1
|
Araujo-Arcos LE, Montaño S, Bello-Rios C, Garibay-Cerdenares OL, Leyva-Vázquez MA, Illades-Aguiar B. Molecular insights into the interaction of HPV-16 E6 variants against MAGI-1 PDZ1 domain. Sci Rep 2022; 12:1898. [PMID: 35115618 PMCID: PMC8814009 DOI: 10.1038/s41598-022-05995-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
Oncogenic protein E6 from Human Papilloma Virus 16 (HPV-16) mediates the degradation of Membrane-associated guanylate kinase with inverted domain structure-1 (MAGI-1), throughout the interaction of its protein binding motif (PBM) with the Discs-large homologous regions 1 (PDZ1) domain of MAG1-1. Generic variation in the E6 gene that translates to changes in the protein’s amino acidic sequence modifies the interaction of E6 with the cellular protein MAGI-1. MAGI-1 is a scaffolding protein found at tight junctions of epithelial cells, where it interacts with a variety of proteins regulating signaling pathways. MAGI-1 is a multidomain protein containing two WW (rsp-domain-9), one guanylate kinase-like, and six PDZ domains. PDZ domains played an important role in the function of MAGI-1 and served as targets for several viral proteins including the HPV-16 E6. The aim of this work was to evaluate, with an in silico approach, employing molecular dynamics simulation and protein–protein docking, the interaction of the intragenic variants E-G350 (L83V), E-C188/G350 (E29Q/L83V), E-A176/G350 (D25N/L83V), E6-AAa (Q14H/H78Y/83V) y E6-AAc (Q14H/I27RH78Y/L83V) and E6-reference of HPV-16 with MAGI-1. We found that variants E-G350, E-C188/G350, E-A176/G350, AAa and AAc increase their affinity to our two models of MAGI-1 compared to E6-reference.
Collapse
Affiliation(s)
- Lilian Esmeralda Araujo-Arcos
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Guerrero, 39090, Chilpancingo, CP, México
| | - Sarita Montaño
- Laboratorio de Bioinformática y Simulación Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, 80030, Culiacán Sinaloa, CP, México.
| | - Ciresthel Bello-Rios
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Guerrero, 39090, Chilpancingo, CP, México
| | - Olga Lilia Garibay-Cerdenares
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Guerrero, 39090, Chilpancingo, CP, México.,CONACyT-Universidad Autónoma de Guerrero, 39087, Chilpancingo, CP, México
| | - Marco Antonio Leyva-Vázquez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Guerrero, 39090, Chilpancingo, CP, México
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autonóma de Guerrero, 39090, Chilpancingo, CP, México.
| |
Collapse
|
2
|
Masuda Y, Saeki Y, Arai N, Kawai H, Kukimoto I, Tanaka K, Masutani C. Stepwise multipolyubiquitination of p53 by the E6AP-E6 ubiquitin ligase complex. J Biol Chem 2019; 294:14860-14875. [PMID: 31492752 DOI: 10.1074/jbc.ra119.008374] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 08/13/2019] [Indexed: 01/01/2023] Open
Abstract
The human papillomavirus (HPV) oncoprotein E6 specifically binds to E6AP (E6-associated protein), a HECT (homologous to the E6AP C terminus)-type ubiquitin ligase, and directs its ligase activity toward the tumor suppressor p53. To examine the biochemical reaction in vitro, we established an efficient reconstitution system for the polyubiquitination of p53 by the E6AP-E6 complex. We demonstrate that E6AP-E6 formed a stable ternary complex with p53, which underwent extensive polyubiquitination when the isolated ternary complex was incubated with E1, E2, and ubiquitin. Mass spectrometry and biochemical analysis of the reaction products identified lysine residues as p53 ubiquitination sites. A p53 mutant with arginine substitutions of its 18 lysine residues was not ubiquitinated. Analysis of additional p53 mutants retaining only one or two intact ubiquitination sites revealed that chain elongation at each of these sites was limited to 5-6-mers. We also determined the size distribution of ubiquitin chains released by en bloc cleavage from polyubiquitinated p53 to be 2-6-mers. Taken together, these results strongly suggest that p53 is multipolyubiquitinated with short chains by E6AP-E6. In addition, analysis of growing chains provided strong evidence for step-by-step chain elongation. Thus, we hypothesize that p53 is polyubiquitinated in a stepwise manner through the back-and-forth movement of the C-lobe, and the permissive distance for the movement of the C-lobe restricts the length of the chains in the E6AP-E6-p53 ternary complex. Finally, we show that multipolyubiquitination at different sites provides a signal for proteasomal degradation.
Collapse
Affiliation(s)
- Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan .,Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Naoko Arai
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hidehiko Kawai
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.,Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| |
Collapse
|
3
|
Purification and Characterization of Antibodies in Single-Chain Format against the E6 Oncoprotein of Human Papillomavirus Type 16. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6583852. [PMID: 29888271 PMCID: PMC5985123 DOI: 10.1155/2018/6583852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 01/07/2023]
Abstract
In Human Papillomaviruses- (HPV-) associated carcinogenesis, continuous expression of the E6 oncoprotein supports its value as a potential target for the development of diagnostics and therapeutics for HPV cancer. We previously reported that the I7 single-chain antibody fragment (scFv) specific for HPV16 E6, expressed as an intrabody by retroviral system, could inhibit significantly the growth of cervical cancer cells in vitro and was even able to reduce tumor development in experimental HPV-related cancer models. Nevertheless, for the development of therapeutic tools to be employed in humans, it is important to achieve maximum safety guarantee, which can be provided by the protein format. In the current study, two anti-16E6 scFvs derived from I7 were expressed in E. coli and purified in soluble form by affinity chromatography. Specificity, sensitivity and stability in physiologic environment of the purified scFvs were demonstrated by binding studies using recombinant 16E6 as an antigen. The scFvs functionality was confirmed by immunofluorescence in cervical cancer cells, where the scFvs were able to recognize the nuclear E6. Furthermore, an antiproliferative activity of the scFvI7nuc delivered in protein format to HPV16-positive cell lines was observed. Our results demonstrate that functional anti-16E6 scFvs can be produced in E. coli, suggesting that such purified antibodies could be used in the diagnosis and treatment of HPV-induced malignancies.
Collapse
|
4
|
Structural Insights in Multifunctional Papillomavirus Oncoproteins. Viruses 2018; 10:v10010037. [PMID: 29342959 PMCID: PMC5795450 DOI: 10.3390/v10010037] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 02/08/2023] Open
Abstract
Since their discovery in the mid-eighties, the main papillomavirus oncoproteins E6 and E7 have been recalcitrant to high-resolution structure analysis. However, in the last decade a wealth of three-dimensional information has been gained on both proteins whether free or complexed to host target proteins. Here, we first summarize the diverse activities of these small multifunctional oncoproteins. Next, we review the available structural data and the new insights they provide about the evolution of E6 and E7, their multiple interactions and their functional variability across human papillomavirus (HPV) species.
Collapse
|
5
|
A novel intracellular antibody against the E6 oncoprotein impairs growth of human papillomavirus 16-positive tumor cells in mouse models. Oncotarget 2017; 7:15539-53. [PMID: 26788990 PMCID: PMC4941259 DOI: 10.18632/oncotarget.6925] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Single-chain variable fragments (scFvs) expressed as “intracellular antibodies” (intrabodies) can target intracellular antigens to hamper their function efficaciously and specifically. Here we use an intrabody targeting the E6 oncoprotein of Human papillomavirus 16 (HPV16) to address the issue of a non-invasive therapy for HPV cancer patients. A scFv against the HPV16 E6 was selected by Intracellular Antibody Capture Technology and expressed as I7nuc in the nucleus of HPV16-positive SiHa, HPV-negative C33A and 293T cells. Colocalization of I7nuc and recombinant E6 was observed in different cell compartments, obtaining evidence of E6 delocalization ascribable to I7nuc. In SiHa cells, I7nuc expressed by pLNCX retroviral vector was able to partially inhibit degradation of the main E6 target p53, and induced p53 accumulation in nucleus. When analyzing in vitro activity on cell proliferation and survival, I7nuc was able to decrease growth inducing late apoptosis and necrosis of SiHa cells. Finally, I7nuc antitumor activity was demonstrated in two pre-clinical models of HPV tumors. C57BL/6 mice were injected subcutaneously with HPV16-positive TC-1 or C3 tumor cells, infected with pLNCX retroviral vector expressing or non-expressing I7nuc. All the mice injected with I7nuc-expressing cells showed a clear delay in tumor onset; 60% and 40% of mice receiving TC-1 and C3 cells, respectively, remained tumor-free for 17 weeks of follow-up, whereas 100% of the controls were tumor-bearing 20 days post-inoculum. Our data support the therapeutic potential of E6-targeted I7nuc against HPV tumors.
Collapse
|
6
|
Xu ML, Kim SC, Kim HJ, Ju W, Kim YH, Kim HJ. Two-step chromatographic purification of glutathione S-transferase-tagged human papillomavirus type 16 E6 protein and its application for serology. Protein Expr Purif 2017; 132:19-26. [PMID: 28089881 DOI: 10.1016/j.pep.2017.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 12/31/2016] [Accepted: 01/08/2017] [Indexed: 01/27/2023]
Abstract
Human papillomavirus (HPV) E6 protein is an oncoprotein with a pivotal role in cervical carcinogenesis. Expression and purification of HPV E6 from Escherichia coli (E. coli) has been difficult because of its strong hydrophobicity even when expressed as a fusion protein with glutathione S-transferase (GST). There has been no protocol suggested for purifying GST-tagged HPV E6 protein with high purity so far. Herein, we provide efficient protocol for purifying GST-HPV16 E6 protein for the first time. In the current study, the GST-tagged protein was expressed in E. coli and a purification method was designed using cation-exchange chromatography followed by GST-affinity chromatography. Using physiological pH buffer during cell lysis and first cation-exchange chromatography significantly reduced yield of full-length GST-HPV16 E6 protein. It was found that using an alkaline buffer during cation-exchange chromatography was needed to obtain full length GST-HPV16 E6 protein. GST-HPV16 E6 protein recovered from the purification using alkaline condition retained its inherent p53-binding ability. Moreover, we were able to detect anti-HPV16 E6 antibodies with high sensitivity in sera from patients with cervical cancer using the GST-HPV16 E6 protein. It was found that the GST-HPV16 E6 protein could be used as a coating agent to enhance the sensitivity of detection of serum anti-HPV16 E6 antibodies when treated with ethylene glycol-bis (β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA). These results indicate that the two-step chromatographic purification allows obtaining high purity of GST-HPV16 E6 protein and the GST-HPV16 E6 is suitable to be used as an antigen of serology assay.
Collapse
Affiliation(s)
- Mei Ling Xu
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Seung Cheol Kim
- Department of Obstetrics and Gynecology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | - Woong Ju
- Department of Obstetrics and Gynecology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Yun Hwan Kim
- Department of Obstetrics and Gynecology, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, Seoul, South Korea.
| |
Collapse
|
7
|
Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S. Structural disorder in viral proteins. Chem Rev 2014; 114:6880-911. [PMID: 24823319 DOI: 10.1021/cr4005692] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bin Xue
- Department of Cell Biology, Microbiology and Molecular Biology, College of Fine Arts and Sciences, and ‡Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida , Tampa, Florida 33620, United States
| | | | | | | | | | | | | |
Collapse
|
8
|
Pretel E, Camporeale G, de Prat-Gay G. The non-structural NS1 protein unique to respiratory syncytial virus: a two-state folding monomer in quasi-equilibrium with a stable spherical oligomer. PLoS One 2013; 8:e74338. [PMID: 24058549 PMCID: PMC3769240 DOI: 10.1371/journal.pone.0074338] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/31/2013] [Indexed: 12/22/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) is a major infectious agent that cause pediatric respiratory disease worldwide. Considered one of the main virulence factors of hRSV, NS1 is known to suppress type I interferon response and signaling, thus favoring immune evasion. This, together with the fact that NS1 is unique to hRSV among paramyxoviruses, and that has no homology within databases, prompted us to investigate its conformational stability, equilibria and folding. Temperature cooperatively induces conformational changes leading to soluble spherical oligomers (NS1SOs) with amyloid-like or repetitive ß-sheet structures. The onset of the thermal transition is 45°C, and the oligomerization rate is increased by 25-fold from 40 to 46°C. Conformational stability analyzed by chemical perturbation of the NS1 monomer shows a two-state, highly reversible and cooperative unfolding, with a denaturant midpoint of 3.8 M, and a free energy change of 9.6±0.9 kcal⋅mol−1. However, two transitions were observed in the chemical perturbation of NS1SOs: the first, from 2.0 to 3.0 M of denaturant, corresponds to a conformational transition and dissociation of the oligomers to the native monomer, indicating a substantial energy barrier. The second transition (2.0 to 3.5 M denaturant) corresponds to full unfolding of the native NS1 monomer. In addition, different cosolvent perturbations converged on the formation of ß-sheet enriched soluble oligomeric species, with secondary structure resembling those obtained after mild temperature treatment. Thus, a unique protein without homologs, structure or mechanistic information may switch between monomers and oligomers in conditions compatible with the cellular environment and be potentially modulated by crowding or compartmentalization. NS1 may act as a reservoir for increased levels and impact on protein turnover.
Collapse
Affiliation(s)
- Esteban Pretel
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Gabriela Camporeale
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
| | - Gonzalo de Prat-Gay
- Protein Structure-Function and Engineering Laboratory, Fundación Instituto Leloir and IIBBA-CONICET, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
9
|
Zanier K, Sidi AOMO, Boulade-Ladame C, Rybin V, Chappelle A, Atkinson A, Kieffer B, Travé G. Solution structure analysis of the HPV16 E6 oncoprotein reveals a self-association mechanism required for E6-mediated degradation of p53. Structure 2012; 20:604-17. [PMID: 22483108 PMCID: PMC3325491 DOI: 10.1016/j.str.2012.02.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 01/31/2012] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
The viral oncoprotein E6 is an essential factor for cervical cancers induced by "high-risk" mucosal HPV. Among other oncogenic activities, E6 recruits the ubiquitin ligase E6AP to promote the ubiquitination and subsequent proteasomal degradation of p53. E6 is prone to self-association, which long precluded its structural analysis. Here we found that E6 specifically dimerizes through its N-terminal domain and that disruption of the dimer interface strongly increases E6 solubility. This allowed us to raise structural data covering the entire HPV16 E6 protein, including the high-resolution NMR structures of the two zinc-binding domains of E6 and a robust data-driven model structure of the N-terminal domain homodimer. Interestingly, homodimer interface mutations that disrupt E6 self-association also inactivate E6-mediated p53 degradation. These data suggest that E6 needs to self-associate via its N-terminal domain to promote the polyubiquitination of p53 by E6AP.
Collapse
Affiliation(s)
- Katia Zanier
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Boulevard Sébastien Brant, BP 10413, 67412 Illkirch, France
| | - Abdellahi ould M’hamed ould Sidi
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Boulevard Sébastien Brant, BP 10413, 67412 Illkirch, France
| | - Charlotte Boulade-Ladame
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Boulevard Sébastien Brant, BP 10413, 67412 Illkirch, France
| | - Vladimir Rybin
- European Molecular Biology Laboratories (EMBL), Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Anne Chappelle
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Boulevard Sébastien Brant, BP 10413, 67412 Illkirch, France
| | - Andrew Atkinson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, BP 163, 67404 Illkirch, France
| | - Bruno Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, BP 163, 67404 Illkirch, France
| | - Gilles Travé
- Institut de Recherche de l’Ecole de Biotechnologie de Strasbourg (IREBS), Boulevard Sébastien Brant, BP 10413, 67412 Illkirch, France
| |
Collapse
|
10
|
Heer A, Alonso LG, de Prat-Gay G. E6*, the 50 Amino Acid Product of the Most Abundant Spliced Transcript of the E6 Oncoprotein in High-Risk Human Papillomavirus, Is a Promiscuous Folder and Binder. Biochemistry 2011; 50:1376-83. [DOI: 10.1021/bi101941c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Angeles Heer
- Instituto Leloir and Instituto de Investigaciones Bioquímicas-Conicet, Patricias Argentinas 435, (1405) Buenos Aires, Argentina
| | | | - Gonzalo de Prat-Gay
- Instituto Leloir and Instituto de Investigaciones Bioquímicas-Conicet, Patricias Argentinas 435, (1405) Buenos Aires, Argentina
| |
Collapse
|
11
|
Chi CN, Bach A, Engström Å, Strømgaard K, Lundström P, Ferguson N, Jemth P. Biophysical characterization of the complex between human papillomavirus E6 protein and synapse-associated protein 97. J Biol Chem 2010; 286:3597-606. [PMID: 21113079 DOI: 10.1074/jbc.m110.190264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The E6 protein of human papillomavirus (HPV) exhibits complex interaction patterns with several host proteins, and their roles in HPV-mediated oncogenesis have proved challenging to study. Here we use several biophysical techniques to explore the binding of E6 to the three PDZ domains of the tumor suppressor protein synapse-associated protein 97 (SAP97). All of the potential binding sites in SAP97 bind E6 with micromolar affinity. The dissociation rate constants govern the different affinities of HPV16 and HPV18 E6 for SAP97. Unexpectedly, binding is not mutually exclusive, and all three PDZ domains can simultaneously bind E6. Intriguingly, this quaternary complex has the same apparent hydrodynamic volume as the unliganded PDZ region, suggesting that a conformational change occurs in the PDZ region upon binding, a conclusion supported by kinetic experiments. Using NMR, we discovered a new mode of interaction between E6 and PDZ: a subset of residues distal to the canonical binding pocket in the PDZ(2) domain exhibited noncanonical interactions with the E6 protein. This is consistent with a larger proportion of the protein surface defining binding specificity, as compared with that reported previously.
Collapse
Affiliation(s)
- Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-75123 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
12
|
Zanier K, Ruhlmann C, Melin F, Masson M, Ould M'hamed Ould Sidi A, Bernard X, Fischer B, Brino L, Ristriani T, Rybin V, Baltzinger M, Vande Pol S, Hellwig P, Schultz P, Travé G. E6 proteins from diverse papillomaviruses self-associate both in vitro and in vivo. J Mol Biol 2009; 396:90-104. [PMID: 19917295 DOI: 10.1016/j.jmb.2009.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Revised: 11/08/2009] [Accepted: 11/09/2009] [Indexed: 11/18/2022]
Abstract
Papillomavirus E6 oncoproteins bind and often provoke the degradation of many cellular proteins important for the control of cell proliferation and/or cell death. Structural studies on E6 proteins have long been hindered by the difficulties of obtaining highly concentrated samples of recombinant E6. Here, we show that recombinant E6 proteins from eight human papillomavirus strains and one bovine papillomavirus strain exist as oligomeric and multimeric species. These species were characterized using a variety of biochemical and biophysical techniques, including analytical gel filtration, activity assays, surface plasmon resonance, electron microscopy and Fourier transform infrared spectroscopy. The characterization of E6 oligomers is facilitated by the fusion to the maltose binding protein, which slows the formation of higher-order multimeric species. The proportion of each oligomeric form varies depending on the viral strain considered. Oligomers appear to consist of folded units, which, in the case of high-risk mucosal human papillomavirus E6, retain binding to the ubiquitin ligase E6-associated protein and the capacity to degrade the proapoptotic protein p53. In addition to the small-size oligomers, E6 proteins spontaneously assemble into large organized multimeric structures, a process that is accompanied by a significant increase in the beta-sheet secondary structure content. Finally, co-localisation experiments using E6 equipped with different tags further demonstrate the occurrence of E6 self-association in eukaryotic cells. The ensemble of these data suggests that self-association is a general property of E6 proteins that occurs both in vitro and in vivo and might therefore be functionally relevant.
Collapse
Affiliation(s)
- Katia Zanier
- Ecole Supérieure de Biotechnologie de Strasbourg (IREBS, FRE 3211), Boulevard Sébastien Brant, BP 10413, 67412 Illkirch Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dantur K, Alonso L, Castaño E, Morelli L, Centeno-Crowley JM, Vighi S, de Prat-Gay G. Cytosolic accumulation of HPV16 E7 oligomers supports different transformation routes for the prototypic viral oncoprotein: the amyloid-cancer connection. Int J Cancer 2009; 125:1902-11. [PMID: 19598264 DOI: 10.1002/ijc.24579] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
E7 is the major transforming activity in human papillomaviruses, a causal agent for cervical cancer. HPV16 E7 is a small protein with a natively unfolded domain for which dozens of specific cellular targets were described, and represents a prototypical oncoprotein among small DNA tumor viruses. The protein can form spherical oligomers with amyloid-like properties and chaperone activity. Conformation specific antibodies locate endogenous oligomeric E7 species in the cytosol of 3 model cell lines, strongly co-localizing with amyloid structures and dimeric E7 localizes to the nucleus. The cytosolic oligomeric E7 appear as the most abundant species in all cell systems tested. We show that nuclear E7 levels are replenished dynamically from the cytosolic pool and do not result from protein synthesis. Our results suggest that long-term events related to de-repression of E7 would cause accumulation of excess E7 into oligomeric species in the cytosol. These, together with the known target promiscuity of E7, may allow interactions with many of the non-pRb dependent targets described. This hypothesis is further supported by the detection of E7 oligomers in the cytosol of cancerous cells from tissue biopsies.
Collapse
Affiliation(s)
- Karina Dantur
- Instituto Leloir and Instituto de Investigaciones Bioquímicas Buenos Aires, Conicet, Patricias Argentinas 435, (C1405BWE) Ciudad Autonoma de Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
14
|
Liu Y, Cherry JJ, Dineen JV, Androphy EJ, Baleja JD. Determinants of stability for the E6 protein of papillomavirus type 16. J Mol Biol 2009; 386:1123-37. [PMID: 19244625 DOI: 10.1016/j.jmb.2009.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
E6 is an oncoprotein produced by human papillomavirus (HPV). The E6 protein from high-risk HPV type 16 contains two zinc-binding domains with two C-x-x-C motifs each. E6 exerts its transforming functions through formation of a complex with E6AP, which binds p53 and stimulates its degradation. There have been few biophysical and structural studies due to difficulty in preparation of soluble protein; here we describe the preparation of soluble E6 constructs including the two separated zinc-binding domains of E6. These proteins are used to examine the extent to which the two domains cooperate to mediate E6 function, how zinc influences the behavior of E6 protein, and which domains mediate aggregation. We demonstrate, using p53 degradation, E6AP binding, and hDlg (human homolog of the Drosophila discs large tumor suppressor protein) PDZ (postsynaptic density/disc large/zonula occludens) protein binding assays, that these soluble proteins are active, and, using NMR, circular dichroism, and fluorescence spectroscopies, we show that they are folded and stable. We show that the separated N-terminal and C-terminal domains interact, but nonproductively, for E6 function. The two domains bind zinc differently with higher affinity associated with the C-terminal domain. Analyses using surface plasmon resonance and circular dichroism and fluorescence spectroscopies show that aggregation is mediated more through the N-terminal domain than through the C-terminal domain. These studies allow a model in which the C-terminal zinc-binding domain of E6 recruits a target protein such as hDlg and the N-terminal domain is mostly responsible for recruiting a ubiquitin ligase to mediate target protein degradation.
Collapse
Affiliation(s)
- Yuqi Liu
- Department of Biochemistry, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
15
|
Complexes of human papillomavirus type 16 E6 proteins form pseudo-death-inducing signaling complex structures during tumor necrosis factor-mediated apoptosis. J Virol 2008; 83:210-27. [PMID: 18842714 DOI: 10.1128/jvi.01365-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
High-risk strains of human papillomavirus (HPV) such as HPV type 16 (HPV16) and HPV18 are causative agents of most human cervical carcinomas. E6, one of the oncogenes encoded by HPV16, possesses a number of biological and transforming functions. We have previously shown that the binding of E6 to host apoptotic proteins such as tumor necrosis factor (TNF) R1, the adaptor protein FADD, and procaspase 8 results in a significant modification of the normal flow of apoptotic events. For example, E6 can bind to and accelerate the degradation of FADD. In addition, full-length E6 binds to the TNF R1 death domain and can also bind to and accelerate the degradation of procaspase 8. In contrast, the binding of small splice isoforms known as E6* results in the stabilization of procaspase 8. In this report, we propose a model for the ability of HPV16 E6 to both sensitize and protect cells from TNF as well as to protect cells from Fas. We demonstrate that both the level of E6 expression and the ratio between full-length E6 and E6* are important factors in the modification of the host extrinsic apoptotic pathways and show that at high levels of E6 expression, the further sensitization of U2OS, NOK, and Ca Ski cells to TNF-mediated apoptosis is most likely due to the formation of a pseudo-death-inducing signaling complex structure that includes complexes of E6 proteins.
Collapse
|
16
|
García-Alai MM, Tidow H, Natan E, Townsley FM, Veprintsev DB, Fersht AR. The novel p53 isoform "delta p53" is a misfolded protein and does not bind the p21 promoter site. Protein Sci 2008; 17:1671-8. [PMID: 18621913 DOI: 10.1110/ps.036996.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The tumor suppressor p53 can be expressed as different isoforms because of promoter selection and mRNA editing. One isoform, "delta p53" (Delta p53), results from what would be an unusual alternative splicing of exons 7/8 of the p53 gene, conserving the reading frame and generating a novel protein with proposed transcriptional activity essential for the intra S-phase checkpoint. Here, we show that the deletion of the 66 residues that correspond to strand beta10 and the C-terminal helix of the core domain and the interconnecting linker to the tetramerization domain occurring in the Delta p53 isoform leads to a misfolded and unstable protein, prone to form soluble aggregates, which does not bind the p21 promoter site. The complex of coexpressed Delta p53 and flp53 is soluble in vitro and binds poorly to DNA. Our results provide a structural explanation for the dominant-negative effect of Delta p53 and its lack of transcriptional activity.
Collapse
Affiliation(s)
- Maria M García-Alai
- Medical Research Council Centre for Protein Engineering, Cambridge CB2 0QH, United Kingdom
| | | | | | | | | | | |
Collapse
|