1
|
Novales NA, Feustel KJ, He KL, Chanfreau GF, Clarke CF. Nonfunctional coq10 mutants maintain the ERMES complex and reveal true phenotypes associated with the loss of the coenzyme Q chaperone protein Coq10. J Biol Chem 2024; 300:107820. [PMID: 39343004 PMCID: PMC11541779 DOI: 10.1016/j.jbc.2024.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024] Open
Abstract
Coenzyme Q (CoQ) is a redox-active lipid molecule that acts as an electron carrier in the mitochondrial electron transport chain. In Saccharomyces cerevisiae, CoQ is synthesized in the mitochondrial matrix by a multisubunit protein-lipid complex termed the CoQ synthome, the spatial positioning of which is coordinated by the endoplasmic reticulum-mitochondria encounter structure (ERMES). The MDM12 gene encoding the cytosolic subunit of ERMES is coexpressed with COQ10, which encodes the putative CoQ chaperone Coq10, via a shared bidirectional promoter. Deletion of COQ10 results in respiratory deficiency, impaired CoQ biosynthesis, and reduced spatial coordination between ERMES and the CoQ synthome. While Coq10 protein content is maintained upon deletion of MDM12, we show that deletion of COQ10 by replacement with a HIS3 marker results in diminished Mdm12 protein content. Since deletion of individual ERMES subunits prevents ERMES formation, we asked whether some or all of the phenotypes associated with COQ10 deletion result from ERMES dysfunction. To identify the phenotypes resulting solely due to the loss of Coq10, we constructed strains expressing a functionally impaired (coq10-L96S) or truncated (coq10-R147∗) Coq10 isoform using CRISPR-Cas9. We show that both coq10 mutants preserve Mdm12 protein content and exhibit impaired respiratory capacity like the coq10Δ mutant, indicating that Coq10's function is vital for respiration regardless of ERMES integrity. Moreover, the maintenance of CoQ synthome stability and efficient CoQ biosynthesis observed for the coq10-R147∗ mutant suggests these deleterious phenotypes in the coq10Δ mutant result from ERMES disruption. Overall, this study clarifies the role of Coq10 in modulating CoQ biosynthesis.
Collapse
Affiliation(s)
- Noelle Alexa Novales
- Department of Chemistry & Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Kelsey J Feustel
- Department of Chemistry & Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Kevin L He
- Department of Chemistry & Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Guillaume F Chanfreau
- Department of Chemistry & Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California, USA
| | - Catherine F Clarke
- Department of Chemistry & Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, California, USA.
| |
Collapse
|
2
|
Mizutani M, Kuroda S, Oku M, Aoki W, Masuya T, Miyoshi H, Murai M. Identification of proteins involved in intracellular ubiquinone trafficking in Saccharomyces cerevisiae using artificial ubiquinone probe. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149147. [PMID: 38906315 DOI: 10.1016/j.bbabio.2024.149147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Ubiquinone (UQ) is an essential player in the respiratory electron transfer system. In Saccharomyces cerevisiae strains lacking the ability to synthesize UQ6, exogenously supplied UQs can be taken up and delivered to mitochondria through an unknown mechanism, restoring the growth of UQ6-deficient yeast in non-fermentable medium. Since elucidating the mechanism responsible may markedly contribute to therapeutic strategies for patients with UQ deficiency, many attempts have been made to identify the machinery involved in UQ trafficking in the yeast model. However, definite experimental evidence of the direct interaction of UQ with a specific protein(s) has not yet been demonstrated. To gain insight into intracellular UQ trafficking via a chemistry-based strategy, we synthesized a hydrophobic UQ probe (pUQ5), which has a photoreactive diazirine group attached to a five-unit isoprenyl chain and a terminal alkyne to visualize and/or capture the labeled proteins via click chemistry. pUQ5 successfully restored the growth of UQ6-deficient S. cerevisiae (Δcoq2) on a non-fermentable carbon source, indicating that this UQ was taken up and delivered to mitochondria, and served as a UQ substrate of respiratory enzymes. Through photoaffinity labeling of the mitochondria isolated from Δcoq2 yeast cells cultured in the presence of pUQ5, we identified many labeled proteins, including voltage-dependent anion channel 1 (VDAC1) and cytochrome c oxidase subunit 3 (Cox3). The physiological relevance of UQ binding to these proteins is discussed.
Collapse
Affiliation(s)
- Mirai Mizutani
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Seina Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masahide Oku
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kameoka, Japan
| | - Wataru Aoki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | - Takahiro Masuya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Nishida I, Ohmori Y, Yanai R, Nishihara S, Matsuo Y, Kaino T, Hirata D, Kawamukai M. Identification of novel coenzyme Q 10 biosynthetic proteins Coq11 and Coq12 in Schizosaccharomyces pombe. J Biol Chem 2023; 299:104797. [PMID: 37156397 PMCID: PMC10279924 DOI: 10.1016/j.jbc.2023.104797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023] Open
Abstract
Coenzyme Q (CoQ) is an essential component of the electron transport system in aerobic organisms. CoQ10 has ten isoprene units in its quinone structure and is especially valuable as a food supplement. However, the CoQ biosynthetic pathway has not been fully elucidated, including synthesis of the p-hydroxybenzoic acid (PHB) precursor to form a quinone backbone. To identify the novel components of CoQ10 synthesis, we investigated CoQ10 production in 400 Schizosaccharomyces pombe gene-deleted strains in which individual mitochondrial proteins were lost. We found that deletion of coq11 (an S. cerevisiae COQ11 homolog) and a novel gene designated coq12 lowered CoQ levels to ∼4% of that of the WT strain. Addition of PHB or p-hydroxybenzaldehyde restored the CoQ content and growth and lowered hydrogen sulfide production of the Δcoq12 strain, but these compounds did not affect the Δcoq11 strain. The primary structure of Coq12 has a flavin reductase motif coupled with an NAD+ reductase domain. We determined that purified Coq12 protein from S. pombe displayed NAD+ reductase activity when incubated with ethanol-extracted substrate of S. pombe. Because purified Coq12 from Escherichia coli did not exhibit reductase activity under the same conditions, an extra protein is thought to be necessary for its activity. Analysis of Coq12-interacting proteins by LC-MS/MS revealed interactions with other Coq proteins, suggesting formation of a complex. Thus, our analysis indicates that Coq12 is required for PHB synthesis, and it has diverged among species.
Collapse
Affiliation(s)
- Ikuhisa Nishida
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan; Sakeology Center, Niigata University, Niigata, Japan
| | - Yuki Ohmori
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| | - Ryota Yanai
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| | - Shogo Nishihara
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan
| | - Yasuhiro Matsuo
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan; Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Tomohiro Kaino
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan; Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Dai Hirata
- Sakeology Center, Niigata University, Niigata, Japan
| | - Makoto Kawamukai
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Matsue, Japan; Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan.
| |
Collapse
|
4
|
Braasch-Turi MM, Koehn JT, Crans DC. Chemistry of Lipoquinones: Properties, Synthesis, and Membrane Location of Ubiquinones, Plastoquinones, and Menaquinones. Int J Mol Sci 2022; 23:12856. [PMID: 36361645 PMCID: PMC9656164 DOI: 10.3390/ijms232112856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Lipoquinones are the topic of this review and are a class of hydrophobic lipid molecules with key biological functions that are linked to their structure, properties, and location within a biological membrane. Ubiquinones, plastoquinones, and menaquinones vary regarding their quinone headgroup, isoprenoid sidechain, properties, and biological functions, including the shuttling of electrons between membrane-bound protein complexes within the electron transport chain. Lipoquinones are highly hydrophobic molecules that are soluble in organic solvents and insoluble in aqueous solution, causing obstacles in water-based assays that measure their chemical properties, enzyme activities and effects on cell growth. Little is known about the location and ultimately movement of lipoquinones in the membrane, and these properties are topics described in this review. Computational studies are particularly abundant in the recent years in this area, and there is far less experimental evidence to verify the often conflicting interpretations and conclusions that result from computational studies of very different membrane model systems. Some recent experimental studies have described using truncated lipoquinone derivatives, such as ubiquinone-2 (UQ-2) and menaquinone-2 (MK-2), to investigate their conformation, their location in the membrane, and their biological function. Truncated lipoquinone derivatives are soluble in water-based assays, and hence can serve as excellent analogs for study even though they are more mobile in the membrane than the longer chain counterparts. In this review, we will discuss the properties, location in the membrane, and syntheses of three main classes of lipoquinones including truncated derivatives. Our goal is to highlight the importance of bridging the gap between experimental and computational methods and to incorporate properties-focused considerations when proposing future studies relating to the function of lipoquinones in membranes.
Collapse
Affiliation(s)
| | - Jordan T. Koehn
- Chemistry Department, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C. Crans
- Chemistry Department, Colorado State University, Fort Collins, CO 80523, USA
- Cell & Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
5
|
Tsui HS, Pham NVB, Amer BR, Bradley MC, Gosschalk JE, Gallagher-Jones M, Ibarra H, Clubb RT, Blaby-Haas CE, Clarke CF. Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function. J Lipid Res 2019; 60:1293-1310. [PMID: 31048406 DOI: 10.1194/jlr.m093534] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/12/2019] [Indexed: 12/18/2022] Open
Abstract
Coenzyme Q (CoQ or ubiquinone) serves as an essential redox-active lipid in respiratory electron and proton transport during cellular energy metabolism. CoQ also functions as a membrane-localized antioxidant protecting cells against lipid peroxidation. CoQ deficiency is associated with multiple human diseases; CoQ10 supplementation in particular has noted cardioprotective benefits. In Saccharomyces cerevisiae, Coq10, a putative START domain protein, is believed to chaperone CoQ to sites where it functions. Yeast coq10 deletion mutants (coq10Δ) synthesize CoQ inefficiently during log phase growth and are respiratory defective and sensitive to oxidative stress. Humans have two orthologs of yeast COQ10, COQ10A and COQ10B Here, we tested the human co-orthologs for their ability to rescue the yeast mutant. We showed that expression of either human ortholog, COQ10A or COQ10B, rescues yeast coq10Δ mutant phenotypes, restoring the function of respiratory-dependent growth on a nonfermentable carbon source and sensitivity to oxidative stress induced by treatment with PUFAs. These effects indicate a strong functional conservation of Coq10 across different organisms. However, neither COQ10A nor COQ10B restored CoQ biosynthesis when expressed in the yeast coq10Δ mutant. The involvement of yeast Coq10 in CoQ biosynthesis may rely on its interactions with another protein, possibly Coq11, which is not found in humans. Coexpression analyses of yeast COQ10 and human COQ10A and COQ10B provide additional insights to functions of these START domain proteins and their potential roles in other biologic pathways.
Collapse
Affiliation(s)
- Hui S Tsui
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Nguyen V B Pham
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Brendan R Amer
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Jason E Gosschalk
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095.,UCLA-Department of Energy Institute of Genomics and Proteomics University of California, Los Angeles, Los Angeles, CA 90095
| | - Marcus Gallagher-Jones
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Hope Ibarra
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | - Robert T Clubb
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| | | | - Catherine F Clarke
- Department of Chemistry and Biochemistry and Molecular Biology Institute,University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|
6
|
Abstract
Prenylquinones are isoprenoid compounds with a characteristic quinone structure and isoprenyl tail that are ubiquitous in almost all living organisms. There are four major prenylquinone classes: ubiquinone (UQ), menaquinone (MK), plastoquinone (PQ), and rhodoquinone (RQ). The quinone structure and isoprenyl tail length differ among organisms. UQ, PQ, and RQ contain benzoquinone, while MK contains naphthoquinone. UQ, MK, and RQ are involved in oxidative phosphorylation, while PQ functions in photosynthetic electron transfer. Some organisms possess two types of prenylquinones; Escherichia coli has UQ8 and MK8, and Caenorhabditis elegans has UQ9 and RQ9. Crystal structures of most of the enzymes involved in MK synthesis have been solved. Studies on the biosynthesis and functions of quinones have advanced recently, including for phylloquinone (PhQ), which has a phytyl moiety instead of an isoprenyl tail. Herein, the synthesis and applications of prenylquinones are reviewed.
Collapse
Affiliation(s)
- Makoto Kawamukai
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| |
Collapse
|
7
|
Silva-Marrero JI, Sáez A, Caballero-Solares A, Viegas I, Almajano MP, Fernández F, Baanante IV, Metón I. A transcriptomic approach to study the effect of long-term starvation and diet composition on the expression of mitochondrial oxidative phosphorylation genes in gilthead sea bream (Sparus aurata). BMC Genomics 2017; 18:768. [PMID: 29020939 PMCID: PMC5637328 DOI: 10.1186/s12864-017-4148-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022] Open
Abstract
Background The impact of nutritional status and diet composition on mitochondrial oxidative phosphorylation (OXPHOS) in fish remains largely unknown. To identify biomarkers of interest in nutritional studies, herein we obtained a deep-coverage transcriptome by 454 pyrosequencing of liver and skeletal muscle cDNA normalised libraries from long-term starved gilthead sea bream (Sparus aurata) and fish fed different diets. Results After clean-up of high-throughput deep sequencing reads, 699,991 and 555,031 high-quality reads allowed de novo assembly of liver and skeletal muscle sequences, respectively (average length: 374 and 441 bp; total megabases: 262 and 245 Mbp). An additional incremental assembly was completed by integrating data from both tissues (hybrid assembly). Assembly of hybrid, liver and skeletal muscle transcriptomes yielded, respectively, 19,530, 11,545 and 10,599 isotigs (average length: 1330, 1208 and 1390 bp, respectively) that were grouped into 15,954, 10,033 and 9189 isogroups. Following annotation, hybrid transcriptomic data were used to construct an oligonucleotide microarray to analyse nutritional regulation of the expression of 129 genes involved in OXPHOS in S. aurata. Starvation upregulated cytochrome c oxidase components and other key OXPHOS genes in the liver, which exhibited higher sensitive to food deprivation than the skeletal muscle. However, diet composition affected OXPHOS in the skeletal muscle to a greater extent than in the liver: most of genes upregulated under starvation presented higher expression among fish fed a high carbohydrate/low protein diet. Conclusions Our findings indicate that the expression of coenzyme Q-binding protein (COQ10), cytochrome c oxidase subunit 6A2 (COX6A2) and ADP/ATP translocase 3 (SLC25A6) in the liver, and cytochrome c oxidase subunit 5B isoform 1 (COX5B1) in the liver and the skeletal muscle, are sensitive markers of the nutritional condition that may be relevant to assess the effect of changes in the feeding regime and diet composition on fish farming. Electronic supplementary material The online version of this article (10.1186/s12864-017-4148-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonás I Silva-Marrero
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Alberto Sáez
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Albert Caballero-Solares
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | - Ivan Viegas
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal.,Center for Functional Ecology (CFE), Department Life Sciences, University of Coimbra, Calçada Martins de Freitas, 3000-456, Coimbra, Portugal
| | - María Pilar Almajano
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona, Spain
| | - Felipe Fernández
- Departament d'Ecologia, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, 08028, Barcelona, Spain
| | - Isabel V Baanante
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain
| | - Isidoro Metón
- Secció de Bioquímica i Biologia Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028, Barcelona, Spain.
| |
Collapse
|
8
|
Masuya T, Murai M, Ito T, Aburaya S, Aoki W, Miyoshi H. Pinpoint Chemical Modification of the Quinone-Access Channel of Mitochondrial Complex I via a Two-Step Conjugation Reaction. Biochemistry 2017; 56:4279-4287. [DOI: 10.1021/acs.biochem.7b00612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Takahiro Masuya
- Division of Applied
Life
Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masatoshi Murai
- Division of Applied
Life
Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takeshi Ito
- Division of Applied
Life
Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shunsuke Aburaya
- Division of Applied
Life
Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Wataru Aoki
- Division of Applied
Life
Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideto Miyoshi
- Division of Applied
Life
Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Ito T, Murai M, Ninokura S, Kitazumi Y, Mezic KG, Cress BF, Koffas MAG, Morgan JE, Barquera B, Miyoshi H. Identification of the binding sites for ubiquinone and inhibitors in the Na +-pumping NADH-ubiquinone oxidoreductase from Vibrio cholerae by photoaffinity labeling. J Biol Chem 2017; 292:7727-7742. [PMID: 28298441 DOI: 10.1074/jbc.m117.781393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/11/2017] [Indexed: 12/30/2022] Open
Abstract
The Na+-pumping NADH-quinone oxidoreductase (Na+-NQR) is the first enzyme of the respiratory chain and the main ion transporter in many marine and pathogenic bacteria, including Vibrio cholerae The V. cholerae Na+-NQR has been extensively studied, but its binding sites for ubiquinone and inhibitors remain controversial. Here, using a photoreactive ubiquinone PUQ-3 as well as two aurachin-type inhibitors [125I]PAD-1 and [125I]PAD-2 and photoaffinity labeling experiments on the isolated enzyme, we demonstrate that the ubiquinone ring binds to the NqrA subunit in the regions Leu-32-Met-39 and Phe-131-Lys-138, encompassing the rear wall of a predicted ubiquinone-binding cavity. The quinolone ring and alkyl side chain of aurachin bound to the NqrB subunit in the regions Arg-43-Lys-54 and Trp-23-Gly-89, respectively. These results indicate that the binding sites for ubiquinone and aurachin-type inhibitors are in close proximity but do not overlap one another. Unexpectedly, although the inhibitory effects of PAD-1 and PAD-2 were almost completely abolished by certain mutations in NqrB (i.e. G140A and E144C), the binding reactivities of [125I]PAD-1 and [125I]PAD-2 to the mutated enzymes were unchanged compared with those of the wild-type enzyme. We also found that photoaffinity labeling by [125I]PAD-1 and [125I]PAD-2, rather than being competitively suppressed in the presence of other inhibitors, is enhanced under some experimental conditions. To explain these apparently paradoxical results, we propose models for the catalytic reaction of Na+-NQR and its interactions with inhibitors on the basis of the biochemical and biophysical results reported here and in previous work.
Collapse
Affiliation(s)
- Takeshi Ito
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Masatoshi Murai
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Satoshi Ninokura
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Yuki Kitazumi
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| | - Katherine G Mezic
- the Departments of Biological Sciences and.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Brady F Cress
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180.,Chemical and Biological Engineering
| | - Mattheos A G Koffas
- the Departments of Biological Sciences and.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180.,Chemical and Biological Engineering
| | - Joel E Morgan
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Blanca Barquera
- the Departments of Biological Sciences and.,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Hideto Miyoshi
- From the Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan and
| |
Collapse
|
10
|
Murai M, Okuda A, Yamamoto T, Shinohara Y, Miyoshi H. Synthetic Ubiquinones Specifically Bind to Mitochondrial Voltage-Dependent Anion Channel 1 (VDAC1) in Saccharomyces cerevisiae Mitochondria. Biochemistry 2017; 56:570-581. [DOI: 10.1021/acs.biochem.6b01011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Masatoshi Murai
- Division
of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ayaka Okuda
- Division
of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takenori Yamamoto
- Institute
for Genome Research, University of Tokushima, Kuramotocho-3, Tokushima 770-8503, Japan
| | - Yasuo Shinohara
- Institute
for Genome Research, University of Tokushima, Kuramotocho-3, Tokushima 770-8503, Japan
| | - Hideto Miyoshi
- Division
of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Jenkins BJ, Daly TM, Morrisey JM, Mather MW, Vaidya AB, Bergman LW. Characterization of a Plasmodium falciparum Orthologue of the Yeast Ubiquinone-Binding Protein, Coq10p. PLoS One 2016; 11:e0152197. [PMID: 27015086 PMCID: PMC4807763 DOI: 10.1371/journal.pone.0152197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 03/10/2016] [Indexed: 11/18/2022] Open
Abstract
Coenzyme Q (CoQ, ubiquinone) is a central electron carrier in mitochondrial respiration. CoQ is synthesized through multiple steps involving a number of different enzymes. The prevailing view that the CoQ used in respiration exists as a free pool that diffuses throughout the mitochondrial inner membrane bilayer has recently been challenged. In the yeast Saccharomyces cerevisiae, deletion of the gene encoding Coq10p results in respiration deficiency without inhibiting the synthesis of CoQ, suggesting that the Coq10 protein is critical for the delivery of CoQ to the site(s) of respiration. The precise mechanism by which this is achieved remains unknown at present. We have identified a Plasmodium orthologue of Coq10 (PfCoq10), which is predominantly expressed in trophozoite-stage parasites, and localizes to the parasite mitochondrion. Expression of PfCoq10 in the S. cerevisiae coq10 deletion strain restored the capability of the yeast to grow on respiratory substrates, suggesting a remarkable functional conservation of this protein over a vast evolutionary distance, and despite a relatively low level of amino acid sequence identity. As the antimalarial drug atovaquone acts as a competitive inhibitor of CoQ, we assessed whether over-expression of PfCoq10 altered the atovaquone sensitivity in parasites and in yeast mitochondria, but found no alteration of its activity.
Collapse
Affiliation(s)
- Bethany J. Jenkins
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Thomas M. Daly
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Joanne M. Morrisey
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Michael W. Mather
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Akhil B. Vaidya
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, United States of America
| | - Lawrence W. Bergman
- Center for Molecular Parasitology, Drexel University College of Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
12
|
Recent developments and applications of clickable photoprobes in medicinal chemistry and chemical biology. Future Med Chem 2015; 7:2143-71. [DOI: 10.4155/fmc.15.136] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Photoaffinity labeling is a well-known biochemical technique that has grown significantly since the turn of the century, principally due to its combination with bioorthogonal/click chemistry reactions. This review highlights new developments and applications of clickable photoprobes in medicinal chemistry and chemical biology. In particular, recent examples of clickable photoprobes for target identification, activity- or affinity-based protein profiling (ABPP or AfBPP), characterization of sterol– or lipid–protein interactions and characterization of ligand-binding sites are presented.
Collapse
|
13
|
Abstract
Coenzyme Q (CoQ) is a component of the electron transport chain that participates in aerobic cellular respiration to produce ATP. In addition, CoQ acts as an electron acceptor in several enzymatic reactions involving oxidation-reduction. Biosynthesis of CoQ has been investigated mainly in Escherichia coli and Saccharomyces cerevisiae, and the findings have been extended to various higher organisms, including plants and humans. Analyses in yeast have contributed greatly to current understanding of human diseases related to CoQ biosynthesis. To date, human genetic disorders related to mutations in eight COQ biosynthetic genes have been reported. In addition, the crystal structures of a number of proteins involved in CoQ synthesis have been solved, including those of IspB, UbiA, UbiD, UbiX, UbiI, Alr8543 (Coq4 homolog), Coq5, ADCK3, and COQ9. Over the last decade, knowledge of CoQ biosynthesis has accumulated, and striking advances in related human genetic disorders and the crystal structure of proteins required for CoQ synthesis have been made. This review focuses on the biosynthesis of CoQ in eukaryotes, with some comparisons to the process in prokaryotes.
Collapse
Affiliation(s)
- Makoto Kawamukai
- a Faculty of Life and Environmental Science, Department of Life Science and Biotechnology , Shimane University , Matsue , Japan
| |
Collapse
|
14
|
Allan CM, Awad AM, Johnson JS, Shirasaki DI, Wang C, Blaby-Haas CE, Merchant SS, Loo JA, Clarke CF. Identification of Coq11, a new coenzyme Q biosynthetic protein in the CoQ-synthome in Saccharomyces cerevisiae. J Biol Chem 2015; 290:7517-34. [PMID: 25631044 DOI: 10.1074/jbc.m114.633131] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Coenzyme Q (Q or ubiquinone) is a redox active lipid composed of a fully substituted benzoquinone ring and a polyisoprenoid tail and is required for mitochondrial electron transport. In the yeast Saccharomyces cerevisiae, Q is synthesized by the products of 11 known genes, COQ1-COQ9, YAH1, and ARH1. The function of some of the Coq proteins remains unknown, and several steps in the Q biosynthetic pathway are not fully characterized. Several of the Coq proteins are associated in a macromolecular complex on the matrix face of the inner mitochondrial membrane, and this complex is required for efficient Q synthesis. Here, we further characterize this complex via immunoblotting and proteomic analysis of tandem affinity-purified tagged Coq proteins. We show that Coq8, a putative kinase required for the stability of the Q biosynthetic complex, is associated with a Coq6-containing complex. Additionally Q6 and late stage Q biosynthetic intermediates were also found to co-purify with the complex. A mitochondrial protein of unknown function, encoded by the YLR290C open reading frame, is also identified as a constituent of the complex and is shown to be required for efficient de novo Q biosynthesis. Given its effect on Q synthesis and its association with the biosynthetic complex, we propose that the open reading frame YLR290C be designated COQ11.
Collapse
Affiliation(s)
- Christopher M Allan
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute
| | - Agape M Awad
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute
| | - Jarrett S Johnson
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute
| | - Dyna I Shirasaki
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute
| | - Charles Wang
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute
| | - Crysten E Blaby-Haas
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute
| | - Sabeeha S Merchant
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, the UCLA/DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Joseph A Loo
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, the Department of Biological Chemistry, and the UCLA/DOE Institute for Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Catherine F Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute,
| |
Collapse
|