1
|
Quaye JA, Wood KE, Snelgrove C, Ouedraogo D, Gadda G. An active site mutation induces oxygen reactivity in D-arginine dehydrogenase: A case of superoxide diverting protons. J Biol Chem 2024; 300:107381. [PMID: 38762175 PMCID: PMC11193025 DOI: 10.1016/j.jbc.2024.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
Enzymes are potent catalysts that increase biochemical reaction rates by several orders of magnitude. Flavoproteins are a class of enzymes whose classification relies on their ability to react with molecular oxygen (O2) during catalysis using ionizable active site residues. Pseudomonas aeruginosa D-arginine dehydrogenase (PaDADH) is a flavoprotein that oxidizes D-arginine for P. aeruginosa survival and biofilm formation. The crystal structure of PaDADH reveals the interaction of the glutamate 246 (E246) side chain with the substrate and at least three other active site residues, establishing a hydrogen bond network in the active site. Additionally, E246 likely ionizes to facilitate substrate binding during PaDADH catalysis. This study aimed to investigate how replacing the E246 residue with leucine affects PaDADH catalysis and its ability to react with O2 using steady-state kinetics coupled with pH profile studies. The data reveal a gain of O2 reactivity in the E246L variant, resulting in a reduced flavin semiquinone species and superoxide (O2•-) during substrate oxidation. The O2•- reacts with active site protons, resulting in an observed nonstoichiometric slope of 1.5 in the enzyme's log (kcat/Km) pH profile with D-arginine. Adding superoxide dismutase results in an observed correction of the slope to 1.0. This study demonstrates how O2•- can alter the slopes of limbs in the pH profiles of flavin-dependent enzymes and serves as a model for correcting nonstoichiometric slopes in elucidating reaction mechanisms of flavoproteins.
Collapse
Affiliation(s)
- Joanna A Quaye
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Kendall E Wood
- Biology Department, Morehouse College, Atlanta, Georgia, USA
| | - Claire Snelgrove
- The Gwinnett School of Mathematics, Science, and Technology, Lawrenceville, Georgia, USA
| | - Daniel Ouedraogo
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia, USA; Department of Biology, Georgia State University, Atlanta, Georgia, USA; Department of the Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.
| |
Collapse
|
2
|
Quaye J, Ouedraogo D, Gadda G. Targeted Mutation of a Non-catalytic Gating Residue Increases the Rate of Pseudomonas aeruginosa d-Arginine Dehydrogenase Catalytic Turnover. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71. [PMID: 37933126 PMCID: PMC10655190 DOI: 10.1021/acs.jafc.3c05328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Commercial food and l-amino acid industries rely on bioengineered d-amino acid oxidizing enzymes to detect and remove d-amino acid contaminants. However, the bioengineering of enzymes to generate faster biological catalysts has proven difficult as a result of the failure to target specific kinetic steps that limit enzyme turnover, kcat, and the poor understanding of loop dynamics critical for catalysis. Pseudomonas aeruginosa d-arginine dehydrogenase (PaDADH) oxidizes most d-amino acids and is a good candidate for application in the l-amino acid and food industries. The side chain of the loop L2 E246 residue located at the entrance of the PaDADH active site pocket potentially favors the closed active site conformation and secures the substrate upon binding. This study used site-directed mutagenesis, steady-state, and rapid reaction kinetics to generate the glutamine, glycine, and leucine variants and investigate whether increasing the rate of product release could translate to an increased enzyme turnover rate. Upon E246 mutation to glycine, there was an increased rate of d-arginine turnover kcat from 122 to 500 s-1. Likewise, the kcat values increased 2-fold for the glutamine or leucine variants. Thus, we have engineered a faster biocatalyst for industrial applications by selectively increasing the rate of the PaDADH product release.
Collapse
Affiliation(s)
- Joanna
Afokai Quaye
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
| | - Daniel Ouedraogo
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
| | - Giovanni Gadda
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302-3965, United
States
- Department
of Biology, Georgia State University, Atlanta, Georgia 30302-3965, United
States
- Center
for Diagnostics and Therapeutics, Georgia
State University, Atlanta, Georgia 30302-3965, United States
| |
Collapse
|
3
|
Yildiz I. Computational Insights on the Hydride and Proton Transfer Mechanisms of D-Arginine Dehydrogenase. Chemphyschem 2023; 24:e202300431. [PMID: 37540527 DOI: 10.1002/cphc.202300431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/05/2023]
Abstract
D-Arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) is an amine oxidase which catalyzes the conversion of D-arginine into iminoarginine. It contains a non-covalent FAD cofactor that is involved in the oxidation mechanism. Based on substrate, solvent, and multiple kinetic isotope effects studies, a stepwise hydride transfer mechanism is proposed. It was shown that D-arginine binds to the active site of enzyme as α-amino group protonated, and it is deprotonated before a hydride ion is transferred from its α-C to FAD. Based on a mutagenesis study, it was concluded that a water molecule is the most likely catalytic base responsible from the deprotonation of α-amino group. In this study, we formulated computational models based on ONIOM method to elucidate the oxidation mechanism of D-arginine into iminoarginine using the crystal structure of enzyme complexed with iminoarginine. The calculations showed that Arg222, Arg305, Tyr249, Glu87, His 48, and two active site water molecules play key roles in binding and catalysis. Model systems showed that the deprotonation step occurs prior to hydride transfer step, and active site water molecule(s) may have participated in the deprotonation process.
Collapse
Affiliation(s)
- Ibrahim Yildiz
- Khalifa University, Chemistry Department and Applied Material Chemistry Center (AMCC), PO Box, 127788, Abu Dhabi, UAE
| |
Collapse
|
4
|
Ouedraogo D, Souffrant M, Yao XQ, Hamelberg D, Gadda G. Non-active Site Residue in Loop L4 Alters Substrate Capture and Product Release in d-Arginine Dehydrogenase. Biochemistry 2023; 62:1070-1081. [PMID: 36795942 PMCID: PMC9996824 DOI: 10.1021/acs.biochem.2c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Numerous studies demonstrate that enzymes undergo multiple conformational changes during catalysis. The malleability of enzymes forms the basis for allosteric regulation: residues located far from the active site can exert long-range dynamical effects on the active site residues to modulate catalysis. The structure of Pseudomonas aeruginosa d-arginine dehydrogenase (PaDADH) shows four loops (L1, L2, L3, and L4) that span the substrate and the FAD-binding domains. Loop L4 comprises residues 329-336, spanning over the flavin cofactor. The I335 residue on loop L4 is ∼10 Å away from the active site and ∼3.8 Å from N(1)-C(2)═O atoms of the flavin. In this study, we used molecular dynamics and biochemical techniques to investigate the effect of the mutation of I335 to histidine on the catalytic function of PaDADH. Molecular dynamics showed that the conformational dynamics of PaDADH are shifted to a more closed conformation in the I335H variant. In agreement with an enzyme that samples more in a closed conformation, the kinetic data of the I335H variant showed a 40-fold decrease in the rate constant of substrate association (k1), a 340-fold reduction in the rate constant of substrate dissociation from the enzyme-substrate complex (k2), and a 24-fold decrease in the rate constant of product release (k5), compared to that of the wild-type. Surprisingly, the kinetic data are consistent with the mutation having a negligible effect on the reactivity of the flavin. Altogether, the data indicate that the residue at position 335 has a long-range dynamical effect on the catalytic function in PaDADH.
Collapse
Affiliation(s)
- Daniel Ouedraogo
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Michael Souffrant
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Xin-Qiu Yao
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302, United States.,Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.,Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302, United States.,Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
5
|
Iyer A, Reis RAG, Agniswamy J, Weber IT, Gadda G. Discovery of a new flavin N5-adduct in a tyrosine to phenylalanine variant of d-Arginine dehydrogenase. Arch Biochem Biophys 2022; 715:109100. [PMID: 34864048 DOI: 10.1016/j.abb.2021.109100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/02/2022]
Abstract
d-Arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) catalyzes the flavin-dependent oxidation of d-arginine and other d-amino acids. Here, we report the crystal structure at 1.29 Å resolution for PaDADH-Y249F expressed and co-crystallized with d-arginine. The overall structure of PaDADH-Y249F resembled PaDADH-WT, but the electron density for the flavin cofactor was ambiguous, suggesting the presence of modified flavins. Electron density maps and mass spectrometric analysis confirmed the presence of both N5-(4-guanidino-oxobutyl)-FAD and 6-OH-FAD in a single crystal of PaDADH-Y249F and helped with the further refinement of the X-ray crystal structure. The versatility of the reduced flavin is apparent in the PaDADH-Y249F structure and is evidenced by the multiple functions it can perform in the same active site.
Collapse
Affiliation(s)
- Archana Iyer
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA
| | - Renata A G Reis
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA
| | - Johnson Agniswamy
- Department of Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Irene T Weber
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA; Department of Biology, Georgia State University, Atlanta, GA, 30302, USA
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, GA, 30302, USA; Department of Biology, Georgia State University, Atlanta, GA, 30302, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302, USA.
| |
Collapse
|
6
|
Iyer A, Reis RAG, Gannavaram S, Momin M, Spring-Connell AM, Orozco-Gonzalez Y, Agniswamy J, Hamelberg D, Weber IT, Gozem S, Wang S, Germann MW, Gadda G. A Single-Point Mutation in d-Arginine Dehydrogenase Unlocks a Transient Conformational State Resulting in Altered Cofactor Reactivity. Biochemistry 2021; 60:711-724. [PMID: 33630571 DOI: 10.1021/acs.biochem.1c00054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Proteins are inherently dynamic, and proper enzyme function relies on conformational flexibility. In this study, we demonstrated how an active site residue changes an enzyme's reactivity by modulating fluctuations between conformational states. Replacement of tyrosine 249 (Y249) with phenylalanine in the active site of the flavin-dependent d-arginine dehydrogenase yielded an enzyme with both an active yellow FAD (Y249F-y) and an inactive chemically modified green FAD, identified as 6-OH-FAD (Y249F-g) through various spectroscopic techniques. Structural investigation of Y249F-g and Y249F-y variants by comparison to the wild-type enzyme showed no differences in the overall protein structure and fold. A closer observation of the active site of the Y249F-y enzyme revealed an alternative conformation for some active site residues and the flavin cofactor. Molecular dynamics simulations probed the alternate conformations observed in the Y249F-y enzyme structure and showed that the enzyme variant with FAD samples a metastable conformational state, not available to the wild-type enzyme. Hybrid quantum/molecular mechanical calculations identified differences in flavin electronics between the wild type and the alternate conformation of the Y249F-y enzyme. The computational studies further indicated that the alternate conformation in the Y249F-y enzyme is responsible for the higher spin density at the C6 atom of flavin, which is consistent with the formation of 6-OH-FAD in the variant enzyme. The observations in this study are consistent with an alternate conformational space that results in fine-tuning the microenvironment around a versatile cofactor playing a critical role in enzyme function.
Collapse
Affiliation(s)
- Archana Iyer
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Renata A G Reis
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Swathi Gannavaram
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Mohamed Momin
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | | | | | - Johnson Agniswamy
- Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Irene T Weber
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.,Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Siming Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Markus W Germann
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.,Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States.,Department of Biology, Georgia State University, Atlanta, Georgia 30302, United States.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
7
|
Ball J, Gannavaram S, Gadda G. Structural determinants for substrate specificity of flavoenzymes oxidizing d-amino acids. Arch Biochem Biophys 2018; 660:87-96. [PMID: 30312594 DOI: 10.1016/j.abb.2018.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/01/2018] [Accepted: 10/08/2018] [Indexed: 12/26/2022]
Abstract
The oxidation of d-amino acids is relevant to neurodegenerative diseases, detoxification, and nutrition in microorganisms and mammals. It is also important for the resolution of racemic amino acid mixtures and the preparation of chiral building blocks for the pharmaceutical and food industry. Considerable biochemical and structural knowledge has been accrued in recent years on the enzymes that carry out the oxidation of the Cα-N bond of d-amino acids. These enzymes contain FAD as a required coenzyme, share similar overall three-dimensional folds and highly conserved active sites, but differ in their specificity for substrates with neutral, anionic, or cationic side-chains. Here, we summarize the current biochemical and structural knowledge regarding substrate specificity on d-amino acid oxidase, d-aspartate oxidase, and d-arginine dehydrogenase for which a wealth of biochemical and structural studies is available.
Collapse
Affiliation(s)
- Jacob Ball
- Departments of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA
| | - Swathi Gannavaram
- Departments of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA
| | - Giovanni Gadda
- Departments of Chemistry, Georgia State University, Atlanta, GA, 30302-3965, USA; Departments of Biology, Georgia State University, Atlanta, GA, 30302-3965, USA; Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA, 30302-3965, USA; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, 30302-3965, USA.
| |
Collapse
|
8
|
The role of directional interactions in the designability of generalized heteropolymers. Sci Rep 2017; 7:4986. [PMID: 28694466 PMCID: PMC5504045 DOI: 10.1038/s41598-017-04720-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/18/2017] [Indexed: 12/31/2022] Open
Abstract
Heteropolymers are important examples of self-assembling systems. However, in the design of artificial heteropolymers the control over the single chain self-assembling properties does not reach that of the natural bio-polymers, and in particular proteins. Here, we introduce a sufficiency criterion to identify polymers that can be designed to adopt a predetermined structure and show that it is fulfilled by polymers made of monomers interacting through directional (anisotropic) interactions. The criterion is based on the appearance of a particular peak in the radial distribution function, that we show being a universal feature of all designable heteropolymers, as it is present also in natural proteins. Our criterion can be used to engineer new self-assembling modular polymers that will open new avenues for applications in materials science.
Collapse
|
9
|
Ouedraogo D, Ball J, Iyer A, Reis RAG, Vodovoz M, Gadda G. Amine oxidation by d-arginine dehydrogenase in Pseudomonas aeruginosa. Arch Biochem Biophys 2017. [PMID: 28625766 DOI: 10.1016/j.abb.2017.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
d-Arginine dehydrogenase from Pseudomonas aeruginosa (PaDADH) is a flavin-dependent oxidoreductase, which is part of a novel two-enzyme racemization system that functions to convert d-arginine to l-arginine. PaDADH contains a noncovalently linked FAD that shows the highest activity with d-arginine. The enzyme exhibits broad substrate specificity towards d-amino acids, particularly with cationic and hydrophobic d-amino acids. Biochemical studies have established the structure and the mechanistic properties of the enzyme. The enzyme is a true dehydrogenase because it displays no reactivity towards molecular oxygen. As established through solvent and multiple kinetic isotope studies, PaDADH catalyzes an asynchronous CH and NH bond cleavage via a hydride transfer mechanism. Steady-state kinetic studies with d-arginine and d-histidine are consistent with the enzyme following a ping-pong bi-bi mechanism. As shown by a combination of crystallography, kinetic and computational data, the shape and flexibility of loop L1 in the active site of PaDADH are important for substrate capture and broad substrate specificity.
Collapse
Affiliation(s)
- Daniel Ouedraogo
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States
| | - Jacob Ball
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States
| | - Archana Iyer
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States
| | - Renata A G Reis
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States
| | - Maria Vodovoz
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States
| | - Giovanni Gadda
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States; Department of Biology, Georgia State University, Atlanta, GA 30302, United States; Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, United States; Center for Biotechnology and Drug Design, Georgia State University, Atlanta, GA 30302, United States.
| |
Collapse
|
10
|
Ouedraogo D, Souffrant M, Vasquez S, Hamelberg D, Gadda G. Importance of Loop L1 Dynamics for Substrate Capture and Catalysis in Pseudomonas aeruginosa d-Arginine Dehydrogenase. Biochemistry 2017; 56:2477-2487. [DOI: 10.1021/acs.biochem.7b00098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daniel Ouedraogo
- Department
of Chemistry, ‡Department of Biology, §Center for Diagnostics and Therapeutics, and ∥Center for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| | - Michael Souffrant
- Department
of Chemistry, ‡Department of Biology, §Center for Diagnostics and Therapeutics, and ∥Center for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| | - Sheena Vasquez
- Department
of Chemistry, ‡Department of Biology, §Center for Diagnostics and Therapeutics, and ∥Center for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| | - Donald Hamelberg
- Department
of Chemistry, ‡Department of Biology, §Center for Diagnostics and Therapeutics, and ∥Center for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| | - Giovanni Gadda
- Department
of Chemistry, ‡Department of Biology, §Center for Diagnostics and Therapeutics, and ∥Center for Biotechnology
and Drug Design, Georgia State University, Atlanta, Georgia 30302, United States
| |
Collapse
|
11
|
Bianchi E, Capone B, Coluzza I, Rovigatti L, van Oostrum PDJ. Limiting the valence: advancements and new perspectives on patchy colloids, soft functionalized nanoparticles and biomolecules. Phys Chem Chem Phys 2017; 19:19847-19868. [DOI: 10.1039/c7cp03149a] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Artistic representation of limited valance units consisting of a soft core (in blue) and a small number of flexible bonding patches (in orange).
Collapse
Affiliation(s)
- Emanuela Bianchi
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Institute for Theoretical Physics
| | - Barbara Capone
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Dipartimento di Scienze
| | - Ivan Coluzza
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
| | - Lorenzo Rovigatti
- Faculty of Physics
- University of Vienna
- A-1090 Vienna
- Austria
- Rudolf Peierls Centre for Theoretical Physics
| | - Peter D. J. van Oostrum
- Department of Nanobiotechnology
- Institute for Biologically Inspired Materials
- University of Natural Resources and Life Sciences
- A-1190 Vienna
- Austria
| |
Collapse
|
12
|
Ball J, Bui QV, Gannavaram S, Gadda G. Importance of glutamate 87 and the substrate α-amine for the reaction catalyzed by d-arginine dehydrogenase. Arch Biochem Biophys 2015; 568:56-63. [DOI: 10.1016/j.abb.2015.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 10/24/2022]
|