1
|
Zhou P, Jia Y, Zhang T, Abudukeremu A, He X, Zhang X, Liu C, Li W, Li Z, Sun L, Guang S, Zhou Z, Yuan Z, Lu X, Yu Y. Red Light-Activated Reversible Inhibition of Protein Functions by Assembled Trap. ACS Synth Biol 2025. [PMID: 40304578 DOI: 10.1021/acssynbio.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Red light, characterized by superior tissue penetration and minimal phototoxicity, represents an ideal wavelength for optogenetic applications. However, the existing tools for reversible protein inhibition by red light remain limited. Here, we introduce R-LARIAT (red light-activated reversible inhibition by assembled trap), a novel optogenetic system enabling precise spatiotemporal control of protein function via 660 nm red-light-induced protein clustering. Our system harnesses the rapid and reversible binding of engineered light-dependent binders (LDBs) to the bacterial phytochrome DrBphP, which utilizes the endogenous mammalian biliverdin chromophore for red light absorption. By fusing LDBs with single-domain antibodies targeting epitope-tagged proteins (e.g., GFP), R-LARIAT enables the rapid sequestration of diverse proteins into light-responsive clusters. This approach demonstrates high light sensitivity, clustering efficiency, and sustained stability. As a proof of concept, R-LARIAT-mediated sequestration of tubulin inhibits cell cycle progression in HeLa cells. This system expands the optogenetic toolbox for studying dynamic biological processes with high spatial and temporal resolution and holds the potential for applications in living tissues.
Collapse
Affiliation(s)
- Peng Zhou
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongkang Jia
- School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Tianyu Zhang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Abasi Abudukeremu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuan He
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiaozhong Zhang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Chao Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zengpeng Li
- Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Fujian Collaborative Innovation Centre for Exploitation and Utilization of Marine Biological Resources, Third Institute of Oceanography Ministry of Natural Resources, Xiamen 361005, China
| | - Ling Sun
- Center for Reproductive Medicine, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Shouhong Guang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zhongcheng Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Zhiheng Yuan
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohua Lu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Yu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
2
|
Vrhovac LS, Levkovets M, Orekhov VY, Westenhoff S. Refolding of the Deinococcus Radiodurans phytochrome photosensory module and an extended backbone resonance assignment by solution NMR. Protein Expr Purif 2025; 231:106699. [PMID: 40122193 DOI: 10.1016/j.pep.2025.106699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/03/2025] [Accepted: 03/08/2025] [Indexed: 03/25/2025]
Abstract
Solution NMR reveals the structure and dynamics of biomolecules in solution. In particular, the method can detect changes due to perturbation of the molecules, without limiting effects of frozen particles or crystal environments. Phytochromes are photosensors which control the response to red/far-red light in bacteria, fungi and plants, undergo specific structural changes when photoactivated from the Pr to the Pfr state. While structures of phytochromes have been revealed in both states, the structural mechanism of photoconversion remains incompletely understood. Our previous NMR studies of the entire photosensory core module of the D. radiodurans phytochrome have revealed novel structural changes, but the backbone assignment was incomplete. In particular, a lack of the assignment in the protein core hindered more detailed insight in signaling mechanism. Here, we outline an efficient procedure for the refolding of the three-domain, photosensory core fragment of the D. radiodurans phytochrome in its monomeric form. We find that treatment with guanidinium hydrochloride and subsequent dilution effectively refolds the phytochrome, maintaining its functionality. We characterize the refolded protein with solution NMR spectroscopy newly assigning 27 (44) residues in Pr (Pfr), out of which 12 exhibit notable chemical shift perturbation upon photoactivation. The study presents a functional method for purification and refolding of a multidomain protein and opens the door for further structural and dynamic analysis of phytochromes. Author summary Refolding of proteins is an established method to increase the deuterium-hydrogen exchange of amid bonds in isotopically labeled proteins, which are located deep in the protein core. Yet, the method has to be optimized for each individual protein and in particular for multidomain proteins it is not trivial to find satisfactory experimental conditions. Here we identify a method to refold a D. radiodurans phytochrome construct and characterize the outcome of the procedure using solution NMR and optical spectroscopy. The quick accessibility on whether the refolded phytochrome was functional or not has been obtained from optical spectra, which also made the screening of a number of additives possible. The procedure led to a significant increase in the number of the assigned residues especially in the protein core, close to the photochemically active chromophore, which enables a more detailed investigation of the structure and dynamics throughout the photocycle of the phytochrome.
Collapse
Affiliation(s)
- Lidija S Vrhovac
- Department of Chemistry - BMC, Uppsala University, 75105 Uppsala, Sweden
| | - Maria Levkovets
- Department of Chemistry & Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Vladislav Y Orekhov
- Department of Chemistry & Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; The Swedish NMR Centre (SNC), Department of Chemistry & Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry - BMC, Uppsala University, 75105 Uppsala, Sweden; Department of Chemistry & Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Center of Excellence for the Chemical Mechanisms of Life, Uppsala University, 75105 University, Sweden.
| |
Collapse
|
3
|
Yang HW, Song J, Song J, Kim YW, Rockwell NC, Kim W, Kim H, Lagarias JC, Park Y. Dual-Cys bacteriophytochromes: intermediates in cyanobacterial phytochrome evolution? FEBS J 2025; 292:1197-1216. [PMID: 39801362 PMCID: PMC11880981 DOI: 10.1111/febs.17395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/19/2024] [Accepted: 11/27/2024] [Indexed: 03/06/2025]
Abstract
Previous studies have identified three families of knotted phytochrome photoreceptors in cyanobacteria. We describe a fourth type: 'hybrid' phytochromes with putative bilin-binding cysteine residues in both their N-terminal 'knot' extensions and cGMP-phosphodiesterase/adenylate cyclase/FhlA (GAF) domains, which we designate as dual-cysteine bacteriophytochromes (DCBs). Recombinant expression of DCBs in Escherichia coli yields photoactive phycocyanobilin (PCB) adducts with red/far-red photocycles similar to those of the GAF-Cys-containing cyanobacterial phytochromes (Cph1s). Incorporation of the PCB precursor, biliverdin IXα (BV), gave multiple populations, one of which appears similar to those of cyanobacterial bacteriophytochromes (cBphPs). A crystal structure of FiDCB bound to BV exhibits two thioether linkages between the GAF- and 'PAS-knot'-Cys residues and the C31 and C32 atoms of BV. When expressed in Synechocystis sp. PCC 6803, DCBs incorporate PCB rather than BV. DCBs can be converted to photoactive cBphP-, Cph1-, and tandem-cysteine cyanobacterial phytochrome (TCCP) analogs by removal and/or addition of a cysteine residue by site-directed mutagenesis. This structural plasticity contrasts with our inability to generate functional photosensor analogs by analogous site-directed mutagenesis of TCCP and Cph1 representatives. Phylogenetic analysis demonstrates that DCBs do not form a monophyletic clade and also suggest that Cph1 and TCCP families independently emerged from different lineages of cBphPs, possibly via DCB intermediates.
Collapse
Affiliation(s)
- Hee Wook Yang
- Department of Biological SciencesChungnam National UniversityDaejeonKorea
| | - Ji‐Young Song
- Department of Biological SciencesChungnam National UniversityDaejeonKorea
| | - Ji‐Joon Song
- Department of Biological Science and KI for the BioCenturyKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea
| | - Young Won Kim
- Department of Biological SciencesChungnam National UniversityDaejeonKorea
| | - Nathan C. Rockwell
- Department of Molecular and Cellular BiologyUniversity of CaliforniaDavisCAUSA
| | - Woojin Kim
- Department of Convergent Bioscience and InformaticsChungnam National UniversityDaejeonKorea
| | - Hyunsoo Kim
- Department of Convergent Bioscience and InformaticsChungnam National UniversityDaejeonKorea
- Department of Bio‐AI ConvergenceChungnam National UniversityDaejeonKorea
| | - J. Clark Lagarias
- Department of Molecular and Cellular BiologyUniversity of CaliforniaDavisCAUSA
| | - Youn‐Il Park
- Department of Biological SciencesChungnam National UniversityDaejeonKorea
| |
Collapse
|
4
|
Hughes J, Winkler A. New Insight Into Phytochromes: Connecting Structure to Function. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:153-183. [PMID: 39038250 DOI: 10.1146/annurev-arplant-070623-110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Red and far-red light-sensing phytochromes are widespread in nature, occurring in plants, algae, fungi, and prokaryotes. Despite at least a billion years of evolution, their photosensory modules remain structurally and functionally similar. Conversely, nature has found remarkably different ways of transmitting light signals from the photosensor to diverse physiological responses. We summarize key features of phytochrome structure and function and discuss how these are correlated, from how the bilin environment affects the chromophore to how light induces cellular signals. Recent advances in the structural characterization of bacterial and plant phytochromes have resulted in paradigm changes in phytochrome research that we discuss in the context of present-day knowledge. Finally, we highlight questions that remain to be answered and suggest some of the benefits of understanding phytochrome structure and function.
Collapse
Affiliation(s)
- Jon Hughes
- Department of Plant Physiology, Justus Liebig University, Giessen, Germany;
- Department of Physics, Free University of Berlin, Berlin, Germany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Graz, Austria;
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
5
|
Karasev MM, Verkhusha VV, Shcherbakova DM. Near-Infrared Optogenetic Module for Conditional Protein Splicing. J Mol Biol 2023; 435:168360. [PMID: 37949312 PMCID: PMC10842711 DOI: 10.1016/j.jmb.2023.168360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Optogenetics has emerged as a powerful tool for spatiotemporal control of biological processes. Near-infrared (NIR) light, with its low phototoxicity and deep tissue penetration, holds particular promise. However, the optogenetic control of polypeptide bond formation has not yet been developed. In this study, we introduce a NIR optogenetic module for conditional protein splicing (CPS) based on the gp41-1 intein. We optimized the module to minimize background signals in the darkness and to maximize the contrast between light and dark conditions. Next, we engineered a NIR CPS gene expression system based on the protein ligation of a transcription factor. We applied the NIR CPS for light-triggered protein cleavage to activate gasdermin D, a pore-forming protein that induces pyroptotic cell death. Our NIR CPS optogenetic module represents a promising tool for controlling molecular processes through covalent protein linkage and cleavage.
Collapse
Affiliation(s)
- Maksim M Karasev
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Department of Genetics, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Daria M Shcherbakova
- Department of Genetics, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
6
|
Kurttila M, Rumfeldt J, Takala H, Ihalainen JA. The interconnecting hairpin extension "arm": An essential allosteric element of phytochrome activity. Structure 2023; 31:1100-1108.e4. [PMID: 37392739 DOI: 10.1016/j.str.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 07/03/2023]
Abstract
In red-light sensing phytochromes, isomerization of the bilin chromophore triggers structural and dynamic changes across multiple domains, ultimately leading to control of the output module (OPM) activity. In between, a hairpin structure, "arm", extends from an interconnecting domain to the chromophore region. Here, by removing this protein segment in a bacteriophytochrome from Deinococcus radiodurans (DrBphP), we show that the arm is crucial for signal transduction. Crystallographic, spectroscopic, and biochemical data indicate that this variant maintains the properties of DrBphP in the resting state. Spectroscopic data also reveal that the armless systems maintain the ability to respond to light. However, there is no subsequent regulation of OPM activity without the arms. Thermal denaturation reveals that the arms stabilize the DrBphP structure. Our results underline the importance of the structurally flexible interconnecting hairpin extensions and describe their central role in the allosteric coupling of phytochromes.
Collapse
Affiliation(s)
- Moona Kurttila
- University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyvaskyla, Finland
| | - Jessica Rumfeldt
- University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyvaskyla, Finland
| | - Heikki Takala
- University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyvaskyla, Finland.
| | - Janne A Ihalainen
- University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Science, 40014 Jyvaskyla, Finland.
| |
Collapse
|
7
|
Kurttila M, Etzl S, Rumfeldt J, Takala H, Galler N, Winkler A, Ihalainen JA. The structural effect between the output module and chromophore-binding domain is a two-way street via the hairpin extension. Photochem Photobiol Sci 2022; 21:1881-1894. [PMID: 35984631 PMCID: PMC9630206 DOI: 10.1007/s43630-022-00265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022]
Abstract
Signal transduction typically starts with either ligand binding or cofactor activation, eventually affecting biological activities in the cell. In red light-sensing phytochromes, isomerization of the bilin chromophore results in regulation of the activity of diverse output modules. During this process, several structural elements and chemical events influence signal propagation. In our study, we have studied the full-length bacteriophytochrome from Deinococcus radiodurans as well as a previously generated optogenetic tool where the native histidine kinase output module has been replaced with an adenylate cyclase. We show that the composition of the output module influences the stability of the hairpin extension. The hairpin, often referred as the PHY tongue, is one of the central structural elements for signal transduction. It extends from a distinct domain establishing close contacts with the chromophore binding site. If the coupling between these interactions is disrupted, the dynamic range of the enzymatic regulation is reduced. Our study highlights the complex conformational properties of the hairpin extension as a bidirectional link between the chromophore-binding site and the output module, as well as functional properties of diverse output modules.
Collapse
Affiliation(s)
- Moona Kurttila
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Stefan Etzl
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Jessica Rumfeldt
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Heikki Takala
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Nadine Galler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria.
| | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.
| |
Collapse
|
8
|
A red light-responsive photoswitch for deep tissue optogenetics. Nat Biotechnol 2022; 40:1672-1679. [PMID: 35697806 DOI: 10.1038/s41587-022-01351-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/04/2022] [Indexed: 12/30/2022]
Abstract
Red light penetrates deep into mammalian tissues and has low phototoxicity, but few optogenetic tools that use red light have been developed. Here we present MagRed, a red light-activatable photoswitch that consists of a red light-absorbing bacterial phytochrome incorporating a mammalian endogenous chromophore, biliverdin and a photo-state-specific binder that we developed using Affibody library selection. Red light illumination triggers the binding of the two components of MagRed and the assembly of split-proteins fused to them. Using MagRed, we developed a red light-activatable Cre recombinase, which enables light-activatable DNA recombination deep in mammalian tissues. We also created red light-inducible transcriptional regulators based on CRISPR-Cas9 that enable an up to 378-fold activation (average, 135-fold induction) of multiple endogenous target genes. MagRed will facilitate optogenetic applications deep in mammalian organisms in a variety of biological research areas.
Collapse
|
9
|
Emig R, Hoess P, Cai H, Kohl P, Peyronnet R, Weber W, Hörner M. Benchmarking of Cph1 Mutants and DrBphP for Light-Responsive Phytochrome-Based Hydrogels with Reversibly Adjustable Mechanical Properties. Adv Biol (Weinh) 2022; 6:e2000337. [PMID: 35481696 DOI: 10.1002/adbi.202000337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/31/2022] [Indexed: 01/28/2023]
Abstract
In the rapidly expanding field of molecular optogenetics, the performance of the engineered systems relies on the switching properties of the underlying genetically encoded photoreceptors. In this study, the bacterial phytochromes Cph1 and DrBphP are engineered, recombinantly produced in Escherichia coli, and characterized regarding their switching properties in order to synthesize biohybrid hydrogels with increased light-responsive stiffness modulations. The R472A mutant of the cyanobacterial phytochrome 1 (Cph1) is identified to confer the phytochrome-based hydrogels with an increased dynamic range for the storage modulus but a different light-response for the loss modulus compared to the original Cph1-based hydrogel. Stiffness measurements of human atrial fibroblasts grown on these hydrogels suggest that differences in the loss modulus at comparable changes in the storage modulus affect cell stiffness and thus underline the importance of matrix viscoelasticity on cellular mechanotransduction. The hydrogels presented here are of interest for analyzing how mammalian cells respond to dynamic viscoelastic cues. Moreover, the Cph1-R472A mutant, as well as the benchmarking of the other phytochrome variants, are expected to foster the development and performance of future optogenetic systems.
Collapse
Affiliation(s)
- Ramona Emig
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.,Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, 79110, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Philipp Hoess
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Hanyang Cai
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, 79110, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, 79110, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Maximilian Hörner
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
10
|
Leopold AV, Thankachan S, Yang C, Gerashchenko D, Verkhusha VV. A general approach for engineering RTKs optically controlled with far-red light. Nat Methods 2022; 19:871-880. [PMID: 35681062 DOI: 10.1038/s41592-022-01517-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Regulation of receptor tyrosine kinase (RTK) activity is necessary for studying cell signaling pathways in health and disease. We developed a generalized approach for engineering RTKs optically controlled with far-red light. We targeted the bacterial phytochrome DrBphP to the cell surface and allowed its light-induced conformational changes to be transmitted across the plasma membrane via transmembrane helices to intracellular RTK domains. Systematic optimization of these constructs has resulted in optically regulated epidermal growth factor receptor, HER2, TrkA, TrkB, FGFR1, IR1, cKIT and cMet, named eDrRTKs. eDrRTKs induced downstream signaling in mammalian cells in tens of seconds. The ability to activate eDrRTKs with far-red light enabled spectral multiplexing with fluorescent probes operating in a shorter spectral range, allowing for all-optical assays. We validated eDrTrkB performance in mice and found that minimally invasive stimulation in the neocortex with penetrating via skull far-red light-induced neural activity, early immediate gene expression and affected sleep patterns.
Collapse
Affiliation(s)
- Anna V Leopold
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Chun Yang
- Department of Psychiatry, Harvard Medical School, West Roxbury, MA, USA
| | | | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
11
|
Rumfeldt J, Kurttila M, Takala H, Ihalainen JA. The hairpin extension controls solvent access to the chromophore binding pocket in a bacterial phytochrome: a UV-vis absorption spectroscopy study. Photochem Photobiol Sci 2021; 20:1173-1181. [PMID: 34460093 DOI: 10.1007/s43630-021-00090-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Solvent access to the protein interior plays an important role in the function of many proteins. Phytochromes contain a specific structural feature, a hairpin extension that appears to relay structural information from the chromophore to the rest of the protein. The extension interacts with amino acids near the chromophore, and hence shields the chromophore from the surrounding solvent. We envision that the detachment of the extension from the protein surface allows solvent exchange reactions in the vicinity of the chromophore. This can facilitate for example, proton transfer processes between solvent and the protein interior. To test this hypothesis, the kinetics of the protonation state of the biliverdin chromophore from Deinococcus radiodurans bacteriophytchrome, and thus, the pH of the surrounding solution, is determined. The observed absorbance changes are related to the solvent access of the chromophore binding pocket, gated by the hairpin extension. We therefore propose a model with an "open" (solvent-exposed, deprotonation-active on a (sub)second time-scale) state and a "closed" (solvent-gated, deprotonation inactive) state, where the hairpin fluctuates slowly between these conformations thereby controlling the deprotonation process of the chromophore on a minute time scale. When the connection between the hairpin and the biliverdin surroundings is destabilized by a point mutation, the amplitude of the deprotonation phase increases considerably. In the absence of the extension, the chromophore deprotonates essentially without any "gating". Hence, we introduce a straightforward method to study the stability and fluctuation of the phytochrome hairpin in its photostationary state. This approach can be extended to other chromophore-protein systems where absorption changes reflect dynamic processes of the protein.
Collapse
Affiliation(s)
- Jessica Rumfeldt
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Moona Kurttila
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Heikki Takala
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland
| | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014, Jyväskylä, Finland.
| |
Collapse
|
12
|
Takala H, Edlund P, Ihalainen JA, Westenhoff S. Tips and turns of bacteriophytochrome photoactivation. Photochem Photobiol Sci 2021; 19:1488-1510. [PMID: 33107538 DOI: 10.1039/d0pp00117a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module, and the output domains. We discuss possible interconnections between the tiers and conclude by presenting future directions and open questions. We hope that this review may serve as a compendium to guide future structural and spectroscopic studies designed to understand structural signaling in phytochromes.
Collapse
Affiliation(s)
- Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland. and Department of Anatomy, Faculty of Medicine, University of Helsinki, Box 63, 00014 Helsinki, Finland
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland.
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| |
Collapse
|
13
|
Isaksson L, Gustavsson E, Persson C, Brath U, Vrhovac L, Karlsson G, Orekhov V, Westenhoff S. Signaling Mechanism of Phytochromes in Solution. Structure 2020; 29:151-160.e3. [PMID: 32916102 DOI: 10.1016/j.str.2020.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/19/2020] [Accepted: 08/21/2020] [Indexed: 12/31/2022]
Abstract
Phytochrome proteins guide the red/far-red photoresponse of plants, fungi, and bacteria. Crystal structures suggest that the mechanism of signal transduction from the chromophore to the output domains involves refolding of the so-called PHY tongue. It is currently not clear how the two other notable structural features of the phytochrome superfamily, the so-called helical spine and a knot in the peptide chain, are involved in photoconversion. Here, we present solution NMR data of the complete photosensory core module from Deinococcus radiodurans. Photoswitching between the resting and the active states induces changes in amide chemical shifts, residual dipolar couplings, and relaxation dynamics. All observables indicate a photoinduced structural change in the knot region and lower part of the helical spine. This implies that a conformational signal is transduced from the chromophore to the helical spine through the PAS and GAF domains. The discovered pathway underpins functional studies of plant phytochromes and may explain photosensing by phytochromes under biological conditions.
Collapse
Affiliation(s)
- Linnéa Isaksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Emil Gustavsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Cecilia Persson
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Ulrika Brath
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Lidija Vrhovac
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Göran Karlsson
- Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Vladislav Orekhov
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden; Swedish NMR Center, Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41390 Gothenburg, Sweden.
| |
Collapse
|
14
|
Leopold AV, Pletnev S, Verkhusha VV. Bacterial Phytochrome as a Scaffold for Engineering of Receptor Tyrosine Kinases Controlled with Near-Infrared Light. J Mol Biol 2020; 432:3749-3760. [PMID: 32302608 PMCID: PMC7306426 DOI: 10.1016/j.jmb.2020.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/29/2020] [Accepted: 04/03/2020] [Indexed: 01/18/2023]
Abstract
Optically controlled receptor tyrosine kinases (opto-RTKs) allow regulation of RTK signaling using light. Until recently, the majority of opto-RTKs were activated with blue-green light. Fusing a photosensory core module of Deinococcus radiodurans bacterial phytochrome (DrBphP-PCM) to the kinase domains of neurotrophin receptors resulted in opto-RTKs controlled with light above 650 nm. To expand this engineering approach to RTKs of other families, here we combined the DrBpP-PCM with the cytoplasmic domains of EGFR and FGFR1. The resultant Dr-EGFR and Dr-FGFR1 opto-RTKs are rapidly activated with near-infrared and inactivated with far-red light. The opto-RTKs efficiently trigger ERK1/2, PI3K/Akt, and PLCγ signaling. Absence of spectral crosstalk between the opto-RTKs and green fluorescent protein-based biosensors enables simultaneous Dr-FGFR1 activation and detection of calcium transients. Action mechanism of the DrBphP-PCM-based opto-RTKs is considered using the available RTK structures. DrBphP-PCM represents a versatile scaffold for engineering of opto-RTKs that are reversibly regulated with far-red and near-infrared light.
Collapse
Affiliation(s)
- Anna V Leopold
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Sergei Pletnev
- Macromolecular Crystallography Laboratory, National Cancer Institute, Basic Science Program, Leidos Biomedical Research Inc., Argonne, IL 60439, USA
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
15
|
Klose C, Nagy F, Schäfer E. Thermal Reversion of Plant Phytochromes. MOLECULAR PLANT 2020; 13:386-397. [PMID: 31812690 DOI: 10.1016/j.molp.2019.12.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/21/2019] [Accepted: 12/03/2019] [Indexed: 05/18/2023]
Abstract
Phytochromes are red/far-red reversible photoreceptors essential for plant growth and development. Phytochrome signaling is mediated by the physiologically active far-red-absorbing Pfr form that can be inactivated to the red-absorbing Pr ground state by light-dependent photoconversion or by light-independent thermal reversion, also termed dark reversion. Although the term "dark reversion" is justified by historical reasons and frequently used in the literature, "thermal reversion" more appropriately describes the process of light-independent but temperature-regulated Pfr relaxation that not only occurs in darkness but also in light and is used throughout the review. Thermal reversion is a critical parameter for the light sensitivity of phytochrome-mediated responses and has been studied for decades, often resulting in contradictory findings. Thermal reversion is an intrinsic property of the phytochrome molecules but can be modulated by intra- and intermolecular interactions, as well as biochemical modifications, such as phosphorylation. In this review, we outline the research history of phytochrome thermal reversion, highlighting important predictions that have been made before knowing the molecular basis. We further summarize and discuss recent findings about the molecular mechanisms regulating phytochrome thermal reversion and its functional roles in light and temperature sensing in plants.
Collapse
Affiliation(s)
- Cornelia Klose
- Institute of Biology II, University of Freiburg, 79104 Freiburg, Germany.
| | - Ferenc Nagy
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary
| | - Eberhard Schäfer
- Institute of Biology II, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
16
|
Takala H, Lehtivuori HK, Berntsson O, Hughes A, Nanekar R, Niebling S, Panman M, Henry L, Menzel A, Westenhoff S, Ihalainen JA. On the (un)coupling of the chromophore, tongue interactions, and overall conformation in a bacterial phytochrome. J Biol Chem 2018; 293:8161-8172. [PMID: 29622676 DOI: 10.1074/jbc.ra118.001794] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/04/2018] [Indexed: 02/01/2023] Open
Abstract
Phytochromes are photoreceptors in plants, fungi, and various microorganisms and cycle between metastable red light-absorbing (Pr) and far-red light-absorbing (Pfr) states. Their light responses are thought to follow a conserved structural mechanism that is triggered by isomerization of the chromophore. Downstream structural changes involve refolding of the so-called tongue extension of the phytochrome-specific GAF-related (PHY) domain of the photoreceptor. The tongue is connected to the chromophore by conserved DIP and PRXSF motifs and a conserved tyrosine, but the role of these residues in signal transduction is not clear. Here, we examine the tongue interactions and their interplay with the chromophore by substituting the conserved tyrosine (Tyr263) in the phytochrome from the extremophile bacterium Deinococcus radiodurans with phenylalanine. Using optical and FTIR spectroscopy, X-ray solution scattering, and crystallography of chromophore-binding domain (CBD) and CBD-PHY fragments, we show that the absence of the Tyr263 hydroxyl destabilizes the β-sheet conformation of the tongue. This allowed the phytochrome to adopt an α-helical tongue conformation regardless of the chromophore state, hence distorting the activity state of the protein. Our crystal structures further revealed that water interactions are missing in the Y263F mutant, correlating with a decrease of the photoconversion yield and underpinning the functional role of Tyr263 in phytochrome conformational changes. We propose a model in which isomerization of the chromophore, refolding of the tongue, and globular conformational changes are represented as weakly coupled equilibria. The results also suggest that the phytochromes have several redundant signaling routes.
Collapse
Affiliation(s)
- Heikki Takala
- Anatomy Department, Faculty of Medicine, University of Helsinki, Helsinki FI-00014, Finland; Departments of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla FI-40014, Finland.
| | - Heli K Lehtivuori
- Department of Physics, Nanoscience Center, University of Jyvaskyla, Jyvaskyla FI-40014, Finland
| | - Oskar Berntsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Ashley Hughes
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Rahul Nanekar
- Departments of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla FI-40014, Finland
| | - Stephan Niebling
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Matthijs Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Léocadie Henry
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Andreas Menzel
- Paul Scherrer Institut, 5232 Villigen PSI, 15 Switzerland
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-40530 Gothenburg, Sweden
| | - Janne A Ihalainen
- Departments of Biological and Environmental Sciences, University of Jyvaskyla, Jyvaskyla FI-40014, Finland
| |
Collapse
|
17
|
Lenngren N, Edlund P, Takala H, Stucki-Buchli B, Rumfeldt J, Peshev I, Häkkänen H, Westenhoff S, Ihalainen JA. Coordination of the biliverdin D-ring in bacteriophytochromes. Phys Chem Chem Phys 2018; 20:18216-18225. [DOI: 10.1039/c8cp01696h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vibrational spectroscopy and crystallography experiments provide a basis for understanding the isomerization reaction in phytochrome proteins.
Collapse
Affiliation(s)
- Nils Lenngren
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
| | - Petra Edlund
- Department of Chemistry and Molecular Biology
- Biochemistry and Biophysics
- University of Gothenburg
- SE-40530 Gothenburg
- Sweden
| | - Heikki Takala
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
- University of Helsinki
| | - Brigitte Stucki-Buchli
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
| | - Jessica Rumfeldt
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
| | - Ivan Peshev
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
| | - Heikki Häkkänen
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology
- Biochemistry and Biophysics
- University of Gothenburg
- SE-40530 Gothenburg
- Sweden
| | - Janne A. Ihalainen
- Department of Biological and Environmental Sciences
- Nanoscience Center
- University of Jyväskylä
- Finland
| |
Collapse
|
18
|
Burgie ES, Bussell AN, Lye SH, Wang T, Hu W, McLoughlin KE, Weber EL, Li H, Vierstra RD. Photosensing and Thermosensing by Phytochrome B Require Both Proximal and Distal Allosteric Features within the Dimeric Photoreceptor. Sci Rep 2017; 7:13648. [PMID: 29057954 PMCID: PMC5651913 DOI: 10.1038/s41598-017-14037-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/21/2017] [Indexed: 11/12/2022] Open
Abstract
Phytochromes (Phys) encompass a diverse collection of bilin-containing photoreceptors that help plants and microorganisms perceive light through photointerconversion between red light (Pr) and far-red light (Pfr)-absorbing states. In addition, Pfr reverts thermally back to Pr via a highly enthalpic process that enables temperature sensation in plants and possibly other organisms. Through domain analysis of the Arabidopsis PhyB isoform assembled recombinantly, coupled with measurements of solution size, photoconversion, and thermal reversion, we identified both proximal and distal features that influence all three metrics. Included are the downstream C-terminal histidine kinase-related domain known to promote dimerization and a conserved patch just upstream of an N-terminal Period/Arnt/Sim (PAS) domain, which upon removal dramatically accelerates thermal reversion. We also discovered that the nature of the bilin strongly influences Pfr stability. Whereas incorporation of the native bilin phytochromobilin into PhyB confers robust Pfr → Pr thermal reversion, that assembled with the cyanobacterial version phycocyanobilin, often used for optogenetics, has a dramatically stabilized Pfr state. Taken together, we conclude that Pfr acquisition and stability are impacted by a collection of opposing allosteric features that inhibit or promote photoconversion and reversion of Pfr back to Pr, thus allowing Phys to dynamically measure light, temperature, and possibly time.
Collapse
Affiliation(s)
- E Sethe Burgie
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA.,Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Adam N Bussell
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Shu-Hui Lye
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA.,Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Tong Wang
- Department of Biology, Brookhaven National Laboratory, Upton, New York, 11973, USA.,CUNY Advanced Science Research Center, The City University of New York, New York, New York, 10031, USA
| | - Weiming Hu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Katrice E McLoughlin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA
| | - Erin L Weber
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Huilin Li
- Department of Biology, Brookhaven National Laboratory, Upton, New York, 11973, USA.,Van Andel Research Institute, Grand Rapids, Michigan, 49503, USA
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, 63130, USA. .,Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA.
| |
Collapse
|
19
|
Gourinchas G, Etzl S, Göbl C, Vide U, Madl T, Winkler A. Long-range allosteric signaling in red light-regulated diguanylyl cyclases. SCIENCE ADVANCES 2017; 3:e1602498. [PMID: 28275738 PMCID: PMC5336353 DOI: 10.1126/sciadv.1602498] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/10/2017] [Indexed: 05/06/2023]
Abstract
Nature has evolved an astonishingly modular architecture of covalently linked protein domains with diverse functionalities to enable complex cellular networks that are critical for cell survival. The coupling of sensory modules with enzymatic effectors allows direct allosteric regulation of cellular signaling molecules in response to diverse stimuli. We present molecular details of red light-sensing bacteriophytochromes linked to cyclic dimeric guanosine monophosphate-producing diguanylyl cyclases. Elucidation of the first crystal structure of a full-length phytochrome with its enzymatic effector, in combination with the characterization of light-induced changes in conformational dynamics, reveals how allosteric light regulation is fine-tuned by the architecture and composition of the coiled-coil sensor-effector linker and also the central helical spine. We anticipate that consideration of molecular principles of sensor-effector coupling, going beyond the length of the characteristic linker, and the appreciation of dynamically driven allostery will open up new directions for the design of novel red light-regulated optogenetic tools.
Collapse
Affiliation(s)
- Geoffrey Gourinchas
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Stefan Etzl
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Christoph Göbl
- Center for Integrated Protein Science Munich, Technische Universität München, Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Uršula Vide
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Tobias Madl
- Center for Integrated Protein Science Munich, Technische Universität München, Department of Chemistry, Lichtenbergstraße 4, 85748 Garching, Germany
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/III, 8010 Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
- Corresponding author.
| |
Collapse
|
20
|
Takala H, Niebling S, Berntsson O, Björling A, Lehtivuori H, Häkkänen H, Panman M, Gustavsson E, Hoernke M, Newby G, Zontone F, Wulff M, Menzel A, Ihalainen JA, Westenhoff S. Light-induced structural changes in a monomeric bacteriophytochrome. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2016; 3:054701. [PMID: 27679804 PMCID: PMC5010554 DOI: 10.1063/1.4961911] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/15/2016] [Indexed: 05/11/2023]
Abstract
Phytochromes sense red light in plants and various microorganism. Light absorption causes structural changes within the protein, which alter its biochemical activity. Bacterial phytochromes are dimeric proteins, but the functional relevance of this arrangement remains unclear. Here, we use time-resolved X-ray scattering to reveal the solution structural change of a monomeric variant of the photosensory core module of the phytochrome from Deinococcus radiodurans. The data reveal two motions, a bend and a twist of the PHY domain with respect to the chromophore-binding domains. Infrared spectroscopy shows the refolding of the PHY tongue. We conclude that a monomer of the phytochrome photosensory core is sufficient to perform the light-induced structural changes. This implies that allosteric cooperation with the other monomer is not needed for structural activation. The dimeric arrangement may instead be intrinsic to the biochemical output domains of bacterial phytochromes.
Collapse
Affiliation(s)
| | - Stephan Niebling
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg 40530, Sweden
| | - Oskar Berntsson
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg 40530, Sweden
| | - Alexander Björling
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg 40530, Sweden
| | | | - Heikki Häkkänen
- Nanoscience Center, Department of Biological and Environmental Sciences, University of Jyvaskyla , Jyväskylä 40014, Finland
| | - Matthijs Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg 40530, Sweden
| | - Emil Gustavsson
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg 40530, Sweden
| | | | - Gemma Newby
- ESRF-The European Synchrotron Radiation Facility , CS40220, 38043 Grenoble Cedex 9, France
| | - Federico Zontone
- ESRF-The European Synchrotron Radiation Facility , CS40220, 38043 Grenoble Cedex 9, France
| | - Michael Wulff
- ESRF-The European Synchrotron Radiation Facility , CS40220, 38043 Grenoble Cedex 9, France
| | | | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Sciences, University of Jyvaskyla , Jyväskylä 40014, Finland
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg , Gothenburg 40530, Sweden
| |
Collapse
|
21
|
Björling A, Berntsson O, Lehtivuori H, Takala H, Hughes AJ, Panman M, Hoernke M, Niebling S, Henry L, Henning R, Kosheleva I, Chukharev V, Tkachenko NV, Menzel A, Newby G, Khakhulin D, Wulff M, Ihalainen JA, Westenhoff S. Structural photoactivation of a full-length bacterial phytochrome. SCIENCE ADVANCES 2016; 2:e1600920. [PMID: 27536728 PMCID: PMC4982709 DOI: 10.1126/sciadv.1600920] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/13/2016] [Indexed: 05/11/2023]
Abstract
Phytochromes are light sensor proteins found in plants, bacteria, and fungi. They function by converting a photon absorption event into a conformational signal that propagates from the chromophore through the entire protein. However, the structure of the photoactivated state and the conformational changes that lead to it are not known. We report time-resolved x-ray scattering of the full-length phytochrome from Deinococcus radiodurans on micro- and millisecond time scales. We identify a twist of the histidine kinase output domains with respect to the chromophore-binding domains as the dominant change between the photoactivated and resting states. The time-resolved data further show that the structural changes up to the microsecond time scales are small and localized in the chromophore-binding domains. The global structural change occurs within a few milliseconds, coinciding with the formation of the spectroscopic meta-Rc state. Our findings establish key elements of the signaling mechanism of full-length bacterial phytochromes.
Collapse
Affiliation(s)
| | | | | | - Heikki Takala
- University of Gothenburg, 40530 Gothenburg, Sweden
- University of Jyväskylä, 40014 Jyväskylä, Finland
| | | | | | | | | | | | | | | | | | | | - Andreas Menzel
- Paul Scherrer Institut, Villigen, 5232 Villigen PSI, Switzerland
| | - Gemma Newby
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | | | - Michael Wulff
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | | | | |
Collapse
|
22
|
Singer P, Wörner S, Lamparter T, Diller R. Spectroscopic Investigation on the Primary Photoreaction of Bathy Phytochrome Agp2-Pr ofAgrobacterium fabrum: Isomerization in a pH-dependent H-bond Network. Chemphyschem 2016; 17:1288-97. [DOI: 10.1002/cphc.201600199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Patrick Singer
- Department of Physics; University of Kaiserslautern; Erwin-Schrödinger-Strasse, Geb. 46 67663 Kaiserslautern Germany), Fax: +49-631-205-3902
| | - Sybille Wörner
- Botanical Institute; Karlsruhe Institute of Technology; Kaiserstraße 2 76131 Karlsruhe Germany
| | - Tilman Lamparter
- Botanical Institute; Karlsruhe Institute of Technology; Kaiserstraße 2 76131 Karlsruhe Germany
| | - Rolf Diller
- Department of Physics; University of Kaiserslautern; Erwin-Schrödinger-Strasse, Geb. 46 67663 Kaiserslautern Germany), Fax: +49-631-205-3902
| |
Collapse
|
23
|
Burgie E, Zhang J, Vierstra R. Crystal Structure of Deinococcus Phytochrome in the Photoactivated State Reveals a Cascade of Structural Rearrangements during Photoconversion. Structure 2016; 24:448-57. [DOI: 10.1016/j.str.2016.01.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/04/2015] [Accepted: 01/02/2016] [Indexed: 11/30/2022]
|
24
|
Ihalainen JA, Takala H, Lehtivuori H. Fast Photochemistry of Prototypical Phytochromes-A Species vs. Subunit Specific Comparison. Front Mol Biosci 2015; 2:75. [PMID: 26779488 PMCID: PMC4689126 DOI: 10.3389/fmolb.2015.00075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/07/2015] [Indexed: 11/13/2022] Open
Abstract
Phytochromes are multi-domain red light photosensor proteins, which convert red light photons to biological activity utilizing the multitude of structural and chemical reactions. The steady increase in structural information obtained from various bacteriophytochromes has increased understanding about the functional mechanism of the photochemical processes of the phytochromes. Furthermore, a number of spectroscopic studies have revealed kinetic information about the light-induced reactions. The spectroscopic changes are, however, challenging to connect with the structural changes of the chromophore and the protein environment, as the excited state properties of the chromophores are very sensitive to the small structural and chemical changes of their environment. In this article, we concentrate on the results of ultra-fast spectroscopic experiments which reveal information about the important initial steps of the photoreactions of the phytochromes. We survey the excited state properties obtained during the last few decades. The differences in kinetics between different research laboratories are traditionally related to the differences of the studied species. However, we notice that the variation in the excited state properties depends on the subunit composition of the protein as well. This observation illustrates a feedback mechanism from the other domains to the chromophore. We propose that two feedback routes exist in phytochromes between the chromophore and the remotely located effector domain. The well-known connection between the subunits is the so-called tongue region, which changes its secondary structure while changing the light-activated state of the system. The other feedback route which we suggest is less obvious, it is made up of several water molecules ranging from the dimer interface to the vicinity of the chromophore, allowing even proton transfer reactions nearby the chromophore.
Collapse
Affiliation(s)
- Janne A Ihalainen
- Department of Biological and Environmental Sciences, Nanoscience Center, University of Jyväskylä Jyväskylä, Finland
| | - Heikki Takala
- Department of Biological and Environmental Sciences, Nanoscience Center, University of JyväskyläJyväskylä, Finland; Department of Anatomy, Institute of Biomedicine, University of HelsinkiHelsinki, Finland
| | - Heli Lehtivuori
- Department of Biological and Environmental Sciences, Nanoscience Center, University of JyväskyläJyväskylä, Finland; Department of Physics, Nanoscience Center, University of JyväskyläJyväskylä, Finland
| |
Collapse
|
25
|
Takala H, Björling A, Linna M, Westenhoff S, Ihalainen JA. Light-induced Changes in the Dimerization Interface of Bacteriophytochromes. J Biol Chem 2015; 290:16383-92. [PMID: 25971964 DOI: 10.1074/jbc.m115.650127] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Indexed: 11/06/2022] Open
Abstract
Phytochromes are dimeric photoreceptor proteins that sense red light levels in plants, fungi, and bacteria. The proteins are structurally divided into a light-sensing photosensory module consisting of PAS, GAF, and PHY domains and a signaling output module, which in bacteriophytochromes typically is a histidine kinase (HK) domain. Existing structural data suggest that two dimerization interfaces exist between the GAF and HK domains, but their functional roles remain unclear. Using mutational, biochemical, and computational analyses of the Deinococcus radiodurans phytochrome, we demonstrate that two dimerization interfaces between sister GAF and HK domains stabilize the dimer with approximately equal contributions. The existence of both dimerization interfaces is critical for thermal reversion back to the resting state. We also find that a mutant in which the interactions between the GAF domains were removed monomerizes under red light. This implies that the interactions between the HK domains are significantly altered by photoconversion. The results suggest functional importance of the dimerization interfaces in bacteriophytochromes.
Collapse
Affiliation(s)
- Heikki Takala
- From the University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, SE-40530 Sweden and University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Sciences, Jyväskylä, FI-40014 Finland
| | - Alexander Björling
- From the University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, SE-40530 Sweden and
| | - Marko Linna
- University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Sciences, Jyväskylä, FI-40014 Finland
| | - Sebastian Westenhoff
- From the University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, SE-40530 Sweden and
| | - Janne A Ihalainen
- University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Sciences, Jyväskylä, FI-40014 Finland
| |
Collapse
|