1
|
|
2
|
Products of Oxidative Guanine Damage Form Base Pairs with Guanine. Int J Mol Sci 2020; 21:ijms21207645. [PMID: 33076559 PMCID: PMC7589758 DOI: 10.3390/ijms21207645] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 01/18/2023] Open
Abstract
Among the natural bases, guanine is the most oxidizable base. The damage caused by oxidation of guanine, commonly referred to as oxidative guanine damage, results in the formation of several products, including 2,5-diamino-4H-imidazol-4-one (Iz), 2,2,4-triamino-5(2H)-oxazolone (Oz), guanidinoformimine (Gf), guanidinohydantoin/iminoallantoin (Gh/Ia), spiroiminodihydantoin (Sp), 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), urea (Ua), 5-guanidino-4-nitroimidazole (NI), spirodi(iminohydantoin) (5-Si and 8-Si), triazine, the M+7 product, other products by peroxynitrite, alkylated guanines, and 8,5'-cyclo-2'-deoxyguanosine (cG). Herein, we summarize the present knowledge about base pairs containing the products of oxidative guanine damage and guanine. Of these products, Iz is involved in G-C transversions. Oz, Gh/Ia, and Sp form preferably Oz:G, Gh/Ia:G, and Sp:G base pairs in some cases. An involvement of Gf, 2Ih, Ua, 5-Si, 8-Si, triazine, the M+7 product, and 4-hydroxy-2,5-dioxo-imidazolidine-4-carboxylic acid (HICA) in G-C transversions requires further experiments. In addition, we describe base pairs that target the RNA-dependent RNA polymerase (RdRp) of RNA viruses and describe implications for the 2019 novel coronavirus (SARS-CoV-2): When products of oxidative guanine damage are adapted for the ribonucleoside analogs, mimics of oxidative guanine damages, which can form base pairs, may become antiviral agents for SARS-CoV-2.
Collapse
|
3
|
Lee AJ, Majumdar C, Kathe SD, Van Ostrand RP, Vickery HR, Averill AM, Nelson SR, Manlove AH, McCord MA, David SS. Detection of OG:A Lesion Mispairs by MutY Relies on a Single His Residue and the 2-Amino Group of 8-Oxoguanine. J Am Chem Soc 2020; 142:13283-13287. [PMID: 32664726 DOI: 10.1021/jacs.0c04284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MutY glycosylase excises adenines misincorporated opposite the oxidatively damaged lesion, 8-oxo-7,8-dihydroguanine (OG), to initiate base excision repair and prevent G to T transversion mutations. Successful repair requires MutY recognition of the OG:A mispair amidst highly abundant and structurally similar undamaged DNA base pairs. Herein we use a combination of in vitro and bacterial cell repair assays with single-molecule fluorescence microscopy to demonstrate that both a C-terminal domain histidine residue and the 2-amino group of OG base are critical for MutY detection of OG:A sites. These studies are the first to directly link deficiencies in MutY lesion detection with incomplete cellular repair. These results suggest that defects in lesion detection of human MutY (MUTYH) variants may prove predictive of early-onset colorectal cancer known an MUTYH-associated polyposis. Furthermore, unveiling these specific molecular determinants for repair makes it possible to envision new MUTYH-specific cancer therapies.
Collapse
Affiliation(s)
- Andrea J Lee
- Department of Microbiology and Molecular Genetics, University of Vermont, 95 Carrigan Drive, Burlington, Vermont 05405, United States
| | - Chandrima Majumdar
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Scott D Kathe
- Department of Microbiology and Molecular Genetics, University of Vermont, 95 Carrigan Drive, Burlington, Vermont 05405, United States
| | - Robert P Van Ostrand
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Holly R Vickery
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - April M Averill
- Department of Microbiology and Molecular Genetics, University of Vermont, 95 Carrigan Drive, Burlington, Vermont 05405, United States
| | - Shane R Nelson
- Department of Molecular Physiology and Biophysics, University of Vermont, 149 Beaumont Avenue, Burlington, Vermont 05405, United States
| | - Amelia H Manlove
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Morgan A McCord
- Department of Microbiology and Molecular Genetics, University of Vermont, 95 Carrigan Drive, Burlington, Vermont 05405, United States
| | - Sheila S David
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
4
|
Cao S, Rogers J, Yeo J, Anderson-Steele B, Ashby J, David SS. 2'-Fluorinated Hydantoins as Chemical Biology Tools for Base Excision Repair Glycosylases. ACS Chem Biol 2020; 15:915-924. [PMID: 32069022 DOI: 10.1021/acschembio.9b00923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The guanine oxidation products, 5-guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), are mutagenic and toxic base lesions that are removed by Fpg, Nei, and the Nei-like (NEIL) glycosylases as the first step in base excision repair (BER). The hydantoins are excellent substrates for the NEIL glycosylases in a variety of DNA contexts beyond canonical duplex DNA, implicating the potential impact of repair activity on a multitude of cellular processes. In order to prepare stable derivatives as chemical biology tools, oligonucleotides containing fluorine at the 2'-position of the sugar of 8-oxo-7,8-dihydro-2'-deoxyguanosine2'-F-OG) were synthesized in ribo and arabino configuration. Selective oxidation of 2'-F-OG within a DNA oligonucleotide provided the corresponding 2'-F-Gh or 2'-F-Sp containing DNA. The 2'-F-hydantoins in duplex DNA were found to be highly resistant to the glycosylase activity of Fpg and NEIL1 compared to the unmodified lesion substrates. Surprisingly, however, some glycosylase-mediated base removal from both the 2'-F-ribo- and 2'-F-arabinohydantoin duplex DNA was observed. Notably, the associated β-lyase strand scission reaction of the 2'-F-arabinohydantoins was inhibited such that the glycosylases were "stalled" at the Schiff-base intermediate. Fpg and NEIL1 showed high affinity for the 2'-F-Gh duplexes in both ribo and arabino configurations. However, binding affinity assessed using catalytically inactive variants of Fpg and NEIL1 indicated higher affinity for the 2'-F-riboGh-containing duplexes. The distinct features of glycosylase processing of 2'-F-ribohydantoins and 2'-F-arabinohydantoins illustrate their utility to reveal structural insight into damage recognition and excision by NEIL and related glycosylases and provide opportunities for delineating the impact of lesion formation and repair in cells.
Collapse
Affiliation(s)
- Sheng Cao
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - JohnPatrick Rogers
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Jongchan Yeo
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Brittany Anderson-Steele
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Jonathan Ashby
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Sheila S. David
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
5
|
Yuen PK, Green SA, Ashby J, Lay KT, Santra A, Chen X, Horvath MP, David SS. Targeting Base Excision Repair Glycosylases with DNA Containing Transition State Mimics Prepared via Click Chemistry. ACS Chem Biol 2019; 14:27-36. [PMID: 30500207 DOI: 10.1021/acschembio.8b00771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
DNA glycosylases of the base excision repair (BER) pathway are front-line defenders in removing compromising modifications of the DNA nucleobases. Aberrantly modified nucleobases mediate genomic mutations and inhibit DNA replication leading to adverse health consequences such as cancer, neurological diseases, and aging. In an effort to develop high-affinity transition state (TS) analogues as chemical biology probes for DNA glycosylases, oligonucleotides containing a propargyl-modified pyrrolidine TS mimic nucleotide were synthesized. A small library of TS mimic-containing oligonucleotides was generated using a structurally diverse set of five azides via copper(I)-catalyzed azide-alkyne cycloaddition "click" chemistry. The relative affinity ( Kd) was evaluated for BER glycosylases Escherichia coli MutY, bacterial formamidopyrimidine glycosylase (Fpg), and human OG glycosylase 1 (hOGG1) with the library of TS mimic DNA duplexes. All of the BER glycosylases were found to exhibit extremely high affinities (approximately picomolar Kd values) for the TS mimics. However, binding preferences, distinct for each glycosylase, for the TS mimic library members were observed, suggesting different modes of binding and transition state stabilization among the three glycosylases. Fpg bound all of the TS mimics with exceptionally high affinities, while the MutY binding affinity correlated inversely with the size of the appended moiety. Of note, we identified one member of the small TS mimic library that exhibited a particularly high affinity for hOGG1. These results strongly support the use of the propargyl-TS mimic oligonucleotides and elaboration via click chemistry in screening and identification of high-affinity ligands for BER glycosylases of interest.
Collapse
Affiliation(s)
- Philip K. Yuen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Sydnee A. Green
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Jonathan Ashby
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Kori T. Lay
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Abhishek Santra
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Martin P. Horvath
- School of Biological Sciences, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sheila S. David
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
6
|
Jayanth N, Puranik M. Mechanism of Discrimination of 8-Oxoguanosine versus Guanosine by Escherichia coli Fpg. J Phys Chem B 2017; 121:5679-5687. [DOI: 10.1021/acs.jpcb.7b00205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Namrata Jayanth
- National Centre for Biological
Sciences, TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Mrinalini Puranik
- National Centre for Biological
Sciences, TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|
7
|
Fleming AM, Burrows CJ. Formation and processing of DNA damage substrates for the hNEIL enzymes. Free Radic Biol Med 2017; 107:35-52. [PMID: 27880870 PMCID: PMC5438787 DOI: 10.1016/j.freeradbiomed.2016.11.030] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/13/2016] [Accepted: 11/16/2016] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are harnessed by the cell for signaling at the same time as being detrimental to cellular components such as DNA. The genome and transcriptome contain instructions that can alter cellular processes when oxidized. The guanine (G) heterocycle in the nucleotide pool, DNA, or RNA is the base most prone to oxidation. The oxidatively-derived products of G consistently observed in high yields from hydroxyl radical, carbonate radical, or singlet oxygen oxidations under conditions modeling the cellular reducing environment are discussed. The major G base oxidation products are 8-oxo-7,8-dihydroguanine (OG), 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), spiroiminodihydantoin (Sp), and 5-guanidinohydantoin (Gh). The yields of these products show dependency on the oxidant and the reaction context that includes nucleoside, single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), and G-quadruplex DNA (G4-DNA) structures. Upon formation of these products in cells, they are recognized by the DNA glycosylases in the base excision repair (BER) pathway. This review focuses on initiation of BER by the mammalian Nei-like1-3 (NEIL1-3) glycosylases for removal of 2Ih, Sp, and Gh. The unique ability of the human NEILs to initiate removal of the hydantoins in ssDNA, bulge-DNA, bubble-DNA, dsDNA, and G4-DNA is outlined. Additionally, when Gh exists in a G4 DNA found in a gene promoter, NEIL-mediated repair is modulated by the plasticity of the G4-DNA structure provided by additional G-runs flanking the sequence. On the basis of these observations and cellular studies from the literature, the interplay between DNA oxidation and BER to alter gene expression is discussed.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, United States.
| |
Collapse
|
8
|
Popov AV, Endutkin AV, Vorobjev YN, Zharkov DO. Molecular dynamics simulation of the opposite-base preference and interactions in the active site of formamidopyrimidine-DNA glycosylase. BMC STRUCTURAL BIOLOGY 2017; 17:5. [PMID: 28482831 PMCID: PMC5422863 DOI: 10.1186/s12900-017-0075-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 04/20/2017] [Indexed: 01/20/2023]
Abstract
Background Formamidopyrimidine-DNA glycosylase (Fpg) removes abundant pre-mutagenic 8-oxoguanine (oxoG) bases from DNA through nucleophilic attack of its N-terminal proline at C1′ of the damaged nucleotide. Since oxoG efficiently pairs with both C and A, Fpg must excise oxoG from pairs with C but not with A, otherwise a mutation occurs. The crystal structures of several Fpg–DNA complexes have been solved, yet no structure with A opposite the lesion is available. Results Here we use molecular dynamic simulation to model interactions in the pre-catalytic complex of Lactococcus lactis Fpg with DNA containing oxoG opposite C or A, the latter in either syn or anti conformation. The catalytic dyad, Pro1–Glu2, was modeled in all four possible protonation states. Only one transition was observed in the experimental reaction rate pH dependence plots, and Glu2 kept the same set of interactions regardless of its protonation state, suggesting that it does not limit the reaction rate. The adenine base opposite oxoG was highly distorting for the adjacent nucleotides: in the more stable syn models it formed non-canonical bonds with out-of-register nucleotides in both the damaged and the complementary strand, whereas in the anti models the adenine either formed non-canonical bonds or was expelled into the major groove. The side chains of Arg109 and Phe111 that Fpg inserts into DNA to maintain its kinked conformation tended to withdraw from their positions if A was opposite to the lesion. The region showing the largest differences in the dynamics between oxoG:C and oxoG:A substrates was unexpectedly remote from the active site, located near the linker joining the two domains of Fpg. This region was also highly conserved among 124 analyzed Fpg sequences. Three sites trapping water molecules through multiple bonds were identified on the protein–DNA interface, apparently helping to maintain enzyme-induced DNA distortion and participating in oxoG recognition. Conclusion Overall, the discrimination against A opposite to the lesion seems to be due to incorrect DNA distortion around the lesion-containing base pair and, possibly, to gross movement of protein domains connected by the linker. Electronic supplementary material The online version of this article (doi:10.1186/s12900-017-0075-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander V Popov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk, 630090, Russia
| | - Anton V Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk, 630090, Russia.,Novosibrsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia
| | - Yuri N Vorobjev
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk, 630090, Russia. .,Novosibrsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk, 630090, Russia. .,Novosibrsk State University, 2 Pirogova St., Novosibirsk, 630090, Russia.
| |
Collapse
|
9
|
Norabuena EM, Barnes Williams S, Klureza MA, Goehring LJ, Gruessner B, Radhakrishnan ML, Jamieson ER, Núñez ME. Effect of the Spiroiminodihydantoin Lesion on Nucleosome Stability and Positioning. Biochemistry 2016; 55:2411-21. [PMID: 27074396 DOI: 10.1021/acs.biochem.6b00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA is constantly under attack by oxidants, generating a variety of potentially mutagenic covalently modified species, including oxidized guanine base products. One such product is spiroiminodihydantoin (Sp), a chiral, propeller-shaped lesion that strongly destabilizes the DNA helix in its vicinity. Despite its unusual shape and thermodynamic effect on double-stranded DNA structure, DNA duplexes containing the Sp lesion form stable nucleosomes upon being incubated with histone octamers. Indeed, among six different combinations of lesion location and stereochemistry, only two duplexes display a diminished ability to form nucleosomes, and these only by ∼25%; the other four are statistically indistinguishable from the control. Nonetheless, kinetic factors also play a role: when the histone proteins have less time during assembly of the core particle to sample both lesion-containing and normal DNA strands, they are more likely to bind the Sp lesion DNA than during slower assembly processes that better approximate thermodynamic equilibrium. Using DNase I footprinting and molecular modeling, we discovered that the Sp lesion causes only a small perturbation (±1-2 bp) on the translational position of the DNA within the nucleosome. Each diastereomeric pair of lesions has the same effect on nucleosome positioning, but lesions placed at different locations behave differently, illustrating that the location of the lesion and not its shape serves as the primary determinant of the most stable DNA orientation.
Collapse
Affiliation(s)
- Erika M Norabuena
- Department of Chemistry and Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| | - Sara Barnes Williams
- Department of Chemistry and Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| | - Margaret A Klureza
- Department of Chemistry and Program in Biochemistry, Wellesley College , Wellesley, Massachusetts 02481, United States
| | - Liana J Goehring
- Department of Chemistry and Program in Biochemistry, Wellesley College , Wellesley, Massachusetts 02481, United States
| | - Brian Gruessner
- Department of Chemistry and Program in Biochemistry, Smith College , Northampton, Massachusetts 01063, United States
| | - Mala L Radhakrishnan
- Department of Chemistry and Program in Biochemistry, Wellesley College , Wellesley, Massachusetts 02481, United States
| | - Elizabeth R Jamieson
- Department of Chemistry and Program in Biochemistry, Smith College , Northampton, Massachusetts 01063, United States
| | - Megan E Núñez
- Department of Chemistry and Program in Biochemistry, Wellesley College , Wellesley, Massachusetts 02481, United States
| |
Collapse
|
10
|
Huang J, Yennie CJ, Delaney S. Klenow Fragment Discriminates against the Incorporation of the Hyperoxidized dGTP Lesion Spiroiminodihydantoin into DNA. Chem Res Toxicol 2015; 28:2325-33. [PMID: 26572218 DOI: 10.1021/acs.chemrestox.5b00330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Defining the biological consequences of oxidative DNA damage remains an important and ongoing area of investigation. At the foundation of understanding the repercussions of such damage is a molecular-level description of the action of DNA-processing enzymes, such as polymerases. In this work, we focus on a secondary, or hyperoxidized, oxidative lesion of dG that is formed by oxidation of the primary oxidative lesion, 2'-deoxy-8-oxo-7,8-dihydroguanosine (8-oxodG). In particular, we examine incorporation into DNA of the diastereomers of the hyperoxidized guanosine triphosphate lesion spiroiminodihydantoin-2'-deoxynucleoside-5'-triphosphate (dSpTP). Using kinetic parameters, we describe the ability of the Klenow fragment of Escherichia coli DNA polymerase I lacking 3' → 5' exonuclease activity (KF(-)) to utilize (S)-dSpTP and (R)-dSpTP as building blocks during replication. We find that both diastereomers act as covert lesions, similar to a Trojan horse: KF(-) incorporates the lesion dNTP opposite dC, which is a nonmutagenic event; however, during the subsequent replication, it is known that dSp is nearly 100% mutagenic. Nevertheless, using kpol/Kd to define the nucleotide incorporation specificity, we find that the extent of oxidation of the dGTP-derived lesion correlates with its ability to be incorporated into DNA. KF(-) has the highest specificity for incorporation of dGTP opposite dC. The selection factors for incorporating 8-oxodGTP, (S)-dSpTP, and (R)-dSpTP are 1700-, 64000-, and 850000-fold lower, respectively. Thus, KF(-) is rigorous in its discrimination against incorporation of the hyperoxidized lesion, and these results suggest that the specificity of cellular polymerases provides an effective mechanism to avoid incorporating dSpTP lesions into DNA from the nucleotide pool.
Collapse
Affiliation(s)
- Ji Huang
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Craig J Yennie
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
11
|
Identification of DNA lesions using a third base pair for amplification and nanopore sequencing. Nat Commun 2015; 6:8807. [PMID: 26542210 PMCID: PMC4667634 DOI: 10.1038/ncomms9807] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 10/06/2015] [Indexed: 01/17/2023] Open
Abstract
Damage to the genome is implicated in the progression of cancer and stress-induced diseases. DNA lesions exist in low levels, and cannot be amplified by standard PCR because they are frequently strong blocks to polymerases. Here, we describe a method for PCR amplification of lesion-containing DNA in which the site and identity could be marked, copied and sequenced. Critical for this method is installation of either the dNaM or d5SICS nucleotides at the lesion site after processing via the base excision repair process. These marker nucleotides constitute an unnatural base pair, allowing large quantities of marked DNA to be made by PCR amplification. Sanger sequencing confirms the potential for this method to locate lesions by marking, amplifying and sequencing a lesion in the KRAS gene. Detection using the α-hemolysin nanopore is also developed to analyse the markers in individual DNA strands with the potential to identify multiple lesions per strand. Genomic DNA lesions exist in low levels and cannot be amplified by standard PCR. Here, Riedl et al. report a method to amplify damaged DNA sites by replacing them via DNA repair with unnatural base pairs, which are subsequently identified by Sanger sequencing or α-hemolysin nanopore sequencing.
Collapse
|
12
|
Alshykhly OR, Fleming AM, Burrows CJ. Guanine oxidation product 5-carboxamido-5-formamido-2-iminohydantoin induces mutations when bypassed by DNA polymerases and is a substrate for base excision repair. Chem Res Toxicol 2015; 28:1861-71. [PMID: 26313343 DOI: 10.1021/acs.chemrestox.5b00302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Guanine (G) is a target for oxidation by reactive oxygen species in DNA, RNA, and the nucleotide pool. Damage to DNA yields products with alternative properties toward DNA processing enzymes compared to those of the parent nucleotide. A new lesion, 5-carboxamido-5-formamido-2-iminohydantoin (2Ih), bearing a stereocenter in the base was recently identified from the oxidation of G. DNA polymerase and base excision repair processing of this new lesion has now been evaluated. Single nucleotide insertion opposite (S)-2Ih and (R)-2Ih in the template strand catalyzed by the DNA polymerases Klenow fragment exo(-), DPO4, and Hemo KlenTaq demonstrates these lesions to cause point mutations. Specifically, they promote 3-fold more G·C → C·G transversion mutations than G·C → T·A, and (S)-2Ih was 2-fold more blocking for polymerase bypass than (R)-2Ih. Both diastereomer lesions were found to be substrates for the DNA glycosylases NEIL1 and Fpg, and poorly excised by endonuclease III (Nth). The activity was independent of the base pair partner. Thermal melting, CD spectroscopy, and density functional theory geometric optimization calculations were conducted to provide insight into these polymerase and DNA glycosylase studies. These results identify that formation of the 2Ih lesions in a cell would be mutagenic in the event that they were not properly repaired.
Collapse
Affiliation(s)
- Omar R Alshykhly
- Department of Chemistry, University of Utah , 315 S 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah , 315 S 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah , 315 S 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
13
|
Fleming AM, Alshykhly O, Zhu J, Muller JG, Burrows CJ. Rates of chemical cleavage of DNA and RNA oligomers containing guanine oxidation products. Chem Res Toxicol 2015; 28:1292-300. [PMID: 25853314 PMCID: PMC4482417 DOI: 10.1021/acs.chemrestox.5b00096] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The nucleobase guanine in DNA (dG)
and RNA (rG) has the lowest
standard reduction potential of the bases, rendering it a major site
of oxidative damage in these polymers. Mapping the sites at which
oxidation occurs in an oligomer via chemical reagents utilizes hot
piperidine for cleaving oxidized DNA and aniline (pH 4.5) for cleaving
oxidized RNA. In the present studies, a series of time-dependent cleavages
of DNA and RNA strands containing various guanine lesions were examined
to determine the strand scission rate constants. The guanine base
lesions 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin
(Sp), 5-guanidinohydantoin (Gh), 2,2,4-triamino-2H-oxazol-5-one (Z), and 5-carboxamido-5-formamido-2-iminohydantoin
(2Ih) were evaluated in piperidine-treated DNA and aniline-treated
RNA. These data identified wide variability in the chemical lability
of the lesions studied in both DNA and RNA. Further, the rate constants
for cleaving lesions in RNA were generally found to be significantly
smaller than for lesions in DNA. The OG nucleotides were poorly cleaved
in DNA and RNA; Sp nucleotides were slowly cleaved in DNA and did
not cleave significantly in RNA; Gh and Z nucleotides cleaved in both
DNA and RNA at intermediate rates; and 2Ih oligonucleotides cleaved
relatively quickly in both DNA and RNA. The data are compared and
contrasted with respect to future experimental design.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Omar Alshykhly
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Judy Zhu
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - James G Muller
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
14
|
Fleming AM, Orendt AM, He Y, Zhu J, Dukor RK, Burrows CJ. Reconciliation of chemical, enzymatic, spectroscopic and computational data to assign the absolute configuration of the DNA base lesion spiroiminodihydantoin. J Am Chem Soc 2013; 135:18191-204. [PMID: 24215588 DOI: 10.1021/ja409254z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The diastereomeric spiroiminodihydantoin-2'-deoxyribonucleoside (dSp) lesions resulting from 2'-deoxyguanosine (dG) or 8-oxo-7,8-dihydro-2'-deoxyguanosine (dOG) oxidation have generated much attention due to their highly mutagenic nature. Their propeller-like shape leads these molecules to display mutational profiles in vivo that are stereochemically dependent. However, there exist conflicting absolute configuration assignments arising from electronic circular dichroism (ECD) and NOESY-NMR experiments; thus, providing definitive assignments of the 3D structure of these molecules is of great interest. In the present body of work, we present data inconsistent with the reported ECD assignments for the dSp diastereomers in the nucleoside context, in which the first eluting isomer from a Hypercarb HPLC column was assigned to be the S configuration, and the second was assigned the R configuration. The following experiments were conducted: (1) determination of the diastereomer ratio of dSp products upon one-electron oxidation of dG in chiral hybrid or propeller G-quadruplexes that expose the re or si face to solvent, respectively; (2) absolute configuration analysis using vibrational circular dichroism (VCD) spectroscopy; (3) reinterpretation of the ECD experimental spectra using time-dependent density functional theory (TDDFT) with the inclusion of 12 explicit H-bonding waters around the Sp free bases; and (4) reevaluation of calculated specific rotations for the Sp enantiomers using the hydration model in the TDDFT calculations. These new insights provide a fresh look at the absolute configuration assignments of the dSp diastereomers in which the first eluting from a Hypercarb-HPLC column is (-)-(R)-dSp and the second is (+)-(S)-dSp. These assignments now provide the basis for understanding the biological significance of the stereochemical dependence of enzymes that process this form of DNA damage.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | | | | | | | | | | |
Collapse
|
15
|
Chen X, Fleming AM, Muller JG, Burrows CJ. Endonuclease and Exonuclease Activities on Oligodeoxynucleotides Containing Spiroiminodihydantoin Depend on the Sequence Context and the Lesion Stereochemistry. NEW J CHEM 2013; 37:3440-3449. [PMID: 24563606 PMCID: PMC3929292 DOI: 10.1039/c3nj00418j] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
8-Oxo-7,8-dihydro-2'-deoxyguanosine (dOG), a well-studied oxidation product of 2'-deoxyguanosine (dG), is prone to facile further oxidation forming spiroiminodihydantoin 2'-deoxyribonucleoside (dSp) in the nucleotide pool and in single-stranded oligodeoxynucleotides (ODNs). Many methods for quantification of damaged lesions in the genome rely on digestion of DNA with exonucleases or endonucleases and dephosphorylation followed by LC-MS analysis of the resulting nucleosides. In this study, enzymatic hydrolysis of dSp-containing ODNs was investigated with snake venom phosphodiesterase (SVPD), spleen phosphodiesterase (SPD) and nuclease P1. SVPD led to formation of a dinucleotide, 5'-d(Np[Sp])-3' (N = any nucleotide) that included the undamaged nucleotide on the 5' side of dSp as the final product. This dinucleotide was a substrate for both SPD and nuclease P1. A kinetic study of the activity of SPD and nuclease P1 showed a sequence dependence on the nucleotide 5' to the lesion with rates in the order dG>dA>dT>dC. In addition, the two diastereomers of dSp underwent digestion at significantly different rates with dSp1>dSp2; nuclease P1 hydrolyzed the 5'-d(Np[Sp1])-3' dinucleotide two- to six-fold faster than the corresponding 5'-d(Np[Sp2])-3', while for SPD the difference was two-fold. These rates are chemically reasoned based on dSp diastereomer differences in the syn vs. anti glycosidic bond orientation. A method for the complete digestion of dSp-containing ODNs is also outlined based on treatment with nuclease P1 and SVPD. These findings have significant impact on the development of methods to detect dSp levels in cellular DNA.
Collapse
Affiliation(s)
- Xin Chen
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, U.S.A
| | - Aaron M. Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, U.S.A
| | - James G. Muller
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, U.S.A
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, U.S.A
| |
Collapse
|
16
|
Mehra V, Kumar V. Facile diastereoselective synthesis of functionally enriched hydantoins via base-promoted intramolecular amidolysis of C-3 functionalized azetidin-2-ones. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.08.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
McKibbin PL, Fleming AM, Towheed MA, Van Houten B, Burrows CJ, David SS. Repair of hydantoin lesions and their amine adducts in DNA by base and nucleotide excision repair. J Am Chem Soc 2013; 135:13851-61. [PMID: 23930966 PMCID: PMC3906845 DOI: 10.1021/ja4059469] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An important feature of the common DNA oxidation product 8-oxo-7,8-dihydroguanine (OG) is its susceptibility to further oxidation that produces guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) lesions. In the presence of amines, G or OG oxidation produces hydantoin amine adducts. Such adducts may form in cells via interception of oxidized intermediates by protein-derived nucleophiles or naturally occurring amines that are tightly associated with DNA. Gh and Sp are known to be substrates for base excision repair (BER) glycosylases; however, large Sp-amine adducts would be expected to be more readily repaired by nucleotide excision repair (NER). A series of Sp adducts differing in the size of the attached amine were synthesized to evaluate the relative processing by NER and BER. The UvrABC complex excised Gh, Sp, and the Sp-amine adducts from duplex DNA, with the greatest efficiency for the largest Sp-amine adducts. The affinity of UvrA for all of the lesion duplexes was found to be similar, whereas the efficiency of UvrB loading tracked with the efficiency of UvrABC excision. In contrast, the human BER glycosylase NEIL1 exhibited robust activity for all Sp-amine adducts irrespective of size. These studies suggest that both NER and BER pathways mediate repair of a diverse set of hydantoin lesions in cells.
Collapse
Affiliation(s)
- Paige L. McKibbin
- Department of Chemistry, One Shields Avenue, University of California, Davis, Davis, California 95616 United States
| | - Aaron M. Fleming
- Department of Chemistry, 315 S. 1400 East, University of Utah, Salt Lake City, Utah, 84112, United States
| | - Mohammad Atif Towheed
- Department of Pharmacology and Chemical Biology, 5117 Centre Avenue, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213 United States,
| | - Bennett Van Houten
- Department of Pharmacology and Chemical Biology, 5117 Centre Avenue, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213 United States,
| | - Cynthia J. Burrows
- Department of Chemistry, 315 S. 1400 East, University of Utah, Salt Lake City, Utah, 84112, United States
| | - Sheila S. David
- Department of Chemistry, One Shields Avenue, University of California, Davis, Davis, California 95616 United States
| |
Collapse
|
18
|
Yennie CJ, Delaney S. Thermodynamic consequences of the hyperoxidized guanine lesion guanidinohydantoin in duplex DNA. Chem Res Toxicol 2012; 25:1732-9. [PMID: 22780843 DOI: 10.1021/tx300190a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Guanidinohydantoin (Gh) is a hyperoxidized DNA lesion produced by oxidation of 8-oxo-7,8-dihydroguanine (8-oxoG). Previous work has shown that Gh is potently mutagenic in both in vitro and in vivo coding for G → T and G → C transversion mutations. In this work, analysis by circular dichroism shows that the Gh lesion does not significantly alter the global structure of a 15-mer duplex and that the DNA remains in the B-form. However, we find that Gh causes a large decrease in the thermal stability, decreasing the duplex melting temperature by ~17 °C relative to an unmodified duplex control. Using optical melting analysis and differential scanning calorimetry, the thermodynamic parameters describing duplex melting were also determined. We find that the Gh lesion causes a dramatic decrease in the enthalpic stability of the duplex. This enthalpic destabilization is somewhat tempered by entropic stabilization; yet, Gh results in an overall decrease in thermodynamic stability of the duplex relative to a control that lacks DNA damage, with a ΔΔG° of -7 kcal/mol. These results contribute to our understanding of the consequences of hyperoxidation of G and provide insight into how the thermal and thermodynamic destabilization caused by Gh may influence replication and/or repair of the lesion.
Collapse
Affiliation(s)
- Craig J Yennie
- Department of Chemistry, Brown University, Providence, RI 02912, USA
| | | |
Collapse
|
19
|
Thimerosal-Derived Ethylmercury Is a Mitochondrial Toxin in Human Astrocytes: Possible Role of Fenton Chemistry in the Oxidation and Breakage of mtDNA. J Toxicol 2012; 2012:373678. [PMID: 22811707 PMCID: PMC3395253 DOI: 10.1155/2012/373678] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 05/07/2012] [Accepted: 05/21/2012] [Indexed: 11/17/2022] Open
Abstract
Thimerosal generates ethylmercury in aqueous solution and is widely used as preservative. We have investigated the toxicology of Thimerosal in normal human astrocytes, paying particular attention to mitochondrial function and the generation of specific oxidants. We find that ethylmercury not only inhibits mitochondrial respiration leading to a drop in the steady state membrane potential, but also concurrent with these phenomena increases the formation of superoxide, hydrogen peroxide, and Fenton/Haber-Weiss generated hydroxyl radical. These oxidants increase the levels of cellular aldehyde/ketones. Additionally, we find a five-fold increase in the levels of oxidant damaged mitochondrial DNA bases and increases in the levels of mtDNA nicks and blunt-ended breaks. Highly damaged mitochondria are characterized by having very low membrane potentials, increased superoxide/hydrogen peroxide production, and extensively damaged mtDNA and proteins. These mitochondria appear to have undergone a permeability transition, an observation supported by the five-fold increase in Caspase-3 activity observed after Thimerosal treatment.
Collapse
|
20
|
Kumar V, Rana H, Sankolli R, Kaushik M. Highly efficient dialkylphosphate-mediated syntheses of hydantoins and a bicyclohydantoin under solvent-free conditions. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.09.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Beckman J, Wang M, Blaha G, Wang J, Konigsberg WH. Substitution of Ala for Tyr567 in RB69 DNA polymerase allows dAMP and dGMP to be inserted opposite Guanidinohydantoin . Biochemistry 2010; 49:8554-63. [PMID: 20795733 PMCID: PMC3755731 DOI: 10.1021/bi100913v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Continuous oxidative damage inflicted on DNA produces 7,8-dihydro-8-oxoguanine (8-oxoG), a commonly occurring lesion that can potentially cause cancer by producing G → T transversions during DNA replication. Mild oxidation of 8-oxoG leads to the formation of hydantoins, specifically guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp), which are 100% mutagenic because they encode almost exclusively the insertion of dAMP and dGMP (encoding G → T and G → C transversions, respectively). The wild-type (wt) pol α family DNA polymerase from bacteriophage RB69 (RB69pol) inserts dAMP and dGMP with low efficiency when situated opposite Gh. In contrast, the RB69pol Y567A mutant inserts both of these dNMPs opposite Gh with >100-fold higher efficiency than wt. We now report the crystal structure of the "closed" preinsertion complex for the Y567A mutant with dATP opposite a templating Gh (R-configuration) in a 13/18mer primer-template (P/T) at 2.0 Å resolution. The structure data reveal that the Y to A substitution provides the nascent base pair binding pocket (NBP) with the flexibility to accommodate Gh by allowing G568 to move in the major-to-minor groove direction of the P/T. Thus, Gh is rejected as a templating base by wt RB69pol because G568 is inflexible, preventing Gh from pairing with the incoming dATP or dGTP base.
Collapse
Affiliation(s)
| | | | | | - Jimin Wang
- Address correspondence to: Prof. William H. Konigsberg, Dr. Jimin Wang, Department of Molecular Biophysics and Biochemistry, Yale University, SHM CE-14, New Haven, CT 06520-8114, Telephone: (203) 785-4599, Fax: (203) 785-7979, ,
| | - William H. Konigsberg
- Address correspondence to: Prof. William H. Konigsberg, Dr. Jimin Wang, Department of Molecular Biophysics and Biochemistry, Yale University, SHM CE-14, New Haven, CT 06520-8114, Telephone: (203) 785-4599, Fax: (203) 785-7979, ,
| |
Collapse
|
22
|
Carneiro CD, Amorim JC, Cadena SM, Noleto GR, Di Mascio P, Rocha ME, Martinez GR. Effect of flavonoids on 2′-deoxyguanosine and DNA oxidation caused by singlet molecular oxygen. Food Chem Toxicol 2010; 48:2380-7. [DOI: 10.1016/j.fct.2010.05.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 04/28/2010] [Accepted: 05/27/2010] [Indexed: 12/31/2022]
|
23
|
The mouse ortholog of NEIL3 is a functional DNA glycosylase in vitro and in vivo. Proc Natl Acad Sci U S A 2010; 107:4925-30. [PMID: 20185759 DOI: 10.1073/pnas.0908307107] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
To protect cells from oxidative DNA damage and mutagenesis, organisms possess multiple glycosylases to recognize the damaged bases and to initiate the Base Excision Repair pathway. Three DNA glycosylases have been identified in mammals that are homologous to the Escherichia coli Fpg and Nei proteins, Neil1, Neil2, and Neil3. Neil1 and Neil2 in human and mouse have been well characterized while the properties of the Neil3 protein remain to be elucidated. In this study, we report the characterization of Mus musculus (house mouse) Neil3 (MmuNeil3) as an active DNA glycosylase both in vitro and in vivo. In duplex DNA, MmuNeil3 recognizes the oxidized purines, spiroiminodihydantoin (Sp), guanidinohydantoin (Gh), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) and 4,6-diamino- 5-formamidopyrimidine (FapyA), but not 8-oxo-7,8-dihydroguanine (8-oxoG). Interestingly, MmuNeil3 prefers lesions in single-stranded DNA and in bubble structures. In contrast to other members of the family that use the N-terminal proline as the nucleophile, MmuNeil3 forms a Schiff base intermediate via its N-terminal valine. We expressed the glycosylase domain of MmuNeil3 (MmuNeil3Delta324) in an Escherichia coli triple mutant lacking Fpg, Nei, and MutY glycosylase activities and showed that MmuNeil3 greatly reduced both the spontaneous mutation frequency and the level of FapyG in the DNA, suggesting that Neil3 plays a role in repairing FapyG in vivo.
Collapse
|
24
|
The oxidative DNA glycosylases of Mycobacterium tuberculosis exhibit different substrate preferences from their Escherichia coli counterparts. DNA Repair (Amst) 2009; 9:177-90. [PMID: 20031487 DOI: 10.1016/j.dnarep.2009.11.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 11/20/2009] [Accepted: 11/21/2009] [Indexed: 11/22/2022]
Abstract
The DNA glycosylases that remove oxidized DNA bases fall into two general families: the Fpg/Nei family and the Nth superfamily. Based on protein sequence alignments, we identified four putative Fpg/Nei family members, as well as a putative Nth protein in Mycobacterium tuberculosis H37Rv. All four Fpg/Nei proteins were successfully overexpressed using a bicistronic vector created in our laboratory. The MtuNth protein was also overexpressed in soluble form. The substrate specificities of the purified enzymes were characterized in vitro with oligodeoxynucleotide substrates containing single lesions. Some were further characterized by gas chromatography/mass spectrometry (GC/MS) analysis of products released from gamma-irradiated DNA. MtuFpg1 has substrate specificity similar to that of EcoFpg. Both EcoFpg and MtuFpg1 are more efficient at removing spiroiminodihydantoin (Sp) than 7,8-dihydro-8-oxoguanine (8-oxoG). However, MtuFpg1 shows a substantially increased opposite base discrimination compared to EcoFpg. MtuFpg2 contains only the C-terminal domain of an Fpg protein and has no detectable DNA binding activity or DNA glycosylase/lyase activity and thus appears to be a pseudogene. MtuNei1 recognizes oxidized pyrimidines on both double-stranded and single-stranded DNA and exhibits uracil DNA glycosylase activity. MtuNth recognizes a variety of oxidized bases, including urea, 5,6-dihydrouracil (DHU), 5-hydroxyuracil (5-OHU), 5-hydroxycytosine (5-OHC) and methylhydantoin (MeHyd). Both MtuNei1 and MtuNth excise thymine glycol (Tg); however, MtuNei1 strongly prefers the (5R) isomers, whereas MtuNth recognizes only the (5S) isomers. MtuNei2 did not demonstrate activity in vitro as a recombinant protein, but like MtuNei1 when expressed in Escherichia coli, it decreased the spontaneous mutation frequency of both the fpg mutY nei triple and nei nth double mutants, suggesting that MtuNei2 is functionally active in vivo recognizing both guanine and cytosine oxidation products. The kinetic parameters of the MtuFpg1, MtuNei1 and MtuNth proteins on selected substrates were also determined and compared to those of their E. coli homologs.
Collapse
|
25
|
Krishnamurthy N, Zhao X, Burrows CJ, David SS. Superior removal of hydantoin lesions relative to other oxidized bases by the human DNA glycosylase hNEIL1. Biochemistry 2008; 47:7137-46. [PMID: 18543945 DOI: 10.1021/bi800160s] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The DNA glycosylase hNEIL1 initiates the base excision repair (BER) of a diverse array of lesions, including ring-opened purines and saturated pyrimidines. Of these, the hydantoin lesions, guanidinohydantoin (Gh) and the two diastereomers of spiroiminodihydantoin (Sp1 and Sp2), have garnered much recent attention due to their unusual structures, high mutagenic potential, and detection in cells. In order to provide insight into the role of repair, the excision efficiency by hNEIL1 of these hydantoin lesions relative to other known substrates was determined. Most notably, quantitative examination of the substrate specificity with hNEIL1 revealed that the hydantoin lesions are excised much more efficiently (>100-fold faster) than the reported standard substrates thymine glycol (Tg) and 5-hydroxycytosine (5-OHC). Importantly, the glycosylase and beta,delta-lyase reactions are tightly coupled such that the rate of the lyase activity does not influence the observed substrate specificity. The activity of hNEIL1 is also influenced by the base pair partner of the lesion, with both Gh and Sp removal being more efficient when paired with T, G, or C than when paired with A. Notably, the most efficient removal is observed with the Gh or Sp paired in the unlikely physiological context with T; indeed, this may be a consequence of the unstable nature of base pairs with T. However, the facile removal via BER in promutagenic base pairs that are reasonably formed after replication (such as Gh.G) may be a factor that modulates the mutagenic profile of these lesions. In addition, hNEIL1 excises Sp1 faster than Sp2, indicating the enzyme can discriminate between the two diastereomers. This is the first time that a BER glycosylase has been shown to be able to preferentially excise one diastereomer of Sp. This may be a consequence of the architecture of the active site of hNEIL1 and the structural uniqueness of the Sp lesion. These results indicate that the hydantoin lesions are the best substrates identified thus far for hNEIL1 and suggest that repair of these lesions may be a critical function of the hNEIL1 enzyme in vivo.
Collapse
Affiliation(s)
- Nirmala Krishnamurthy
- Department of Chemistry, University of Utah, 315 South, 1400 East, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|
26
|
Murray RG, Whitehead DM, Le Strat F, Conway SJ. Facile one-pot synthesis of 5-substituted hydantoins. Org Biomol Chem 2008; 6:988-91. [PMID: 18327322 DOI: 10.1039/b719675j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
5-Substituted and 5,5-disubstituted hydantoins are synthesised from the corresponding aldehydes or ketones, using a one-pot, gallium(III) triflate-catalysed procedure that is compatible with a range of substrates and solvents.
Collapse
Affiliation(s)
- Ross G Murray
- EaStCHEM, School of Chemistry and Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | | | | | | |
Collapse
|
27
|
Krishnamurthy N, Haraguchi K, Greenberg MM, David SS. Efficient removal of formamidopyrimidines by 8-oxoguanine glycosylases. Biochemistry 2007; 47:1043-50. [PMID: 18154319 DOI: 10.1021/bi701619u] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Under conditions of oxidative stress, the formamidopyrimidine lesions (FapyG and FapyA) are formed in competition with the corresponding 8-oxopurines (OG and OA) from a common intermediate. In order to reveal features of the repair of these lesions, and the potential contribution of repair in mitigating or exacerbating the mutagenic properties of Fapy lesions, their excision by three glycosylases, Fpg, hOGG1 and Ntg1, was examined in various base pair contexts under single-turnover conditions. FapyG was removed at least as efficiently as OG by all three glycosylases. In addition, the rates of removal of FapyG by Fpg and hOGG1 were influenced by their base pair partner, with preference for removal when base paired with the correct Watson-Crick partner C. With the FapyA lesion, Fpg and Ntg1 catalyze its removal more readily than OG opposite all four natural bases. In contrast, the removal of FapyA by hOGG1 was not as robust as FapyG or OG, and was only significant when the lesion was paired with C. The discrimination by the various glycosylases with respect to the opposing base was highly dependent on the identity of the lesion. OG induced the greatest selectivity against its removal when part of a promutagenic base pair. The superb activity of the various OG glycosylases toward removal of FapyG and FapyA in vitro suggests that these enzymes may act upon these oxidized lesions in vivo. The differences in the activity of the various glycosylases for removal of FapyG and FapyA compared to OG in nonmutagenic versus promutagenic base pair contexts may serve to alter the mutagenic profiles of these lesions in vivo.
Collapse
Affiliation(s)
- Nirmala Krishnamurthy
- Department of Chemistry, University of Utah, 315 South, 1400 East, Salt Lake City, Utah 84112, USA
| | | | | | | |
Collapse
|