1
|
Reyes GI, Flack CE, Parkinson JS. The Structural Logic of Dynamic Signaling in the Escherichia coli Serine Chemoreceptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604838. [PMID: 39091725 PMCID: PMC11291126 DOI: 10.1101/2024.07.23.604838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The experimental challenges posed by integral membrane proteins hinder molecular understanding of transmembrane signaling mechanisms. Here, we exploited protein crosslinking assays in living cells to follow conformational and dynamic stimulus signals in Tsr, the Escherichia coli serine chemoreceptor. Tsr mediates serine chemotaxis by integrating transmembrane serine-binding inputs with adaptational modifications of a methylation helix bundle to regulate a signaling kinase at the cytoplasmic tip of the receptor molecule. We created a series of cysteine replacements at Tsr residues adjacent to hydrophobic packing faces of the bundle helices and crosslinked them with a cell-permeable, bifunctional thiol-reagent. We identified an extensively crosslinked dynamic junction midway through the methylation helix bundle that seemed uniquely poised to respond to serine signals. We explored its role in mediating signaling shifts between different packing arrangements of the bundle helices by measuring crosslinking in receptor molecules with apposed pairs of cysteine reporters in each subunit and assessing their signaling behaviors with an in vivo kinase assay. In the absence of serine, the bundle helices evinced compact kinase-ON packing arrangements; in the presence of serine, the dynamic junction destabilized adjacent bundle segments and shifted the bundle to an expanded, less stable kinase-OFF helix-packing arrangement. An AlphaFold 3 model of kinase-active Tsr showed a prominent bulge and kink at the dynamic junction that might antagonize stable structure at the receptor tip. Serine stimuli probably inhibit kinase activity by shifting the bundle to a less stably-packed conformation that relaxes structural strain at the receptor tip, thereby freezing kinase activity.
Collapse
Affiliation(s)
- Georgina I. Reyes
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Caralyn E. Flack
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - John S. Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
2
|
Maschmann Z, Chandrasekaran S, Chua TK, Crane BR. Interdomain Linkers Regulate Histidine Kinase Activity by Controlling Subunit Interactions. Biochemistry 2022; 61:2672-2686. [PMID: 36321948 PMCID: PMC10134573 DOI: 10.1021/acs.biochem.2c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bacterial chemoreceptors regulate the cytosolic multidomain histidine kinase CheA through largely unknown mechanisms. Residue substitutions in the peptide linkers that connect the P4 kinase domain to the P3 dimerization and P5 regulatory domain affect CheA basal activity and activation. To understand the role that these linkers play in CheA activity, the P3-to-P4 linker (L3) and P4-to-P5 linker (L4) were extended and altered in variants of Thermotoga maritima (Tm) CheA. Flexible extensions of the L3 and L4 linkers in CheA-LV1 (linker variant 1) allowed for a well-folded kinase domain that retained wild-type (WT)-like binding affinities for nucleotide and normal interactions with the receptor-coupling protein CheW. However, CheA-LV1 autophosphorylation activity registered ∼50-fold lower compared to WT. Neither a WT nor LV1 dimer containing a single P4 domain could autophosphorylate the P1 substrate domain. Autophosphorylation activity was rescued in variants with extended L3 and L4 linkers that favor helical structure and heptad spacing. Autophosphorylation depended on linker spacing and flexibility and not on sequence. Pulse-dipolar electron-spin resonance (ESR) measurements with spin-labeled adenosine 5'-triphosphate (ATP) analogues indicated that CheA autophosphorylation activity inversely correlated with the proximity of the P4 domains within the dimers of the variants. Despite their separation in primary sequence and space, the L3 and L4 linkers also influence the mobility of the P1 substrate domains. In all, interactions of the P4 domains, as modulated by the L3 and L4 linkers, affect domain dynamics and autophosphorylation of CheA, thereby providing potential mechanisms for receptors to regulate the kinase.
Collapse
Affiliation(s)
- Zachary Maschmann
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850
| | - Siddarth Chandrasekaran
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850
- National Biomedical Center for Advanced ESR Technologies, Cornell University, Ithaca NY 1485
| | - Teck Khiang Chua
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850
- National Biomedical Center for Advanced ESR Technologies, Cornell University, Ithaca NY 1485
| |
Collapse
|
3
|
Muok AR, Chua TK, Srivastava M, Yang W, Maschmann Z, Borbat PP, Chong J, Zhang S, Freed JH, Briegel A, Crane BR. Engineered chemotaxis core signaling units indicate a constrained kinase-off state. Sci Signal 2020; 13:13/657/eabc1328. [PMID: 33172954 DOI: 10.1126/scisignal.abc1328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bacterial chemoreceptors, the histidine kinase CheA, and the coupling protein CheW form transmembrane molecular arrays with remarkable sensing properties. The receptors inhibit or stimulate CheA kinase activity depending on the presence of attractants or repellants, respectively. We engineered chemoreceptor cytoplasmic regions to assume a trimer of receptor dimers configuration that formed well-defined complexes with CheA and CheW and promoted a CheA kinase-off state. These mimics of core signaling units were assembled to homogeneity and investigated by site-directed spin-labeling with pulse-dipolar electron-spin resonance spectroscopy (PDS), small-angle x-ray scattering, targeted protein cross-linking, and cryo-electron microscopy. The kinase-off state was especially stable, had relatively low domain mobility, and associated the histidine substrate and docking domains with the kinase core, thus preventing catalytic activity. Together, these data provide an experimentally restrained model for the inhibited state of the core signaling unit and suggest that chemoreceptors indirectly sequester the kinase and substrate domains to limit histidine autophosphorylation.
Collapse
Affiliation(s)
- Alise R Muok
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.,Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Teck Khiang Chua
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Madhur Srivastava
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.,National Biomedical Center for Advanced ESR Technologies (ACERT), Cornell University, Ithaca, NY 14853, USA
| | - Wen Yang
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Zach Maschmann
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Petr P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.,National Biomedical Center for Advanced ESR Technologies (ACERT), Cornell University, Ithaca, NY 14853, USA
| | - Jenna Chong
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Sheng Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.,National Biomedical Center for Advanced ESR Technologies (ACERT), Cornell University, Ithaca, NY 14853, USA
| | - Ariane Briegel
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
4
|
Burt A, Cassidy CK, Ames P, Bacia-Verloop M, Baulard M, Huard K, Luthey-Schulten Z, Desfosses A, Stansfeld PJ, Margolin W, Parkinson JS, Gutsche I. Complete structure of the chemosensory array core signalling unit in an E. coli minicell strain. Nat Commun 2020; 11:743. [PMID: 32029744 PMCID: PMC7005262 DOI: 10.1038/s41467-020-14350-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/21/2019] [Indexed: 12/01/2022] Open
Abstract
Motile bacteria sense chemical gradients with transmembrane receptors organised in supramolecular signalling arrays. Understanding stimulus detection and transmission at the molecular level requires precise structural characterisation of the array building block known as a core signalling unit. Here we introduce an Escherichia coli strain that forms small minicells possessing extended and highly ordered chemosensory arrays. We use cryo-electron tomography and subtomogram averaging to provide a three-dimensional map of a complete core signalling unit, with visible densities corresponding to the HAMP and periplasmic domains. This map, combined with previously determined high resolution structures and molecular dynamics simulations, yields a molecular model of the transmembrane core signalling unit and enables spatial localisation of its individual domains. Our work thus offers a solid structural basis for the interpretation of a wide range of existing data and the design of further experiments to elucidate signalling mechanisms within the core signalling unit and larger array.
Collapse
Affiliation(s)
- Alister Burt
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - C Keith Cassidy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter Ames
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Maria Bacia-Verloop
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Megghane Baulard
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Karine Huard
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ambroise Desfosses
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France
| | - Phillip J Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - William Margolin
- Department of Microbiology & Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - John S Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des martyrs, F-38044, Grenoble, France.
| |
Collapse
|
5
|
Muok AR, Briegel A, Crane BR. Regulation of the chemotaxis histidine kinase CheA: A structural perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183030. [PMID: 31374212 DOI: 10.1016/j.bbamem.2019.183030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 02/06/2023]
Abstract
Bacteria sense and respond to their environment through a highly conserved assembly of transmembrane chemoreceptors (MCPs), the histidine kinase CheA, and the coupling protein CheW, hereafter termed "the chemosensory array". In recent years, great strides have been made in understanding the architecture of the chemosensory array and how this assembly engenders sensitive and cooperative responses. Nonetheless, a central outstanding question surrounds how receptors modulate the activity of the CheA kinase, the enzymatic output of the sensory system. With a focus on recent advances, we summarize the current understanding of array structure and function to comment on the molecular mechanism by which CheA, receptors and CheW generate the high sensitivity, gain and dynamic range emblematic of bacterial chemotaxis. The complexity of the chemosensory arrays has motivated investigation with many different approaches. In particular, structural methods, genetics, cellular activity assays, nanodisc technology and cryo-electron tomography have provided advances that bridge length scales and connect molecular mechanism to cellular function. Given the high degree of component integration in the chemosensory arrays, we ultimately aim to understand how such networked molecular interactions generate a whole that is truly greater than the sum of its parts. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- Alise R Muok
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Ariane Briegel
- Institute for Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14850, United States of America.
| |
Collapse
|
6
|
A di-iron protein recruited as an Fe[II] and oxygen sensor for bacterial chemotaxis functions by stabilizing an iron-peroxy species. Proc Natl Acad Sci U S A 2019; 116:14955-14960. [PMID: 31270241 DOI: 10.1073/pnas.1904234116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Many bacteria contain cytoplasmic chemoreceptors that lack sensor domains. Here, we demonstrate that such cytoplasmic receptors found in 8 different bacterial and archaeal phyla genetically couple to metalloproteins related to β-lactamases and nitric oxide reductases. We show that this oxygen-binding di-iron protein (ODP) acts as a sensor for chemotactic responses to both iron and oxygen in the human pathogen Treponema denticola (Td). The ODP di-iron site binds oxygen at high affinity to reversibly form an unusually stable μ-peroxo adduct. Crystal structures of ODP from Td and the thermophile Thermotoga maritima (Tm) in the Fe[III]2-O2 2-, Zn[II], and apo states display differences in subunit association, conformation, and metal coordination that indicate potential mechanisms for sensing. In reconstituted systems, iron-peroxo ODP destabilizes the phosphorylated form of the receptor-coupled histidine kinase CheA, thereby providing a biochemical link between oxygen sensing and chemotaxis in diverse prokaryotes, including anaerobes of ancient origin.
Collapse
|
7
|
Yang W, Cassidy CK, Ames P, Diebolder CA, Schulten K, Luthey-Schulten Z, Parkinson JS, Briegel A. In Situ Conformational Changes of the Escherichia coli Serine Chemoreceptor in Different Signaling States. mBio 2019; 10:e00973-19. [PMID: 31266867 PMCID: PMC6606802 DOI: 10.1128/mbio.00973-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/31/2019] [Indexed: 11/20/2022] Open
Abstract
Tsr, the serine chemoreceptor in Escherichia coli, transduces signals from a periplasmic ligand-binding site to its cytoplasmic tip, where it controls the activity of the CheA kinase. To function, Tsr forms trimers of homodimers (TODs), which associate in vivo with the CheA kinase and CheW coupling protein. Together, these proteins assemble into extended hexagonal arrays. Here, we use cryo-electron tomography and molecular dynamics simulation to study Tsr in the context of a near-native array, characterizing its signaling-related conformational changes at both the individual dimer and the trimer level. In particular, we show that individual Tsr dimers within a trimer exhibit asymmetric flexibilities that are a function of the signaling state, highlighting the effect of their different protein interactions at the receptor tips. We further reveal that the dimer compactness of the Tsr trimer changes between signaling states, transitioning at the glycine hinge from a compact conformation in the kinase-OFF state to an expanded conformation in the kinase-ON state. Hence, our results support a crucial role for the glycine hinge: to allow the receptor flexibility necessary to achieve different signaling states while also maintaining structural constraints imposed by the membrane and extended array architecture.IMPORTANCE In Escherichia coli, membrane-bound chemoreceptors, the histidine kinase CheA, and coupling protein CheW form highly ordered chemosensory arrays. In core signaling complexes, chemoreceptor trimers of dimers undergo conformational changes, induced by ligand binding and sensory adaptation, which regulate kinase activation. Here, we characterize by cryo-electron tomography the kinase-ON and kinase-OFF conformations of the E. coli serine receptor in its native array context. We found distinctive structural differences between the members of a receptor trimer, which contact different partners in the signaling unit, and structural differences between the ON and OFF signaling complexes. Our results provide new insights into the signaling mechanism of chemoreceptor arrays and suggest an important functional role for a previously postulated flexible region and glycine hinge in the receptor molecule.
Collapse
Affiliation(s)
- Wen Yang
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - C Keith Cassidy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Department of Physics and Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Peter Ames
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | | | - Klaus Schulten
- Department of Physics and Beckman Institute, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Zaida Luthey-Schulten
- Department of Chemistry and Center for the Physics of Living Cells, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - John S Parkinson
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Ariane Briegel
- Institute of Biology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
8
|
Dynamic domain arrangement of CheA-CheY complex regulates bacterial thermotaxis, as revealed by NMR. Sci Rep 2017; 7:16462. [PMID: 29184123 PMCID: PMC5705603 DOI: 10.1038/s41598-017-16755-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/16/2017] [Indexed: 01/19/2023] Open
Abstract
Bacteria utilize thermotaxis signal transduction proteins, including CheA, and CheY, to switch the direction of the cell movement. However, the thermally responsive machinery enabling warm-seeking behavior has not been identified. Here we examined the effects of temperature on the structure and dynamics of the full-length CheA and CheY complex, by NMR. Our studies revealed that the CheA-CheY complex exists in equilibrium between multiple states, including one state that is preferable for the autophosphorylation of CheA, and another state that is preferable for the phosphotransfer from CheA to CheY. With increasing temperature, the equilibrium shifts toward the latter state. The temperature-dependent population shift of the dynamic domain arrangement of the CheA-CheY complex induced changes in the concentrations of phosphorylated CheY that are comparable to those induced by chemical attractants or repellents. Therefore, the dynamic domain arrangement of the CheA-CheY complex functions as the primary thermally responsive machinery in warm-seeking behavior.
Collapse
|
9
|
Haglin ER, Yang W, Briegel A, Thompson LK. His-Tag-Mediated Dimerization of Chemoreceptors Leads to Assembly of Functional Nanoarrays. Biochemistry 2017; 56:5874-5885. [PMID: 28872847 PMCID: PMC5678893 DOI: 10.1021/acs.biochem.7b00698] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transmembrane chemotaxis receptors are found in bacteria in extended hexagonal arrays stabilized by the membrane and by cytosolic binding partners, the kinase CheA and coupling protein CheW. Models of array architecture and assembly propose receptors cluster into trimers of dimers that associate with one CheA dimer and two CheW monomers to form the minimal "core unit" necessary for signal transduction. Reconstructing in vitro chemoreceptor ternary complexes that are homogeneous and functional and exhibit native architecture remains a challenge. Here we report that His-tag-mediated receptor dimerization with divalent metals is sufficient to drive assembly of nativelike functional arrays of a receptor cytoplasmic fragment. Our results indicate receptor dimerization initiates assembly and precedes formation of ternary complexes with partial kinase activity. Restoration of maximal kinase activity coincides with a shift to larger complexes, suggesting that kinase activity depends on interactions beyond the core unit. We hypothesize that achieving maximal activity requires building core units into hexagons and/or coalescing hexagons into the extended lattice. Overall, the minimally perturbing His-tag-mediated dimerization leads to assembly of chemoreceptor arrays with native architecture and thus serves as a powerful tool for studying the assembly and mechanism of this complex and other multiprotein complexes.
Collapse
Affiliation(s)
| | - Wen Yang
- Department of Biology, Leiden University , 2333 Leiden, The Netherlands
| | - Ariane Briegel
- Department of Biology, Leiden University , 2333 Leiden, The Netherlands
| | | |
Collapse
|
10
|
Sukomon N, Widom J, Borbat PP, Freed JH, Crane BR. Stability and Conformation of a Chemoreceptor HAMP Domain Chimera Correlates with Signaling Properties. Biophys J 2017; 112:1383-1395. [PMID: 28402881 PMCID: PMC5390053 DOI: 10.1016/j.bpj.2017.02.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 12/15/2022] Open
Abstract
HAMP domains are dimeric, four-helix bundles that transduce conformational signals in bacterial receptors. Genetic studies of the Escherichia coli serine receptor (Tsr) provide an opportunity to understand HAMP conformational behavior in terms of functional output. To increase its stability, the Tsr HAMP domain was spliced into a poly-HAMP unit from the Pseudomonas aeruginosa Aer2 receptor. Within the chimera, the Tsr HAMP undergoes a thermal melting transition at a temperature much lower than that of the Aer2 HAMP domains. Pulse-dipolar electron spin resonance spectroscopy and site-specific spin-labeling confirm that the Tsr HAMP maintains a four-helix bundle. Pulse-dipolar electron spin resonance spectroscopy was also used to study three well-characterized HAMP mutational phenotypes: those that cause flagella rotation that is counterclockwise (CCW) A and kinase-off; CCW B and also kinase-off; and, clockwise (CW) and kinase-on. Conformational properties of the three HAMP variants support a biphasic model of dynamic bundle stability, but also indicate distinct conformational changes within the helix bundle. Functional kinase-on (CW) and kinase-off (CCW A) states differ by concerted changes in the positions of spin-label sites at the base of the bundle. Opposite shifts in the subunit separation distances of neighboring residues at the C-termini of the α1 and α2 helices are consistent with a helix scissors motion or a gearbox rotational model of HAMP activation. In the drastic kinase-off lesion of CCW B, the α1 helices unfold and the α2 helices form a tight two-helix coiled-coil. The substitution of a critical residue in the Tsr N-terminal linker or control cable reduces conformational heterogeneity at the N-terminus of α1 but does not affect structure at the C-terminus of α2. Overall, the data suggest that transitions from on- to off-states involve decreased motional amplitudes of the Tsr HAMP coupled with helix rotations and movements toward a two-helix packing mode.
Collapse
Affiliation(s)
- Nattakan Sukomon
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Joanne Widom
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York; National Biomedical Center for Advanced ESR Technologies, Cornell University, Ithaca, New York
| | - Jack H Freed
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York; National Biomedical Center for Advanced ESR Technologies, Cornell University, Ithaca, New York
| | - Brian R Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York.
| |
Collapse
|
11
|
Cooperation of two distinct coupling proteins creates chemosensory network connections. Proc Natl Acad Sci U S A 2017; 114:2970-2975. [PMID: 28242706 DOI: 10.1073/pnas.1618227114] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although it is appreciated that bacterial chemotaxis systems rely on coupling, also called scaffold, proteins to both connect input receptors with output kinases and build interkinase connections that allow signal amplification, it is not yet clear why many systems use more than one coupling protein. We examined the distinct functions for multiple coupling proteins in the bacterial chemotaxis system of Helicobacter pylori, which requires two nonredundant coupling proteins for chemotaxis: CheW and CheV1, a hybrid of a CheW and a phosphorylatable receiver domain. We report that CheV1 and CheW have largely redundant abilities to interact with chemoreceptors and the CheA kinase, and both similarly activated CheA's kinase activity. We discovered, however, that they are not redundant for formation of the higher order chemoreceptor arrays that are known to form via CheA-CheW interactions. In support of this possibility, we found that CheW and CheV1 interact with each other and with CheA independent of the chemoreceptors. Therefore, it seems that some microbes have modified array formation to require CheW and CheV1. Our data suggest that multiple coupling proteins may be used to provide flexibility in the chemoreceptor array formation.
Collapse
|
12
|
Abstract
Bacterial chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family operate in commingled clusters that enable cells to detect and track environmental chemical gradients with high sensitivity and precision. MCP homodimers of different detection specificities form mixed trimers of dimers that facilitate inter-receptor communication in core signaling complexes, which in turn assemble into a large signaling network. The two subunits of each homodimeric receptor molecule occupy different locations in the core complexes. One subunit participates in trimer-stabilizing interactions at the trimer axis, the other lies on the periphery of the trimer, where it can interact with two cytoplasmic proteins: CheA, a signaling autokinase, and CheW, which couples CheA activity to receptor control. As a possible tool for independently manipulating receptor subunits in these two structural environments, we constructed and characterized fused genes for the E. coli serine chemoreceptor Tsr that encoded single-chain receptor molecules in which the C-terminus of the first Tsr subunit was covalently connected to the N-terminus of the second with a polypeptide linker. We showed with soft agar assays and with a FRET-based in vivo CheA kinase assay that single-chain Tsr~Tsr molecules could promote serine sensing and chemotaxis responses. The length of the connection between the joined subunits was critical. Linkers nine residues or shorter locked the receptor in a kinase-on state, most likely by distorting the native structure of the receptor HAMP domain. Linkers 22 or more residues in length permitted near-normal Tsr function. Few single-chain molecules were found as monomer-sized proteolytic fragments in cells, indicating that covalently joined receptor subunits were responsible for mediating the signaling responses we observed. However, cysteine-directed crosslinking, spoiling by dominant-negative Tsr subunits, and rearrangement of ligand-binding site lesions revealed subunit swapping interactions that will need to be taken into account in experimental applications of single-chain chemoreceptors.
Collapse
|