1
|
Mendes G, Faulk B, Kaparthi B, Irion AR, Fong BL, Bayless K, Bondos SE. Genetic Functionalization of Protein-Based Biomaterials via Protein Fusions. Biomacromolecules 2024; 25:4639-4662. [PMID: 39074364 PMCID: PMC11323028 DOI: 10.1021/acs.biomac.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024]
Abstract
Proteins implement many useful functions, including binding ligands with unparalleled affinity and specificity, catalyzing stereospecific chemical reactions, and directing cell behavior. Incorporating proteins into materials has the potential to imbue devices with these desirable traits. This review highlights recent advances in creating active materials by genetically fusing a self-assembling protein to a functional protein. These fusion proteins form materials while retaining the function of interest. Key advantages of this approach include elimination of a separate functionalization step during materials synthesis, uniform and dense coverage of the material by the functional protein, and stabilization of the functional protein. This review focuses on macroscale materials and discusses (i) multiple strategies for successful protein fusion design, (ii) successes and limitations of the protein fusion approach, (iii) engineering solutions to bypass any limitations, (iv) applications of protein fusion materials, including tissue engineering, drug delivery, enzyme immobilization, electronics, and biosensing, and (v) opportunities to further develop this useful technique.
Collapse
Affiliation(s)
- Gabriela
Geraldo Mendes
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Fralin
Biomedical Research Institute, Virginia
Tech University, Roanoke, Virginia 24016, United States
| | - Britt Faulk
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
- Department
of Biochemistry and Biophysics, Texas A&M
University, College Station, Texas 77843, United States
| | - Bhavika Kaparthi
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Andrew R. Irion
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Brandon Look Fong
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Kayla Bayless
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
| | - Sarah E. Bondos
- Department
of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health, Bryan, Texas 77807-3260, United States
- Department
of Medical Physiology, College of Medicine, Texas A&M Health, Bryan, Texas 77807, United States
- Department
of BioSciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Yang R, Li S, Li Y, Yan Y, Fang Y, Zou L, Chen G. Bactericidal Effect of Pseudomonas oryziphila sp. nov., a Novel Pseudomonas Species Against Xanthomonas oryzae Reduces Disease Severity of Bacterial Leaf Streak of Rice. Front Microbiol 2021; 12:759536. [PMID: 34803984 PMCID: PMC8600968 DOI: 10.3389/fmicb.2021.759536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas is a diverse genus of Gammaproteobacteria with increasing novel species exhibiting versatile trains including antimicrobial and insecticidal activity, as well as plant growth-promoting, which make them well suited as biocontrol agents of some pathogens. Here we isolated strain 1257 that exhibited strong antagonistic activity against two pathovars of Xanthomonas oryzae, especially X. oryzae pv. oryzicola (Xoc) responsible for the bacterial leaf streak (BLS) in rice. The phylogenetic, genomic, physiological, and biochemical characteristics support that strain 1257 is a representative of a novel Pseudomonas species that is most closely related to the entomopathogenic bacterium Pseudomonas entomophila. We propose to name it Pseudomonas oryziphila sp. nov. Comparative genomics analyses showed that P. oryziphila 1257 possesses most of the central metabolic genes of two closely related strains P. entomophila L48 and Pseudomonas mosselii CFML 90-83, as well as a set of genes encoding the type IV pilus system, suggesting its versatile metabolism and motility properties. Some features, such as insecticidal toxins, phosphate solubilization, indole-3-acetic acid, and phenylacetic acid degradation, were disclosed. Genome-wide random mutagenesis revealed that the non-ribosomal peptide catalyzed by LgrD may be a major active compound of P. oryziphila 1257 against Xoc RS105, as well as the critical role of the carbamoyl phosphate and the pentose phosphate pathway that control the biosynthesis of this target compound. Our findings demonstrate that 1257 could effectively inhibit the growth and migration of Xoc in rice tissue to prevent the BLS disease. To our knowledge, this is the first report of a novel Pseudomonas species that displays a strong antibacterial activity against Xoc. The results suggest that the P. oryziphila strain could be a promising biological control agent for BLS.
Collapse
Affiliation(s)
- Ruihuan Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shengzhang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yilang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yichao Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Fang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lifang Zou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Gongyou Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Zhang J, Wang J, Zhao Y, Li J, Liu Y. Study on the interaction between calcium ions and alkaline protease of bacillus. Int J Biol Macromol 2019; 124:121-130. [DOI: 10.1016/j.ijbiomac.2018.11.198] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/03/2018] [Accepted: 11/20/2018] [Indexed: 01/10/2023]
|
4
|
Bacterial Amyloids: Biogenesis and Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1174:113-159. [DOI: 10.1007/978-981-13-9791-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Howell DW, Duran CL, Tsai SP, Bondos SE, Bayless KJ. Functionalization of Ultrabithorax Materials with Vascular Endothelial Growth Factor Enhances Angiogenic Activity. Biomacromolecules 2016; 17:3558-3569. [DOI: 10.1021/acs.biomac.6b01068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- David W. Howell
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, United States
| | - Camille L. Duran
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, United States
| | - Shang-Pu Tsai
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, United States
| | - Sarah E. Bondos
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, United States
- Department
of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, United States
| | - Kayla J. Bayless
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843, United States
| |
Collapse
|
6
|
Zhang L, Morrison AJ, Thibodeau PH. Interdomain Contacts and the Stability of Serralysin Protease from Serratia marcescens. PLoS One 2015; 10:e0138419. [PMID: 26378460 PMCID: PMC4574703 DOI: 10.1371/journal.pone.0138419] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/30/2015] [Indexed: 11/20/2022] Open
Abstract
The serralysin family of bacterial metalloproteases is associated with virulence in multiple modes of infection. These extracellular proteases are members of the Repeats-in-ToXin (RTX) family of toxins and virulence factors, which mediated virulence in E. coli, B. pertussis, and P. aeruginosa, as well as other animal and plant pathogens. The serralysin proteases are structurally dynamic and their folding is regulated by calcium binding to a C-terminal domain that defines the RTX family of proteins. Previous studies have suggested that interactions between N-terminal sequences and this C-terminal domain are important for the high thermal and chemical stabilities of the RTX proteases. Extending from this, stabilization of these interactions in the native structure may lead to hyperstabilization of the folded protein. To test this hypothesis, cysteine pairs were introduced into the N-terminal helix and the RTX domain and protease folding and activity were assessed. Under stringent pH and temperature conditions, the disulfide-bonded mutant showed increased protease activity and stability. This activity was dependent on the redox environment of the refolding reaction and could be blocked by selective modification of the cysteine residues before protease refolding. These data demonstrate that the thermal and chemical stability of these proteases is, in part, mediated by binding between the RTX domain and the N-terminal helix and demonstrate that stabilization of this interaction can further stabilize the active protease, leading to additional pH and thermal tolerance.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, United States of America
| | - Anneliese J. Morrison
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, United States of America
| | - Patrick H. Thibodeau
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15219, United States of America
- * E-mail:
| |
Collapse
|