben-Zvi A. Challenging muscle homeostasis uncovers novel chaperone interactions in Caenorhabditis elegans. Front Mol Biosci 2014; 1:21. [PMID: 25988162 PMCID: PMC4428482 DOI: 10.3389/fmolb.2014.00021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 10/18/2014] [Indexed: 11/16/2022] Open
Abstract
Proteome stability is central to cellular function and the lifespan of an organism. This is apparent in muscle cells, where incorrect folding and assembly of the sarcomere contributes to disease and aging. Apart from the myosin-assembly factor UNC-45, the complete network of chaperones involved in assembly and maintenance of muscle tissue is currently unknown. To identify additional factors required for sarcomere quality control, we performed genetic screens based on suppressed or synthetic motility defects in Caenorhabditis elegans. In addition to ethyl methyl sulfonate-based mutagenesis, we employed RNAi-mediated knockdown of candidate chaperones in unc-45 temperature-sensitive mutants and screened for impaired movement at permissive conditions. This approach confirmed the cooperation between UNC-45 and Hsp90. Moreover, the screens identified three novel co-chaperones, CeHop (STI-1), CeAha1 (C01G10.8) and Cep23 (ZC395.10), required for muscle integrity. The specific identification of Hsp90 and Hsp90 co-chaperones highlights the physiological role of Hsp90 in myosin folding. Our work thus provides a clear example of how a combination of mild perturbations to the proteostasis network can uncover specific quality control modules.
Collapse
Affiliation(s)
- Anna Frumkin
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer Sheva, Israel
| | - Shiran Dror
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer Sheva, Israel
| | - Wojciech Pokrzywa
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD Research Center, University of Cologne Cologne, Germany
| | - Yael Bar-Lavan
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer Sheva, Israel
| | - Ido Karady
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer Sheva, Israel
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne Cologne, Germany ; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, CECAD Research Center, University of Cologne Cologne, Germany
| | - Anat Ben-Zvi
- Department of Life Sciences and The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev Beer Sheva, Israel
| |
Collapse
|