1
|
Exploring Functional Differences between the Right and Left Ventricles to Better Understand Right Ventricular Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9993060. [PMID: 34497685 PMCID: PMC8421158 DOI: 10.1155/2021/9993060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/04/2021] [Indexed: 12/16/2022]
Abstract
The right and left ventricles have traditionally been studied as individual entities. Furthermore, modifications found in diseased left ventricles are assumed to influence on right ventricle alterations, but the connection is poorly understood. In this review, we describe the differences between ventricles under physiological and pathological conditions. Understanding the mechanisms that differentiate both ventricles would facilitate a more effective use of therapeutics and broaden our knowledge of right ventricle (RV) dysfunction. RV failure is the strongest predictor of mortality in pulmonary arterial hypertension, but at present, there are no definitive therapies directly targeting RV failure. We further explore the current state of drugs and molecules that improve RV failure in experimental therapeutics and clinical trials to treat pulmonary arterial hypertension and provide evidence of their potential benefits in heart failure.
Collapse
|
2
|
Duggal D, Requena S, Nagwekar J, Raut S, Rich R, Das H, Patel V, Gryczynski I, Fudala R, Gryczynski Z, Blair C, Campbell KS, Borejdo J. No Difference in Myosin Kinetics and Spatial Distribution of the Lever Arm in the Left and Right Ventricles of Human Hearts. Front Physiol 2017; 8:732. [PMID: 29081749 PMCID: PMC5645524 DOI: 10.3389/fphys.2017.00732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/08/2017] [Indexed: 11/13/2022] Open
Abstract
The systemic circulation offers larger resistance to the blood flow than the pulmonary system. Consequently, the left ventricle (LV) must pump blood with more force than the right ventricle (RV). The question arises whether the stronger pumping action of the LV is due to a more efficient action of left ventricular myosin, or whether it is due to the morphological differences between ventricles. Such a question cannot be answered by studying the entire ventricles or myocytes because any observed differences would be wiped out by averaging the information obtained from trillions of myosin molecules present in a ventricle or myocyte. We therefore searched for the differences between single myosin molecules of the LV and RV of failing hearts In-situ. We show that the parameters that define the mechanical characteristics of working myosin (kinetic rates and the distribution of spatial orientation of myosin lever arm) were the same in both ventricles. These results suggest that there is no difference in the way myosin interacts with thin filaments in myocytes of failing hearts, and suggests that the difference in pumping efficiencies are caused by interactions between muscle proteins other than myosin or that they are purely morphological.
Collapse
Affiliation(s)
- Divya Duggal
- Department of Cell Biology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, TX, United States
| | - S Requena
- Department of Cell Biology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, TX, United States
| | - Janhavi Nagwekar
- Department of Cell Biology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, TX, United States
| | - Sangram Raut
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States
| | - Ryan Rich
- Department of Mathematics and Physics, Texas Wesleyan University, Fort Worth, TX, United States
| | - Hriday Das
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas, Health Science Center, Fort Worth, TX, United States
| | - Vipul Patel
- Department of Cell Biology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, TX, United States.,Center of Emphasis in Diabetes and Metabolism, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Ignacy Gryczynski
- Department of Cell Biology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, TX, United States
| | - Rafal Fudala
- Department of Cell Biology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, TX, United States
| | - Zygmunt Gryczynski
- Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX, United States
| | - Cheavar Blair
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Julian Borejdo
- Department of Cell Biology and Center for Commercialization of Fluorescence Technologies, University of North Texas, Health Science Center, Fort Worth, TX, United States
| |
Collapse
|