1
|
Martin WJ, McClelland LJ, Nold SM, Boshae KL, Bowler BE. Effect of proline content and histidine ligation on the dynamics of Ω-loop D and the peroxidase activity of iso-1-cytochrome c. J Inorg Biochem 2024; 252:112474. [PMID: 38176365 DOI: 10.1016/j.jinorgbio.2023.112474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
To study how proline residues affect the dynamics of Ω-loop D (residues 70 to 85) of cytochrome c, we prepared G83P and G83A variants of yeast iso-1-cytochrome c (iso-1-Cytc) in the presence and absence of a K73H mutation. Ω-loop D is important in controlling both the electron transfer function of Cytc and the peroxidase activity of Cytc used in apoptosis because it provides the Met80 heme ligand. The G83P and G83A mutations have no effect on the global stability of iso-1-Cytc in presence or absence of the K73H mutation. However, both mutations destabilize the His73-mediated alkaline conformer relative to the native state. pH jump stopped-flow experiments show that the dynamics of the His73-mediated alkaline transition are significantly enhanced by the G83P mutation. Gated electron transfer studies show that the enhanced dynamics result from an increased rate of return to the native state, whereas the rate of loss of Met80 ligation is unchanged by the G83P mutation. Thus, the G83P substitution does not stiffen the conformation of the native state. Because bis-His heme ligation occurs when Cytc binds to cardiolipin-containing membranes, we studied the effect of His73 ligation on the peroxidase activity of Cytc, which acts as an early signal in apoptosis by causing oxygenation of cardiolipin. We find that the His73 alkaline conformer suppresses the peroxidase activity of Cytc. Thus, the bis-His ligated state of Cytc formed upon binding to cardiolipin is a negative effector for the peroxidase activity of Cytc early in apoptosis.
Collapse
Affiliation(s)
- William J Martin
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Levi J McClelland
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States; Division of Biological Sciences, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Shiloh M Nold
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Kassandra L Boshae
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States
| | - Bruce E Bowler
- Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT 59812, United States.
| |
Collapse
|
2
|
Feng Y, Liu XC, Li L, Gao SQ, Wen GB, Lin YW. Naturally Occurring I81N Mutation in Human Cytochrome c Regulates Both Inherent Peroxidase Activity and Interactions with Neuroglobin. ACS OMEGA 2022; 7:11510-11518. [PMID: 35415373 PMCID: PMC8992277 DOI: 10.1021/acsomega.2c01256] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 05/24/2023]
Abstract
Human cytochrome c (hCyt c) is a crucial heme protein and plays an indispensable role in energy conversion and intrinsic apoptosis pathways. The sequence and structure of Cyt c were evolutionarily conserved and only a few naturally occurring mutants were detected in humans. Among those variable sites, position 81 was proposed to act as a peroxidase switch in the initiation stages of apoptosis. In this study, we show that Ile81 not only suppresses the intrinsic peroxidase activity but also is essential for Cyt c to interact with neuroglobin (Ngb), a potential protein partner. The kinetic assays showed that the peroxidase activity of the naturally occurring variant I81N was enhanced up to threefold under pH 5. The local stability of the Ω-loop D (residues 70-85) in the I81N variant was decreased. Moreover, the Alphafold2 program predicted that Ile81 forms stable contact with human Ngb. Meanwhile, the Ile81 to Asn81 missense mutation abolishes the interaction interface, resulting in a ∼40-fold decrease in binding affinity. These observations provide an insight into the structure-function relationship of the conserved Ile81 in vertebrate Cyt c.
Collapse
Affiliation(s)
- Yu Feng
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xi-Chun Liu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Lianzhi Li
- School
of Chemistry and Chemical Engineering, Liaocheng
University, Liaocheng 252059, China
| | - Shu-Qin Gao
- Key
Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Key
Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - Ying-Wu Lin
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
- Key
Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
3
|
Oviedo-Rouco S, Spedalieri C, Scocozza MF, Tomasina F, Tórtora V, Radi R, Murgida DH. Correlated electric field modulation of electron transfer parameters and the access to alternative conformations of multifunctional cytochrome c. Bioelectrochemistry 2022; 143:107956. [PMID: 34624727 DOI: 10.1016/j.bioelechem.2021.107956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022]
Abstract
Cytochrome c (Cytc) is a multifunctional protein that, in its native conformation, shuttles electrons in the mitochondrial respiratory chain. Conformational transitions that involve replacement of the heme distal ligand lead to the gain of alternative peroxidase activity, which is crucial for membrane permeabilization during apoptosis. Using a time-resolved SERR spectroelectrochemical approach, we found that the key physicochemical parameters that characterize the electron transfer (ET) canonic function and those that determine the transition to alternative conformations are strongly correlated and are modulated by local electric fields (LEF) of biologically meaningful magnitude. The electron shuttling function is optimized at moderate LEFs of around 1 V nm-1. A decrease of the LEF is detrimental for ET as it rises the reorganization energy. Moreover, LEF values below and above the optimal for ET favor alternative conformations with peroxidase activity and downshifted reduction potentials. The underlying proposed mechanism is the LEF modulation of the flexibility of crucial protein segments, which produces a differential effect on the kinetic ET and conformational parameters of Cytc. These findings might be related to variations in the mitochondrial membrane potential during apoptosis, as the basis for the switch between canonic and alternative functions of Cytc. Moreover, they highlight the possible role of variable LEFs in determining the function of other moonlighting proteins through modulation of the protein dynamics.
Collapse
Affiliation(s)
- Santiago Oviedo-Rouco
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Spedalieri
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Magalí F Scocozza
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Florencia Tomasina
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Verónica Tórtora
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica and Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Daniel H Murgida
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Cytochrome c: An extreme multifunctional protein with a key role in cell fate. Int J Biol Macromol 2019; 136:1237-1246. [DOI: 10.1016/j.ijbiomac.2019.06.180] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 01/25/2023]
|
5
|
Lei H, Nold SM, Motta LJ, Bowler BE. Effect of V83G and I81A Substitutions to Human Cytochrome c on Acid Unfolding and Peroxidase Activity below a Neutral pH. Biochemistry 2019; 58:2921-2933. [DOI: 10.1021/acs.biochem.9b00295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Haotian Lei
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Shiloh M. Nold
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Luis Jung Motta
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
| | - Bruce E. Bowler
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|
6
|
Lei H, Bowler BE. Humanlike substitutions to Ω-loop D of yeast iso-1-cytochrome c only modestly affect dynamics and peroxidase activity. J Inorg Biochem 2018. [PMID: 29530594 DOI: 10.1016/j.jinorgbio.2018.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Structural studies of yeast iso-1-cytochrome c (L.J. McClelland, T.-C. Mou, M.E. Jeakins-Cooley, S.R. Sprang, B.E. Bowler, Proc. Natl. Acad. Sci. U.S.A. 111 (2014) 6648-6653) show that modest movement of Ω-loop D (residues 70-85, average RMSD versus the native structure: 0.81 Å) permits loss of Met80-heme ligation creating an available coordination site to catalyze the peroxidase activity mediated by cytochrome c early in apoptosis. However, Ala81 and Gly83 move significantly (RMSDs of 2.18 and 1.26 Å, respectively). Ala81 and Gly83 evolve to Ile and Val, respectively, in human cytochrome c and peroxidase activity decreases 25-fold relative to the yeast protein at pH 7. To test the hypothesis that these residues evolved to restrict the peroxidase activity of cytochrome c, A81I and G83V variants of yeast iso-1-cytochrome c were prepared. For both variants, the apparent pKa of the alkaline transition increases by 0.2 to 0.3 relative to the wild type (WT) protein and the rate of opening the heme crevice is slowed. The cooperativity of acid unfolding is decreased for the G83V variant. At pH 7 and 8, the catalytic rate constant, kcat, for the peroxidase activity of both variants decreases relative to WT, consistent with the effects on alkaline isomerization. Below pH 7, the loss in the cooperativity of acid unfolding causes kcat for peroxidase activity to increase for the G83V variant relative to WT. Neither variant decreases kcat to the level of the human protein, indicating that other residues also contribute to the low peroxidase activity of human cytochrome c.
Collapse
Affiliation(s)
- Haotian Lei
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Bruce E Bowler
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States.
| |
Collapse
|
7
|
Danielson TA, Stine JM, Dar TA, Briknarova K, Bowler BE. Effect of an Imposed Contact on Secondary Structure in the Denatured State of Yeast Iso-1-cytochrome c. Biochemistry 2017; 56:6662-6676. [PMID: 29148740 DOI: 10.1021/acs.biochem.7b01002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is considerable evidence that long-range interactions stabilize residual protein structure under denaturing conditions. However, evaluation of the effect of a specific contact on structure in the denatured state has been difficult. Iso-1-cytochrome c variants with a Lys54 → His mutation form a particularly stable His-heme loop in the denatured state, suggestive of loop-induced residual structure. We have used multidimensional nuclear magnetic resonance methods to assign 1H and 15N backbone amide and 13C backbone and side chain chemical shifts in the denatured state of iso-1-cytochrome c carrying the Lys54 → His mutation in 3 and 6 M guanidine hydrochloride and at both pH 6.4, where the His54-heme loop is formed, and pH 3.6, where the His54-heme loop is broken. Using the secondary structure propensity score, with the 6 M guanidine hydrochloride chemical shift data as a random coil reference state for data collected in 3 M guanidine hydrochloride, we found residual helical structure in the denatured state for the 60s helix and the C-terminal helix, but not in the N-terminal helix in the presence or absence of the His54-heme loop. Non-native helical structure is observed in two regions that form Ω-loops in the native state. There is more residual helical structure in the C-terminal helix at pH 6.4 when the loop is formed. Loop formation also appears to stabilize helical structure near His54, consistent with induction of helical structure observed when His-heme bonds form in heme-peptide model systems. The results are discussed in the context of the folding mechanism of cytochrome c.
Collapse
Affiliation(s)
- Travis A Danielson
- Department of Chemistry and Biochemistry, University of Montana , Missoula, Montana 59812, United States
| | - Jessica M Stine
- Department of Chemistry and Biochemistry, University of Montana , Missoula, Montana 59812, United States
| | - Tanveer A Dar
- Department of Chemistry and Biochemistry, University of Montana , Missoula, Montana 59812, United States
| | - Klara Briknarova
- Department of Chemistry and Biochemistry, University of Montana , Missoula, Montana 59812, United States.,Center for Biomolecular Structure and Dynamics, University of Montana , Missoula, Montana 59812, United States
| | - Bruce E Bowler
- Department of Chemistry and Biochemistry, University of Montana , Missoula, Montana 59812, United States.,Center for Biomolecular Structure and Dynamics, University of Montana , Missoula, Montana 59812, United States
| |
Collapse
|
8
|
Alvarez-Paggi D, Hannibal L, Castro MA, Oviedo-Rouco S, Demicheli V, Tórtora V, Tomasina F, Radi R, Murgida DH. Multifunctional Cytochrome c: Learning New Tricks from an Old Dog. Chem Rev 2017; 117:13382-13460. [DOI: 10.1021/acs.chemrev.7b00257] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Luciana Hannibal
- Department
of Pediatrics, Universitätsklinikum Freiburg, Mathildenstrasse 1, Freiburg 79106, Germany
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - María A. Castro
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Santiago Oviedo-Rouco
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| | - Veronica Demicheli
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Veronica Tórtora
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Florencia Tomasina
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Rafael Radi
- Departamento
de Bioquímica and Center for Free Radical and Biomedical Research,
Facultad de Medicina, Universidad de la República, Av.
Gral. Flores 2125, Montevideo 11800, Uruguay
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física and INQUIMAE (CONICET-UBA), Facultad de Ciencias Exactas
y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, piso 1, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
9
|
Nold SM, Lei H, Mou TC, Bowler BE. Effect of a K72A Mutation on the Structure, Stability, Dynamics, and Peroxidase Activity of Human Cytochrome c. Biochemistry 2017; 56:3358-3368. [PMID: 28598148 PMCID: PMC5564420 DOI: 10.1021/acs.biochem.7b00342] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We test the hypothesis that Lys72 suppresses the intrinsic peroxidase activity of human cytochrome c, as observed previously for yeast iso-1-cytochrome c [McClelland, L. J., et al. (2014) Proc. Natl. Acad. Sci. U. S. A. 111, 6648-6653]. A 1.25 Å X-ray structure of K72A human cytochrome c shows that the mutation minimally affects structure. Guanidine hydrochloride denaturation demonstrates that the K72A mutation increases global stability by 0.5 kcal/mol. The K72A mutation also increases the apparent pKa of the alkaline transition, a measure of the stability of the heme crevice, by 0.5 unit. Consistent with the increase in the apparent pKa, the rate of formation of the dominant alkaline conformer decreases, and this conformer is no longer stabilized by proline isomerization. Peroxidase activity measurements show that the K72A mutation increases kcat by 1.6-4-fold at pH 7-10, an effect larger than that seen for the yeast protein. X-ray structures of wild type and K72A human cytochrome c indicate that direct interactions of Lys72 with the far side of Ω-loop D, which are seen in X-ray structures of horse and yeast cytochrome c and could suppress peroxidase activity, are lacking. Instead, we propose that the stronger effect of the K72A mutation on the peroxidase activity of human versus yeast cytochrome c results from relief of steric interactions between the side chains at positions 72 and 81 (Ile in human vs Ala in yeast), which suppress the dynamics of Ω-loop D necessary for the intrinsic peroxidase activity of cytochrome c.
Collapse
Affiliation(s)
- Shiloh M. Nold
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812
- Center for Bimolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812
| | - Haotian Lei
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812
- Center for Bimolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812
| | - Tung-Chung Mou
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812
- Center for Bimolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812
| | - Bruce E. Bowler
- Department of Chemistry and Biochemistry, University of Montana, Missoula, Montana 59812
- Center for Bimolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812
| |
Collapse
|
10
|
Ciaccio C, Tognaccini L, Battista T, Cervelli M, Howes BD, Santucci R, Coletta M, Mariottini P, Smulevich G, Fiorucci L. The Met80Ala and Tyr67His/Met80Ala mutants of human cytochrome c shed light on the reciprocal role of Met80 and Tyr67 in regulating ligand access into the heme pocket. J Inorg Biochem 2017; 169:86-96. [DOI: 10.1016/j.jinorgbio.2017.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 01/13/2017] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
|
11
|
Hannibal L, Tomasina F, Capdevila DA, Demicheli V, Tórtora V, Alvarez-Paggi D, Jemmerson R, Murgida DH, Radi R. Alternative Conformations of Cytochrome c: Structure, Function, and Detection. Biochemistry 2016; 55:407-28. [DOI: 10.1021/acs.biochem.5b01385] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Luciana Hannibal
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Center
for Pediatrics and Adolescent Medicine, Medical Center, University of Freiburg, Mathildenstrasse 1, Freiburg D-79106, Germany
| | - Florencia Tomasina
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Daiana A. Capdevila
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Verónica Demicheli
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Verónica Tórtora
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| | - Damián Alvarez-Paggi
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Ronald Jemmerson
- Department
of Microbiology and Immunology, University of Minnesota, MMC 196,
420 Delaware Street, Southeast, Minneapolis, Minnesota 55455, United States
| | - Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química
Física/INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Rafael Radi
- Departamento
de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, 11800 Montevideo, Uruguay
| |
Collapse
|
12
|
Goldes ME, Jeakins-Cooley ME, McClelland LJ, Mou TC, Bowler BE. Disruption of a hydrogen bond network in human versus spider monkey cytochrome c affects heme crevice stability. J Inorg Biochem 2015; 158:62-69. [PMID: 26775610 DOI: 10.1016/j.jinorgbio.2015.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/03/2015] [Accepted: 12/28/2015] [Indexed: 11/30/2022]
Abstract
The hypothesis that the recent rapid evolution of primate cytochromes c, which primarily involves residues in the least stable Ω-loop (Ω-loop C, residues 40-57), stabilizes the heme crevice of cytochrome c relative to other mammals, is tested. To accomplish this goal, we have compared the properties of human and spider monkey cytochrome c and a set of four variants produced in the process of converting human cytochrome c into spider monkey cytochrome c. The global stability of all variants has been measured by guanidine hydrochloride denaturation. The stability of the heme crevice has been assessed with the alkaline conformational transition. Structural insight into the effects of the five amino acid substitutions needed to convert human cytochrome c into spider monkey cytochrome c is provided by a 1.15Å resolution structure of spider monkey cytochrome c. The global stability for all variants is near 9.0kcal/mol at 25°C and pH7, which is higher than that observed for other mammalian cytochromes c. The heme crevice stability is more sensitive to the substitutions required to produce spider monkey cytochrome c with decreases of up to 0.5 units in the apparent pKa of the alkaline conformational transition relative to human cytochrome c. The structure of spider monkey cytochrome c indicates that the Y46F substitution destabilizes the heme crevice by disrupting an extensive hydrogen bond network that connects three surface loops including Ω-loop D (residues 70-85), which contains the Met80 heme ligand.
Collapse
Affiliation(s)
- Matthew E Goldes
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States
| | | | - Levi J McClelland
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Tung-Chung Mou
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States
| | - Bruce E Bowler
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, United States.
| |
Collapse
|
13
|
Tognaccini L, Ciaccio C, D'Oria V, Cervelli M, Howes BD, Coletta M, Mariottini P, Smulevich G, Fiorucci L. Structure-function relationships in human cytochrome c: The role of tyrosine 67. J Inorg Biochem 2015; 155:56-66. [PMID: 26610191 DOI: 10.1016/j.jinorgbio.2015.11.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 11/03/2015] [Accepted: 11/10/2015] [Indexed: 11/20/2022]
Abstract
Spectroscopic and functional properties of human cytochrome c and its Tyr67 residue mutants (i.e., Tyr67His and Tyr67Arg) have been investigated. In the case of the Tyr67His mutant, we have observed only a very limited structural alteration of the heme pocket and of the Ω-loop involving, among others, the residue Met80 and its bond with the heme iron. Conversely, in the Tyr67Arg mutant the Fe-Met80 bond is cleaved; consequently, a much more extensive structural alteration of the Ω-loop can be envisaged. The structural, and thus the functional modifications, of the Tyr67Arg mutant are present in both the ferric [Fe(III)] and the ferrous [Fe(II)] forms, indicating that the structural changes are independent of the heme iron oxidation state, depending instead on the type of substituting residue. Furthermore, a significant peroxidase activity is evident for the Tyr67Arg mutant, highlighting the role of Arg as a basic, positively charged residue at pH7.0, located in the heme distal pocket, which may act as an acid to cleave the O-O bond in H2O2. As a whole, our results indicate that a delicate equilibrium is associated with the spatial arrangement of the Ω-loop. Clearly, Arg, but not His, is able to stabilize and polarize the negative charge on the Fe(III)-OOH complex during the formation of Compound I, with important consequences on cytochrome peroxidation activity and its role in the apoptotic process, which is somewhat different in yeast and mammals.
Collapse
Affiliation(s)
- Lorenzo Tognaccini
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, FI, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems (CIRCMSB), Bari, Italy
| | - Valentina D'Oria
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Barry D Howes
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, FI, Italy
| | - Massimo Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems (CIRCMSB), Bari, Italy
| | | | - Giulietta Smulevich
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, FI, Italy; Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems (CIRCMSB), Bari, Italy.
| | - Laura Fiorucci
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|