1
|
Berhe MH, Song X, Yao L. Improving the Enzymatic Activity and Stability of a Lytic Polysaccharide Monooxygenase. Int J Mol Sci 2023; 24:ijms24108963. [PMID: 37240310 DOI: 10.3390/ijms24108963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Lytic Polysaccharide Monooxygenases (LPMOs) are copper-dependent enzymes that play a pivotal role in the enzymatic conversion of the most recalcitrant polysaccharides, such as cellulose and chitin. Hence, protein engineering is highly required to enhance their catalytic efficiencies. To this effect, we optimized the protein sequence encoding for an LPMO from Bacillus amyloliquefaciens (BaLPMO10A) using the sequence consensus method. Enzyme activity was determined using the chromogenic substrate 2,6-Dimethoxyphenol (2,6-DMP). Compared with the wild type (WT), the variants exhibit up to a 93.7% increase in activity against 2,6-DMP. We also showed that BaLPMO10A can hydrolyze p-nitrophenyl-β-D-cellobioside (PNPC), carboxymethylcellulose (CMC), and phosphoric acid-swollen cellulose (PASC). In addition to this, we investigated the degradation potential of BaLPMO10A against various substrates such as PASC, filter paper (FP), and Avicel, in synergy with the commercial cellulase, and it showed up to 2.7-, 2.0- and 1.9-fold increases in production with the substrates PASC, FP, and Avicel, respectively, compared to cellulase alone. Moreover, we examined the thermostability of BaLPMO10A. The mutants exhibited enhanced thermostability with an apparent melting temperature increase of up to 7.5 °C compared to the WT. The engineered BaLPMO10A with higher activity and thermal stability provides a better tool for cellulose depolymerization.
Collapse
Affiliation(s)
- Miesho Hadush Berhe
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Biotechnology, College of Natural and Computational Sciences, Aksum University, Axum 1010, Ethiopia
| | - Xiangfei Song
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Lishan Yao
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| |
Collapse
|
2
|
Cao TC, Nguyen TP, Nguyen SN, Tran TTT, Ton NMN, Le VVM. Cellulase-treated deoiled rice bran: effects of treatment conditions on dietary fiber content and utilization for formulation of cookies. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
The contribution of specific subsites to catalytic activities in active site architecture of a GH11 xylanase. Appl Microbiol Biotechnol 2020; 104:8735-8745. [DOI: 10.1007/s00253-020-10865-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/11/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
|
4
|
Kari J, Christensen SJ, Andersen M, Baiget SS, Borch K, Westh P. A practical approach to steady-state kinetic analysis of cellulases acting on their natural insoluble substrate. Anal Biochem 2019; 586:113411. [PMID: 31520594 DOI: 10.1016/j.ab.2019.113411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 10/26/2022]
Abstract
Measurement of steady-state rates (vSS) is straightforward in standard enzymology with soluble substrate, and it has been instrumental for comparative biochemical analyses within this area. For insoluble substrate, however, experimental values of vss remain controversial, and this has strongly limited the amount and quality of comparative analyses for cellulases and other enzymes that act on the surface of an insoluble substrate. In the current work, we have measured progress curves over a wide range of conditions for two cellulases, TrCel6A and TrCel7A from Trichoderma reesei, acting on their natural, insoluble substrate, cellulose. Based on this, we consider practical compromises for the determination of experimental vSS values, and propose a basic protocol that provides representative reaction rates and is experimentally simple so that larger groups of enzymes and conditions can be readily assayed with standard laboratory equipment. We surmise that the suggested experimental approach can be useful in comparative biochemical studies of cellulases; an area that remains poorly developed.
Collapse
Affiliation(s)
- Jeppe Kari
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800, Kgs. Lyngby, Denmark
| | - Stefan Jarl Christensen
- Department of Science and Environment, Roskilde University, Universitetsvej, Build. 28.C, DK-4000, Roskilde, Denmark
| | - Morten Andersen
- Department of Science and Environment, Roskilde University, Universitetsvej, Build. 28.C, DK-4000, Roskilde, Denmark
| | | | - Kim Borch
- Novozymes A/S, Krogshøjvej 36, DK-2880, Bagsværd, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
5
|
Substrate binding interferes with active site conformational dynamics in endoglucanase Cel5A from Thermobifida fusca. Biochem Biophys Res Commun 2017; 491:236-240. [DOI: 10.1016/j.bbrc.2017.07.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 11/16/2022]
|
6
|
Kruer-Zerhusen N, Alahuhta M, Lunin VV, Himmel ME, Bomble YJ, Wilson DB. Structure of a Thermobifida fusca lytic polysaccharide monooxygenase and mutagenesis of key residues. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:243. [PMID: 29213309 PMCID: PMC5708082 DOI: 10.1186/s13068-017-0925-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/06/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Auxiliary activity (AA) enzymes are produced by numerous bacterial and fungal species to assist in the degradation of biomass. These enzymes are abundant but have yet to be fully characterized. Here, we report the X-ray structure of Thermobifida fusca AA10A (TfAA10A), investigate mutational characterization of key surface residues near its active site, and explore the importance of the various domains of Thermobifida fusca AA10B (TfAA10B). The structure of TfAA10A is similar to other bacterial LPMOs (lytic polysaccharide monooxygenases), including signs of photo-reduction and a distorted active site, with mixed features showing both type I and II copper coordination. The point mutation experiments of TfAA10A show that Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for the binding of substrate, but that the X1 module does not affect binding or activity. RESULTS In TfAA10A, Trp82 and Asn83 are needed for binding, but only Trp82 affects activity. The TfAA10B domain truncation mutants reveal that CBM2 is crucial for substrate binding, but that the X1 module does not affect binding or activity. The structure of TfAA10A is similar to other bacterial lytic polysaccharide monooxygenases with mixed features showing both type I and II copper coordination. CONCLUSIONS The role of LPMOs and the variability of abundance in genomes are not fully explored. LPMOs likely perform initial attacks into crystalline cellulose to allow larger processive cellulases to bind and attack, but the precise nature of their synergistic behavior remains to be definitively characterized.
Collapse
Affiliation(s)
| | | | | | | | | | - David B. Wilson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY USA
| |
Collapse
|
7
|
Mutation of a conserved tryptophan residue in the CBM3c of a GH9 endoglucanase inhibits activity. Int J Biol Macromol 2016; 92:159-166. [DOI: 10.1016/j.ijbiomac.2016.06.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 02/01/2023]
|
8
|
Song X, Zhang S, Wang Y, Li J, He C, Yao L. A kinetic study of Trichoderma reesei Cel7B catalyzed cellulose hydrolysis. Enzyme Microb Technol 2016; 87-88:9-16. [PMID: 27178789 DOI: 10.1016/j.enzmictec.2016.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/28/2016] [Accepted: 02/18/2016] [Indexed: 11/28/2022]
Abstract
One prominent feature of Trichoderma reesei (Tr) endoglucanases catalyzed cellulose hydrolysis is that the reaction slows down quickly after it starts (within minutes). But the mechanism of the slowdown is not well understood. A structural model of Tr- Cel7B catalytic domain bound to cellulose was built computationally and the potentially important binding residues were identified and tested experimentally. The 13 tested mutants show different binding properties in the adsorption to phosphoric acid swollen cellulose and filter paper. Though the partitioning parameter to filter paper is about 10 times smaller than that to phosphoric acid swollen cellulose, a positive correlation is shown for two substrates. The kinetic studies show that the reactions slow down quickly for both substrates. This slowdown is not correlated to the binding constant but anticorrelated to the enzyme initial activity. The amount of reducing sugars released after 24h by Cel7B in phosphoric acid swollen cellulose, Avicel and filter paper cellulose hydrolysis is correlated with the enzyme activity against a soluble substrate p-nitrophenyl lactoside. Six of the 13 tested mutants, including N47A, N52D, S99A, N323D, S324A, and S346A, yield ∼15-35% more reducing sugars than the wild type (WT) Cel7B in phosphoric acid swollen cellulose and filter paper hydrolysis. This study reveals that the slowdown of the reaction is not due to the binding of the enzyme to cellulose. The activity of Tr- Cel7B against the insoluble substrate cellulose is determined by the enzyme's capability in hydrolyzing the soluble substrate.
Collapse
Affiliation(s)
- Xiangfei Song
- Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Shujun Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Yefei Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Jingwen Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Chunyan He
- Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Lishan Yao
- Shandong Provincial Key Laboratory of Synthetic Biology, Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266061, China.
| |
Collapse
|
9
|
Wallace J, Brienzo M, García-Aparicio MP, Görgens JF. Lignin enrichment and enzyme deactivation as the root cause of enzymatic hydrolysis slowdown of steam pretreated sugarcane bagasse. N Biotechnol 2016; 33:361-71. [PMID: 26820122 DOI: 10.1016/j.nbt.2016.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 11/25/2015] [Accepted: 01/14/2016] [Indexed: 01/21/2023]
Abstract
The enzymatic hydrolysis (EH) rate normally decreases during the hydrolysis, leaving unhydrolyzed material as residue. This phenomenon occurs during the hydrolysis of both cellulose (avicel) and lignocellulosic material, in nature or even pretreated. The progression of EH of steam pretreated sugarcane bagasse was associated with an initial (fast), intermediate (slower) and recalcitrant (slowest) phases, at glucan to glucose conversion yields of 61.7, 81.6 and 86%, respectively. Even though the EH of avicel as a simpler material than steam pretreated sugarcane bagasse, EH slowdown was present. The less thermo-stable endo-xylanase lost 58% of initial enzyme activity, followed by β-glucosidase that lost 16%, culminating in FPase activity loss of 30% in the first 24hours. After 72hours of EH the total loss of FPase activity was 40% compared to the initial activity. Analysis of the solid residue from EH showed that lignin content, phenolic compounds and ash increased while glucan decreased as hydrolysis progressed. During the initial fast phase of EH, the total solid residue surface area consisted predominantly of internal surface area. Thereafter, in the intermediate and recalcitrant phases of EH, the ratio of external:internal surface area increased. The proposed fiber damage and decrease in internal surface area, probably by EH action, was visualized by scanning electron microscopy imagery. The higher lignin/glucan ratio as EH progressed and enzyme deactivation by thermo instability were the main effects observed, respectively to substrate and enzyme.
Collapse
Affiliation(s)
- Joshua Wallace
- Department of Process Engineering, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa
| | - Michel Brienzo
- Department of Process Engineering, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa.
| | - María P García-Aparicio
- Department of Process Engineering, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa; Department of Microbiology, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa
| | - Johann F Görgens
- Department of Process Engineering, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa
| |
Collapse
|
10
|
Wang J, Gao G, Li Y, Yang L, Liang Y, Jin H, Han W, Feng Y, Zhang Z. Cloning, Expression, and Characterization of a Thermophilic Endoglucanase, AcCel12B from Acidothermus cellulolyticus 11B. Int J Mol Sci 2015; 16:25080-95. [PMID: 26506341 PMCID: PMC4632791 DOI: 10.3390/ijms161025080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/29/2015] [Accepted: 10/13/2015] [Indexed: 12/23/2022] Open
Abstract
The gene ABK52392 from the thermophilic bacterium Acidothermus cellulolyticus 11B was predicted to be endoglucanase and classified into glycoside hydrolase family 12. ABK52392 encodes a protein containing a catalytic domain and a carbohydrate binding module. ABK52392 was cloned and functionally expressed in Escherichia coli. After purification by Ni-NTA agarose affinity chromatography and Q-Sepharose® Fast Flow chromatography, the properties of the recombinant protein (AcCel12B) were characterized. AcCel12B exhibited optimal activity at pH 4.5 and 75 °C. The half-lives of AcCel12B at 60 and 70 °C were about 90 and 2 h, respectively, under acidic conditions. The specific hydrolytic activities of AcCel12B at 70 °C and pH 4.5 for sodium carboxymethylcellulose (CMC) and regenerated amorphous cellulose (RAC) were 118.3 and 104.0 U·mg−1, respectively. The Km and Vmax of AcCel12B for CMC were 25.47 mg·mL−1 and 131.75 U·mg−1, respectively. The time course of hydrolysis for RAC was investigated by measuring reducing ends in the soluble and insoluble phases. The total hydrolysis rate rapidly decreased after the early stage of incubation and the generation of insoluble reducing ends decreased earlier than that of soluble reducing ends. High thermostability of the cellulase indicates its potential commercial significance and it could be exploited for industrial application in the future.
Collapse
Affiliation(s)
- Junling Wang
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
- Department of Biotechnology, Jilin Agricultural Science and Technology College, Jilin 132101, China.
| | - Gui Gao
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Yuwei Li
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Liangzhen Yang
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Yanli Liang
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Hanyong Jin
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Weiwei Han
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Yan Feng
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| | - Zuoming Zhang
- Key Laboratory for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun 130012, China.
| |
Collapse
|
11
|
Kurašin M, Kuusk S, Kuusk P, Sørlie M, Väljamäe P. Slow Off-rates and Strong Product Binding Are Required for Processivity and Efficient Degradation of Recalcitrant Chitin by Family 18 Chitinases. J Biol Chem 2015; 290:29074-85. [PMID: 26468285 DOI: 10.1074/jbc.m115.684977] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 12/18/2022] Open
Abstract
Processive glycoside hydrolases are the key components of enzymatic machineries that decompose recalcitrant polysaccharides, such as chitin and cellulose. The intrinsic processivity (P(Intr)) of cellulases has been shown to be governed by the rate constant of dissociation from polymer chain (koff). However, the reported koff values of cellulases are strongly dependent on the method used for their measurement. Here, we developed a new method for determining koff, based on measuring the exchange rate of the enzyme between a non-labeled and a (14)C-labeled polymeric substrate. The method was applied to the study of the processive chitinase ChiA from Serratia marcescens. In parallel, ChiA variants with weaker binding of the N-acetylglucosamine unit either in substrate-binding site -3 (ChiA-W167A) or the product-binding site +1 (ChiA-W275A) were studied. Both ChiA variants showed increased off-rates and lower apparent processivity on α-chitin. The rate of the production of insoluble reducing groups on the reduced α-chitin was an order of magnitude higher than koff, suggesting that the enzyme can initiate several processive runs without leaving the substrate. On crystalline chitin, the general activity of the wild type enzyme was higher, and the difference was magnifying with hydrolysis time. On amorphous chitin, the variants clearly outperformed the wild type. A model is proposed whereby strong interactions with polymer in the substrate-binding sites (low off-rates) and strong binding of the product in the product-binding sites (high pushing potential) are required for the removal of obstacles, like disintegration of chitin microfibrils.
Collapse
Affiliation(s)
| | - Silja Kuusk
- From the Institutes of Molecular and Cell Biology and
| | - Piret Kuusk
- Physics, University of Tartu, 51010 Tartu, Estonia and
| | - Morten Sørlie
- the Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås 1432, Norway
| | | |
Collapse
|