1
|
Průša J, Cifra M. Molecular dynamics simulation dataset of a kinesin on tubulin heterodimers in electric field. Data Brief 2024; 52:109765. [PMID: 38370023 PMCID: PMC10873870 DOI: 10.1016/j.dib.2023.109765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 02/20/2024] Open
Abstract
We present trajectories from non-equilibrium (in electric field) molecular dynamics (MD) simulations of a kinesin motor domain on tubulin heterodimers with two tubulin heterodimers forming neighbouring microtubule protofilaments. The trajectories are for no field (long equilibrium simulation), for four different electric field orientations (X, -X, Y, -Y) and for the X electric field at four different field strengths. We also provide a trajectory for larger simulation box. Our data enable to analyze the electric field effects on kinesin, which ultimately leads to kinesin detachment. This data set was used to understand the effect of electric field orientation and field strength on the kinetics and energetics of the electro-detachment of kinesin [1].
Collapse
Affiliation(s)
- Jiří Průša
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Prague, 18200, Czechia
| | | |
Collapse
|
2
|
Průša J, Cifra M. Electro-detachment of kinesin motor domain from microtubule in silico. Comput Struct Biotechnol J 2023; 21:1349-1361. [PMID: 36814722 PMCID: PMC9939557 DOI: 10.1016/j.csbj.2023.01.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/22/2023] Open
Abstract
Kinesin is a motor protein essential in cellular functions, such as intracellular transport and cell-division, as well as for enabling nanoscopic transport in bio-nanotechnology. Therefore, for effective control of function for nanotechnological applications, it is important to be able to modify the function of kinesin. To circumvent the limitations of chemical modifications, here we identify another potential approach for kinesin control: the use of electric forces. Using full-atom molecular dynamics simulations (247,358 atoms, total time ∼ 4.4 μs), we demonstrate, for the first time, that the kinesin-1 motor domain can be detached from a microtubule by an intense electric field within the nanosecond timescale. We show that this effect is field-direction dependent and field-strength dependent. A detailed analysis of the electric forces and the work carried out by electric field acting on the microtubule-kinesin system shows that it is the combined action of the electric field pulling on the β-tubulin C-terminus and the electric-field-induced torque on the kinesin dipole moment that causes kinesin detachment from the microtubule. It is shown, for the first time in a mechanistic manner, that an electric field can dramatically affect molecular interactions in a heterologous functional protein assembly. Our results contribute to understanding of electromagnetic field-biomatter interactions on a molecular level, with potential biomedical and bio-nanotechnological applications for harnessing control of protein nanomotors.
Collapse
|
3
|
Shi XX, Wang PY, Chen H, Xie P. Studies of Conformational Changes of Tubulin Induced by Interaction with Kinesin Using Atomistic Molecular Dynamics Simulations. Int J Mol Sci 2021; 22:ijms22136709. [PMID: 34201478 PMCID: PMC8268240 DOI: 10.3390/ijms22136709] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 01/12/2023] Open
Abstract
The transition between strong and weak interactions of the kinesin head with the microtubule, which is regulated by the change of the nucleotide state of the head, is indispensable for the processive motion of the kinesin molecular motor on the microtubule. Here, using all-atom molecular dynamics simulations, the interactions between the kinesin head and tubulin are studied on the basis of the available high-resolution structural data. We found that the strong interaction can induce rapid large conformational changes of the tubulin, whereas the weak interaction cannot. Furthermore, we found that the large conformational changes of the tubulin have a significant effect on the interaction of the tubulin with the head in the weak-microtubule-binding ADP state. The calculated binding energy of the ADP-bound head to the tubulin with the large conformational changes is only about half that of the tubulin without the conformational changes.
Collapse
Affiliation(s)
- Xiao-Xuan Shi
- School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.-X.S.); (H.C.)
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
| | - Hong Chen
- School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (X.-X.S.); (H.C.)
| | - Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
- Correspondence:
| |
Collapse
|
4
|
Williams AE, Davis JE, Reynolds JE, Fortenberry RC, Hammer NI, Reinemann DN. Determination of vibrational band positions in the E-hook of β-tubulin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 244:118895. [PMID: 32919160 DOI: 10.1016/j.saa.2020.118895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/22/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Raman spectral characterization of the β-TUBB2A E-hook hexapeptide, EGEDEA, is determined through experimental analysis combined with full geometry optimizations and corresponding harmonic vibrational frequency computations employing DFT methods. The hexapeptide is first broken down into di- and tetrapeptide fragments which are analyzed both quantum chemically and experimentally, and then combined to achieve an energetic minimum of the large EGEDEA hexapeptide. The Raman spectral characterization of EGEDEA band positions are then verified via the literature and comparison to the small fragment's similarly located band positions. The approach employed provides further evidence for the use of fragments as a helpful tool in characterization of the vibrational band positions of large peptides. STATEMENT OF SIGNIFICANCE: To investigate β-TUBB2A E-hook hexapeptide, a unique approach is employed whereby the hexapeptide is broken into fragments, EG, ED, EA, EGED, and EDEA and analyzed via experimental Raman spectroscopy of the crystalline solids. The experimentally observed vibrational band positions are compared to those computed using and scaled from DFT methods and Pople's 6-311+G(2df,2pd) basis set. The reported vibrational band positions are also confirmed by previously reported bands of similar peptides in the literature. This methodology facilitates differentiation between the behaviors of various side chains and their influence on the structure of the hexapeptide, providing insight into not only the nature of the peptide but also defining regions for potential protein and cytoplasmic interactions, without requiring excessive computing resources or overly-sensitive experimental methods.
Collapse
Affiliation(s)
- Ashley E Williams
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, United States of America
| | - Juliana E Davis
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677, United States of America
| | - Justin E Reynolds
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677, United States of America
| | - Ryan C Fortenberry
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, United States of America
| | - Nathan I Hammer
- Department of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, United States of America
| | - Dana N Reinemann
- Department of Biomedical Engineering, University of Mississippi, University, MS 38677, United States of America; Department of Chemical Engineering, University of Mississippi, University, MS 38677, United States of America.
| |
Collapse
|
5
|
Świątek M, Gudowska-Nowak E. Delineating elastic properties of kinesin linker and their sensitivity to point mutations. Sci Rep 2020; 10:4832. [PMID: 32179821 PMCID: PMC7075872 DOI: 10.1038/s41598-020-61399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/24/2020] [Indexed: 12/03/2022] Open
Abstract
We analyze free energy estimators from simulation trials mimicking single-molecule pulling experiments on a neck linker of a kinesin motor. For that purpose, we have performed a version of steered molecular dynamics (SMD) calculations. The sample trajectories have been analyzed to derive distribution of work done on the system. In order to induce stretching of the linker, we have applied a constant pulling force to the molecule and allowed for a subsequent relaxation of its structure. The use of fluctuation relations (FR) relevant to non-equilibrium systems subject to thermal fluctuations allows us to assess the difference in free energy between stretched and relaxed conformations. To further understand effects of potential mutations on elastic properties of the linker, we have performed similar in silico studies on a structure formed of a polyalanine sequence (Ala-only) and on three other structures, created by substituting selected types of amino acid residues in the linker’s sequence with alanine (Ala) ones. The results of SMD simulations indicate a crucial role played by the Asparagine (Asn) and Lysine (Lys) residues in controlling stretching and relaxation properties of the linker domain of the motor.
Collapse
Affiliation(s)
- Michał Świątek
- Department of Pharmaceutical Biophysics, Jagiellonian University Medical College, ul. Medyczna 9, 30-688, Kraków, Poland. .,Jagiellonian University, Marian Smoluchowski Institute of Physics, ul. Prof. S.Łojasiewicza 11, Kraków, 30-348, Poland.
| | - Ewa Gudowska-Nowak
- Jagiellonian University, Marian Smoluchowski Institute of Physics and Mark Kac Center for Complex Systems Research, ul. Prof. S.Łojasiewicza 11, Kraków, 30-348, Poland
| |
Collapse
|
6
|
Průša J, Cifra M. Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor. Sci Rep 2019; 9:19721. [PMID: 31873109 PMCID: PMC6928163 DOI: 10.1038/s41598-019-56052-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022] Open
Abstract
Kinesin is a biological molecular nanomotor which converts chemical energy into mechanical work. To fulfill various nanotechnological tasks in engineered environments, the function of biological molecular motors can be altered by artificial chemical modifications. The drawback of this approach is the necessity of designing and creating a new motor construct for every new task. We propose that intense nanosecond-scale pulsed electric field could modify the function of nanomotors. To explore this hypothesis, we performed molecular dynamics simulation of a kinesin motor domain docked on a subunit of its microtubule track - a single tubulin heterodimer. In the simulation, we exposed the kinesin motor domain to intense (100 MV/m) electric field up to 30 ns. We found that both the magnitude and angle of the kinesin dipole moment are affected. Furthermore, we found that the electric field affects contact surface area between kinesin and tubulin, the structure and dynamics of the functionally important kinesin segments, including microtubule binding motifs as well as nucleotide hydrolysis site which power the nanomotor. These findings indicate that external intense nanosecond-scale electric field could alter kinesin behavior. Our results contribute to developing novel electromagnetic methods for modulating the function of biomolecular matter at the nanoscale.
Collapse
Affiliation(s)
- Jiří Průša
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 1014/57, Prague, 18251, Czech Republic.,Faculty of Chemical Engineering, University of Chemistry and Technology Prague, Technicka 5, Prague, 16628, Czech Republic
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberska 1014/57, Prague, 18251, Czech Republic.
| |
Collapse
|
7
|
Shi XX, Guo SK, Wang PY, Chen H, Xie P. All-atom molecular dynamics simulations reveal how kinesin transits from one-head-bound to two-heads-bound state. Proteins 2019; 88:545-557. [PMID: 31589786 DOI: 10.1002/prot.25833] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
Abstract
Kinesin dimer walks processively along a microtubule (MT) protofilament in a hand-over-hand manner, transiting alternately between one-head-bound (1HB) and two-heads-bound (2HB) states. In 1HB state, one head bound by adenosine diphosphate (ADP) is detached from MT and the other head is bound to MT. Here, using all-atom molecular dynamics simulations we determined the position and orientation of the detached ADP-head relative to the MT-bound head in 1HB state. We showed that in 1HB state when the MT-bound head is in ADP or nucleotide-free state, with its neck linker being undocked, the detached ADP-head and the MT-bound head have the high binding energy, and after adenosine triphosphate (ATP) binds to the MT-bound head, with its neck linker being docked, the binding energy between the two heads is reduced greatly. These results reveal how the kinesin dimer retains 1HB state before ATP binding and how the dimer transits from 1HB to 2HB state after ATP binding. Key residues involved in the head-head interaction in 1HB state were identified.
Collapse
Affiliation(s)
- Xiao-Xuan Shi
- School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, China.,Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Si-Kao Guo
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Hong Chen
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, China
| | - Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Shi XX, Fu YB, Guo SK, Wang PY, Chen H, Xie P. Investigating role of conformational changes of microtubule in regulating its binding affinity to kinesin by all-atom molecular dynamics simulation. Proteins 2018; 86:1127-1139. [PMID: 30132979 DOI: 10.1002/prot.25592] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/05/2018] [Accepted: 08/16/2018] [Indexed: 11/08/2022]
Abstract
Changes of affinity of kinesin head to microtubule regulated by changes in the nucleotide state are essential to processive movement of kinesin on microtubule. Here, using all-atom molecular dynamics simulations we show that besides the nucleotide state, large conformational changes of microtubule-tubulin heterodimers induced by strong interaction with the head in strongly binding state are also indispensable to regulate the affinity of the head to the tubulin. In strongly binding state the high affinity of the head to microtubule arises largely from mutual conformational changes of the microtubule and head induced by the specific interaction between them via an induced-fit mechanism. Moreover, the ADP-head has a much weaker affinity to the local microtubule-tubulin, whose conformation is largely altered by the interaction with the head in strongly binding state, than to other unperturbed tubulins. This indicates that upon Pi release the ADP-head temporarily has a much weaker affinity to the local tubulin than to other tubulins.
Collapse
Affiliation(s)
- Xiao-Xuan Shi
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.,School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yi-Ben Fu
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Si-Kao Guo
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Hong Chen
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, China
| | - Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Structural consequences of hereditary spastic paraplegia disease-related mutations in kinesin. Proc Natl Acad Sci U S A 2018; 115:E10822-E10829. [PMID: 30366951 DOI: 10.1073/pnas.1810622115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A wide range of mutations in the kinesin motor Kif5A have been linked to a neuronal disorder called hereditary spastic paraplegia (HSP). The position of these mutations can vary, and a range of different motile behaviors have been observed, indicating that the HSP mutants can alter distinct aspects of kinesin mechanochemistry. While focusing on four key HSP-associated mutants, this study examined the structural and dynamic perturbations that arise from these mutations using a series of different computational methods, ranging from bioinformatics analyses to all-atom simulations, that account for solvent effects explicitly. We show that two catalytic domain mutations (R280S and K253N) reduce the microtubule (MT) binding affinity of the kinesin head domains appreciably, while N256S has a much smaller impact. Bioinformatics analysis suggests that the stalk mutation A361V perturbs motor dimerization. Subsequent integration of these effects into a coarse-grained structure-based model of dimeric kinesin revealed that the order-disorder transition of the neck linker is substantially affected, indicating a hampered directionality and processivity of kinesin. The present analyses therefore suggest that, in addition to kinesin-MT binding and coiled-coil dimerization, HSP mutations affecting motor stepping transitions and processivity can lead to disease.
Collapse
|
10
|
Hwang W, Lang MJ, Karplus M. Kinesin motility is driven by subdomain dynamics. eLife 2017; 6:28948. [PMID: 29111975 PMCID: PMC5718755 DOI: 10.7554/elife.28948] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
The microtubule (MT)-associated motor protein kinesin utilizes its conserved ATPase head to achieve diverse motility characteristics. Despite considerable knowledge about how its ATPase activity and MT binding are coupled to the motility cycle, the atomic mechanism of the core events remain to be found. To obtain insights into the mechanism, we performed 38.5 microseconds of all-atom molecular dynamics simulations of kinesin-MT complexes in different nucleotide states. Local subdomain dynamics were found to be essential for nucleotide processing. Catalytic water molecules are dynamically organized by the switch domains of the nucleotide binding pocket while ATP is torsionally strained. Hydrolysis products are 'pulled' by switch-I, and a new ATP is 'captured' by a concerted motion of the α0/L5/switch-I trio. The dynamic and wet kinesin-MT interface is tuned for rapid interactions while maintaining specificity. The proposed mechanism provides the flexibility necessary for walking in the crowded cellular environment. Motor proteins called kinesins perform a number of different roles inside cells, including transporting cargo and organizing filaments called microtubules to generate the force needed for a cell to divide. Kinesins move along the microtubules, with different kinesins moving in different ways: some ‘walk’, some jump, and some destroy the microtubule as they travel along it. All kinesins power their movements using the same molecule as fuel – adenosine triphosphate, known as ATP for short. Energy stored in ATP is released by a chemical reaction known as hydrolysis, which uses water to break off specific parts of the ATP molecule. The site to which ATP binds in a kinesin has a similar structure to the ATP binding site of many other proteins that use ATP. However, little was known about the way in which kinesin uses ATP as a fuel, including how ATP binds to kinesin and is hydrolyzed, and how the products of hydrolysis are released. These events are used to power the motor protein. Hwang et al. have used powerful computer simulation methods to examine in detail how ATP interacts with kinesin whilst moving across a microtubule. The simulations suggest that regions (or 'domains') of kinesin near the ATP binding site move around to help in processing ATP. These kinesin domains trap a nearby ATP molecule from the environment and help to deliver water molecules to ATP for hydrolysis. Hwang et al. also found that the domain motion subsequently helps in the release of the hydrolysis products by kinesin. The domains around the ATP pocket vary among the kinesins and these differences may enable kinesins to fine-tune how they use ATP to move. Further investigations will help us understand why different kinesin families behave differently. They will also contribute to exploring how kinesin inhibitors might be used as anti-cancer drugs.
Collapse
Affiliation(s)
- Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, United States.,Department of Materials Science & Engineering, Texas A&M University, College Station, United States.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| | - Matthew J Lang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, United States.,Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, United States
| | - Martin Karplus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States.,Laboratoire de Chimie Biophysique, ISIS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Laurin Y, Eyer J, Robert CH, Prevost C, Sacquin-Mora S. Mobility and Core-Protein Binding Patterns of Disordered C-Terminal Tails in β-Tubulin Isotypes. Biochemistry 2017; 56:1746-1756. [PMID: 28290671 DOI: 10.1021/acs.biochem.6b00988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Although they play a significant part in the regulation of microtubule structure, dynamics, and function, the disordered C-terminal tails of tubulin remain invisible to experimental structural methods and do not appear in the crystallographic structures that are currently available in the Protein Data Bank. Interestingly, these tails concentrate most of the sequence variability between tubulin isotypes and are the sites of the principal post-translational modifications undergone by this protein. Using homology modeling, we developed two complete models for the human αI/βI- and αI/βIII-tubulin isotypes that include their C-terminal tails. We then investigated the conformational variability of the two β-tails using long time-scale classical molecular dynamics simulations that revealed similar features, notably the unexpected presence of common anchoring regions on the surface of the tuulin dimer, but also distinctive mobility or interaction patterns, some of which could be related to the tail lengths and charge distributions. We also observed in our simulations that the C-terminal tail from the βI isotype, but not the βIII isotype, formed contacts in the putative binding site of a recently discovered peptide that disrupts microtubule formation in glioma cells. Hindering the binding site in the βI isotype would be consistent with this peptide's preferential disruption of microtubule formation in glioma, whose cells overexpress βIII, compared to normal glial cells. While these observations need to be confirmed with more intensive sampling, our study opens new perspectives for the development of isotype-specific chemotherapy drugs.
Collapse
Affiliation(s)
- Yoann Laurin
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Joel Eyer
- Laboratoire de Neurobiologie & Transgenèse, UPRES EA 3143, INSERM, Centre Hospitalier Universitaire , Angers, France
| | - Charles H Robert
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Chantal Prevost
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, UPR 9080 CNRS, Institut de Biologie Physico-Chimique , 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
12
|
Niu RJ, Zheng QC, Zhang HX. Molecular basis of the recognition of FMN by a HAD phosphatase TON_0338. J Mol Graph Model 2016; 69:17-25. [PMID: 27544426 DOI: 10.1016/j.jmgm.2016.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/18/2016] [Accepted: 08/11/2016] [Indexed: 02/06/2023]
Abstract
The haloalkaloic acid dehalogenase (HAD) phosphatase from Thermococcus onnurineus NA1 (TON_0338), has phosphatase activity the flavin mono-nucleotide (FMN). The molecular origin and structural motifs for the activity deficiency of double-tryptophan mutant have not been rationalized at atomic resolution. Molecular dynamics (MD) simulations and the molecular mechanics/Generalized-Born surface area (MM/GBSA) free energy calculations were used to explore the effects of mutations on the changes in both structural flexibility and conformational dynamics. The non-polar solvation energy plays an indispensable role in the binding process of TON_0338 and FMN. The tryptophan sandwich structure provides a primary function to anchor FMN and keeps FMN well bound to TON_0338. The double-tryptophan mutation has influences on the secondary structures of TON_0338 and changes the conformation, which would lead to reduced activity of W58A/W61A-FMN binding. The present study provides important insights into the structure-function relationships of TON_0338 protein, which could contribute to further understanding about the HAD phosphatases.
Collapse
Affiliation(s)
- Rui-Juan Niu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Qing-Chuan Zheng
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130023, People's Republic of China; Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China.
| | - Hong-Xing Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China; School of Pharmaceutical Sciences, Jilin University, Changchun 130022, People's Republic of China
| |
Collapse
|
13
|
Zhan M, Guo M, Jiang Y, Wang X. Characterization of the Interaction between Gallic Acid and Lysozyme by Molecular Dynamics Simulation and Optical Spectroscopy. Int J Mol Sci 2015; 16:14786-807. [PMID: 26140374 PMCID: PMC4519872 DOI: 10.3390/ijms160714786] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/08/2015] [Accepted: 06/17/2015] [Indexed: 01/29/2023] Open
Abstract
The binding interaction between gallic acid (GA) and lysozyme (LYS) was investigated and compared by molecular dynamics (MD) simulation and spectral techniques. The results from spectroscopy indicate that GA binds to LYS to generate a static complex. The binding constants and thermodynamic parameters were calculated. MD simulation revealed that the main driving forces for GA binding to LYS are hydrogen bonding and hydrophobic interactions. The root-mean-square deviation verified that GA and LYS bind to form a stable complex, while the root-mean-square fluctuation results showed that the stability of the GA-LYS complex at 298 K was higher than that at 310 K. The calculated free binding energies from the molecular mechanics/Poisson-Boltzmann surface area method showed that van der Waals forces and electrostatic interactions are the predominant intermolecular forces. The MD simulation was consistent with the spectral experiments. This study provides a reference for future study of the pharmacological mechanism of GA.
Collapse
Affiliation(s)
- Minzhong Zhan
- School of Science, Zhejiang Agricultural & Forestry University, Lin'an 311300, China.
| | - Ming Guo
- School of Science, Zhejiang Agricultural & Forestry University, Lin'an 311300, China.
| | - Yanke Jiang
- Research Center of Medical Chemistry & Chemical Biology, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Xiaomeng Wang
- School of Science, Zhejiang Agricultural & Forestry University, Lin'an 311300, China.
| |
Collapse
|