1
|
Zananiri R, Mangapuram Venkata S, Gaydar V, Yahalom D, Malik O, Rudnizky S, Kleifeld O, Kaplan A, Henn A. Auxiliary ATP binding sites support DNA unwinding by RecBCD. Nat Commun 2022; 13:1806. [PMID: 35379800 PMCID: PMC8980037 DOI: 10.1038/s41467-022-29387-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/13/2022] [Indexed: 12/22/2022] Open
Abstract
The RecBCD helicase initiates double-stranded break repair in bacteria by processively unwinding DNA with a rate approaching ∼1,600 bp·s−1, but the mechanism enabling such a fast rate is unknown. Employing a wide range of methodologies — including equilibrium and time-resolved binding experiments, ensemble and single-molecule unwinding assays, and crosslinking followed by mass spectrometry — we reveal the existence of auxiliary binding sites in the RecC subunit, where ATP binds with lower affinity and distinct chemical interactions as compared to the known catalytic sites. The essentiality and functionality of these sites are demonstrated by their impact on the survival of E.coli after exposure to damage-inducing radiation. We propose a model by which RecBCD achieves its optimized unwinding rate, even when ATP is scarce, by using the auxiliary binding sites to increase the flux of ATP to its catalytic sites. RecBCD is a remarkably fast DNA helicase. Using a battery of biophysical methods, Zananiri et. al reveal additional, non-catalytic ATP binding sites that increase the ATP flux to the catalytic sites that allows fast unwinding when ATP is scarce.
Collapse
|
2
|
Sha Y, Liu W, Huang X, Li Y, Ji Z, Mei L, Lin S, Kong S, Lu J, Kong L, Zhu X, Lu Z, Ding L. EIF4G1 is a novel candidate gene associated with severe asthenozoospermia. Mol Genet Genomic Med 2019; 7:e807. [PMID: 31268247 PMCID: PMC6687618 DOI: 10.1002/mgg3.807] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Asthenozoospermia (AZS), also known as asthenospermia, is characterized by reduced motility of ejaculated spermatozoa and is detected in more than 40% of infertile patients. Because the proportion of progressive spermatozoa in severe AZS is <1%, severe AZS is an urgent challenge in reproductive medicine. Several genes have been reported to be relevant to severe asthenospermia. However, these gene mutations are found only in sporadic cases and can explain only a small fraction of severe AZS, so additional genetic pathogenies need to be explored. METHODS AND RESULTS By screening the variant genes in a patient with severe AZS using whole exome sequencing, we identified biallelic mutations c.2521C>T: p.(Pro841Ser) (NC_000003.11: g.184043412C>T) in exon13 and c.2957C>G: p.(Ala986Gly) (NC_000003.11: g.184045117C>G) in exon17 in the eukaryotic translation initiation factor 4 gamma 1 gene (EIF4G1, RefSeq: NM_004953.4, OMIM: 600495) of the patient. Both of the mutation sites are rare and potentially deleterious. Transmission electron microscopy analysis showed a disrupted axonemal structure with mitochondrial sheath defects. The EIF4G1 protein level was extremely low, and the mitochondrial marker cytochrome c oxidase subunit 4I1 (COXIV, OMIM: 123864) and mitochondrially encoded ATP synthase 6 (ATP6, OMIM: 516060) protein levels were also decreased in the patient's spermatozoa as revealed by WB and IF analysis. This infertility associated with this condition was overcome by intracytoplasmic sperm injections, as his wife became pregnant successfully. CONCLUSION Our experimental findings indicate that the EIF4G1 gene is a novel candidate gene that may be relevant to severe AZS.
Collapse
Affiliation(s)
- Yanwei Sha
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Wensheng Liu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Xianjing Huang
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Yang Li
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Zhiyong Ji
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Libin Mei
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Shaobin Lin
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Shuangbo Kong
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, China
| | - Jinhua Lu
- Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, China
| | - Lingyuan Kong
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, China
| | - Xingshen Zhu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| | - Zhongxian Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China.,Fujian Provincial Key Laboratory of Reproductive Health Research, Medical College of Xiamen University, Xiamen, China
| | - Lu Ding
- Department of Andrology, United Diagnostic and Research Center for Clinical Genetics, School of Public Health & Women and Children's Hospital, Xiamen University, Xiamen, China
| |
Collapse
|