1
|
Singh N, Singh AK. Exploration of phytoconstituents of Medhya Rasayana herbs to identify potential inhibitors for cerebroside sulfotransferase through high-throughput screening. Front Mol Biosci 2024; 11:1476482. [PMID: 39450315 PMCID: PMC11500077 DOI: 10.3389/fmolb.2024.1476482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/17/2024] [Indexed: 10/26/2024] Open
Abstract
Cerebroside sulfotransferase (CST) is a key enzyme in sulfatide biosynthesis and regulation of the myelin sheath in the nervous system. To counter sulfatide accumulation with the deficiency of aryl sulfatase A, CST is considered a target protein in substrate reduction therapy in metachromatic leukodystrophy. In this study, 461 phytoconstituents from four herbs of Medhya Rasayana were screened using multi-pronged virtual screening methods including molecular docking, molecular dynamics (MD) simulation, and reverse pharmacophore analysis. The initial screening of the top 15 hits was based on the binding affinity of the compounds toward the CST substrate-binding site using the lowest free energy of a binding score cutoff of ≤ -7.5 kcal/mol, with the number of conformations in the largest cluster more than 75. The absorption, distribution, metabolism, and excretion (ADME) and toxicity-based pharmacokinetic analysis delivered the top four hits: 18alpha-glycyrrhetinic acid, lupeol, alpha carotene, and beta-carotene, with high blood-brain barrier permeability and negligible toxicity. Furthermore, a 100-ns simulation of protein-ligand complexes with a trajectory analysis of structural deviation, compactness, intramolecular interactions, principal component analysis, free energy landscape, and dynamic cross-correlation analysis showed the binding potential and positioning of the four hits in the binding pocket. Thus, an in-depth analysis of protein-ligand interactions from pre- and post-molecular dynamics simulation, along with reverse pharmacophore mapping, suggests that 18alpha-glycyrrhetinic acid is the most potent and specific CST inhibitor, while beta-carotene could be considered the second most potent compound for CST inhibition as it also exhibited overall stability throughout the simulation. Therefore, the computational drug screening approach applied in this study may contribute to the development of oral drugs as a therapeutic option for metachromatic leukodystrophy.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | | |
Collapse
|
2
|
Singh N, Singh AK. In Silico Structural Modeling and Binding Site Analysis of Cerebroside Sulfotransferase (CST): A Therapeutic Target for Developing Substrate Reduction Therapy for Metachromatic Leukodystrophy. ACS OMEGA 2024; 9:10748-10768. [PMID: 38463293 PMCID: PMC10918841 DOI: 10.1021/acsomega.3c09462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Cerebroside sulfotransferase (CST) is emerging as an important therapeutic target to develop substrate reduction therapy (SRT) for metachromatic leukodystrophy (MLD), a rare neurodegenerative lysosomal storage disorder. MLD develops with progressive impairment and destruction of the myelin sheath as a result of accumulation of sulfatide around the nerve cells in the absence of its recycling mechanism with deficiency of arylsulfatase A (ARSA). Sulfatide is the product of the catalytic action of cerebroside sulfotransferase (CST), which needs to be regulated under pathophysiological conditions by inhibitor development. To carry out in silico-based preliminary drug screening or for designing new drug candidates, a high-quality three-dimensional (3D) structure is needed in the absence of an experimentally derived three-dimensional crystal structure. In this study, a 3D model of the protein was developed using a primary sequence with the SWISS-MODEL server by applying the top four GMEQ score-based templates belonging to the sulfotransferase family as a reference. The 3D model of CST highlights the features of the protein responsible for its catalytic action. The CST model comprises five β-strands, which are flanked by ten α-helices from both sides as well as form the upside cover of the catalytic pocket of CST. CST has two catalytic regions: PAPS (-sulfo donor) binding and galactosylceramide (-sulfo acceptor) binding. The catalytic action of CST was proposed via molecular docking and molecular dynamic (MD) simulation with PAPS, galactosylceramide (GC), PAPS-galactosylceramide, and PAP. The stability of the model and its catalytic action were confirmed using molecular dynamic simulation-based trajectory analysis. CST response against the inhibition potential of the experimentally reported competitive inhibitor of CST was confirmed via molecular docking and molecular dynamics simulation, which suggested the suitability of the CST model for future drug discovery to strengthen substrate reduction therapy for MLD.
Collapse
Affiliation(s)
- Nivedita Singh
- Department of Dravyaguna,
Faculty of Ayurveda, Institute of Medical
Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anil Kumar Singh
- Department of Dravyaguna,
Faculty of Ayurveda, Institute of Medical
Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
3
|
Zimmer VC, Lauer AA, Haupenthal V, Stahlmann CP, Mett J, Grösgen S, Hundsdörfer B, Rothhaar T, Endres K, Eckhardt M, Hartmann T, Grimm HS, Grimm MOW. A bidirectional link between sulfatide and Alzheimer's disease. Cell Chem Biol 2024; 31:265-283.e7. [PMID: 37972592 DOI: 10.1016/j.chembiol.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 09/05/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
Reduced sulfatide level is found in Alzheimer's disease (AD) patients. Here, we demonstrate that amyloid precursor protein (APP) processing regulates sulfatide synthesis and vice versa. Different cell culture models and transgenic mice models devoid of APP processing or in particular the APP intracellular domain (AICD) reveal that AICD decreases Gal3st1/CST expression and subsequently sulfatide synthesis. In return, sulfatide supplementation decreases Aβ generation by reducing β-secretase (BACE1) and γ-secretase processing of APP. Increased BACE1 lysosomal degradation leads to reduced BACE1 protein level in endosomes. Reduced γ-secretase activity is caused by a direct effect on γ-secretase activity and reduced amounts of γ-secretase components in lipid rafts. Similar changes were observed by analyzing cells and mice brain samples deficient of arylsulfatase A responsible for sulfatide degradation or knocked down in Gal3st1/CST. In line with these findings, addition of sulfatides to brain homogenates of AD patients resulted in reduced γ-secretase activity. Human brain APP level shows a significant negative correlation with GAL3ST1/CST expression underlining the in vivo relevance of sulfatide homeostasis in AD.
Collapse
Affiliation(s)
- Valerie Christin Zimmer
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Anna Andrea Lauer
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Viola Haupenthal
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Christoph Peter Stahlmann
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Janine Mett
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany; Biosciences Zoology/Physiology-Neurobiology, ZHMB (Center of Human and Molecular Biology), Faculty NT-Natural Science and Technology, Saarland University, 66123 Saarbrücken, Germany
| | - Sven Grösgen
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Benjamin Hundsdörfer
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Tatjana Rothhaar
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Tobias Hartmann
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany
| | - Heike Sabine Grimm
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany
| | - Marcus Otto Walter Grimm
- Deutsches Institut für Demenzprävention (DIDP), Neurodegeneration and Neurobiology and Experimental Neurology, Saarland University, 66424 Homburg/Saar, Germany; Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Sciences, 51377 Leverkusen, Germany.
| |
Collapse
|
4
|
Dustin E, McQuiston AR, Honke K, Palavicini JP, Han X, Dupree JL. Adult-onset depletion of sulfatide leads to axonal degeneration with relative myelin sparing. Glia 2023; 71:2285-2303. [PMID: 37283058 PMCID: PMC11007682 DOI: 10.1002/glia.24423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/08/2023]
Abstract
3-O-sulfogalactosylceramide (sulfatide) constitutes a class of sphingolipids that comprise about 4% of myelin lipids in the central nervous system. Previously, our group characterized a mouse with sulfatide's synthesizing enzyme, cerebroside sulfotransferase (CST), constitutively disrupted. Using these mice, we demonstrated that sulfatide is required for establishment and maintenance of myelin, axoglial junctions, and axonal domains and that sulfatide depletion results in structural pathologies commonly observed in Multiple Sclerosis (MS). Interestingly, sulfatide is reduced in regions of normal appearing white matter (NAWM) of MS patients. Sulfatide reduction in NAWM suggests depletion occurs early in disease development and consistent with functioning as a driving force of disease progression. To closely model MS, an adult-onset disease, our lab generated a "floxed" CST mouse and mated it against the PLP-creERT mouse, resulting in a double transgenic mouse that provides temporal and cell-type specific ablation of the Cst gene (Gal3st1). Using this mouse, we demonstrate adult-onset sulfatide depletion has limited effects on myelin structure but results in the loss of axonal integrity including deterioration of domain organization accompanied by axonal degeneration. Moreover, structurally preserved myelinated axons progressively lose the ability to function as myelinated axons, indicated by the loss of the N1 peak. Together, our findings indicate that sulfatide depletion, which occurs in the early stages of MS progression, is sufficient to drive the loss of axonal function independent of demyelination and that axonal pathology, which is responsible for the irreversible loss of neuronal function that is prevalent in MS, may occur earlier than previously recognized.
Collapse
Affiliation(s)
- E Dustin
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
- Research Service, Central Virginia Veterans Affairs Health Care Systems, Richmond, Virginia, USA
| | - A R McQuiston
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - K Honke
- Department of Biochemistry, Kochi University Medical School, Kochi, Japan
| | - J P Palavicini
- Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - X Han
- Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - J L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia, USA
- Research Service, Central Virginia Veterans Affairs Health Care Systems, Richmond, Virginia, USA
| |
Collapse
|
5
|
Chung LH, Liu D, Liu XT, Qi Y. Ceramide Transfer Protein (CERT): An Overlooked Molecular Player in Cancer. Int J Mol Sci 2021; 22:13184. [PMID: 34947980 PMCID: PMC8705978 DOI: 10.3390/ijms222413184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
Abstract
Sphingolipids are a class of essential lipids implicated in constructing cellular membranes and regulating nearly all cellular functions. Sphingolipid metabolic network is centered with the ceramide-sphingomyelin axis. Ceramide is well-recognized as a pro-apoptotic signal; while sphingomyelin, as the most abundant type of sphingolipids, is required for cell growth. Therefore, the balance between these two sphingolipids can be critical for cancer cell survival and functioning. Ceramide transfer protein (CERT) dictates the ratio of ceramide to sphingomyelin within the cell. It is the only lipid transfer protein that specifically delivers ceramide from the endoplasmic reticulum to the Golgi apparatus, where ceramide serves as the substrate for sphingomyelin synthesis. In the past two decades, an increasing body of evidence has suggested a critical role of CERT in cancer, but much more intensive efforts are required to draw a definite conclusion. Herein, we review all research findings of CERT, focusing on its molecular structure, cellular functions and implications in cancer. This comprehensive review of CERT will help to better understand the molecular mechanism of cancer and inspire to identify novel druggable targets.
Collapse
Affiliation(s)
- Long Hoa Chung
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW 2050, Australia; (D.L.); (X.T.L.)
| | | | | | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW 2050, Australia; (D.L.); (X.T.L.)
| |
Collapse
|
6
|
Yaghootfam C, Gehrig B, Sylvester M, Gieselmann V, Matzner U. Deletion of fatty acid amide hydrolase reduces lyso-sulfatide levels but exacerbates metachromatic leukodystrophy in mice. J Biol Chem 2021; 297:101064. [PMID: 34375644 PMCID: PMC8435702 DOI: 10.1016/j.jbc.2021.101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
An inherited deficiency of arylsulfatase A (ASA) causes the lysosomal storage disease metachromatic leukodystrophy (MLD) characterized by massive intralysosomal storage of the acidic glycosphingolipid sulfatide and progressive demyelination. Lyso-sulfatide, which differs from sulfatide by the lack of the N-linked fatty acid also accumulates in MLD and is considered a key driver of pathology although its concentrations are far below sulfatide levels. However, the metabolic origin of lyso-sulfatide is unknown. We show here that ASA-deficient murine macrophages and microglial cells express an endo-N-deacylase that cleaves the N-linked fatty acid from sulfatide. An ASA-deficient astrocytoma cell line devoid of this activity was used to identify the enzyme by overexpressing 13 deacylases with potentially matching substrate specificities. Hydrolysis of sulfatide was detected only in cells overexpressing the enzyme fatty acid amide hydrolase (FAAH). A cell-free assay with recombinant FAAH confirmed the novel role of this enzyme in sulfatide hydrolysis. Consistent with the in vitro data, deletion of FAAH lowered lyso-sulfatide levels in a mouse model of MLD. Regardless of the established cytotoxicity of lyso-sulfatide and the anti-inflammatory effects of FAAH inhibition seen in mouse models of several neurological diseases, genetic inactivation of FAAH did not mitigate, but rather exacerbated the disease phenotype of MLD mice. This unexpected finding was reflected by worsening of rotarod performance, increase of anxiety-related exploratory activity, aggravation of peripheral neuropathy and reduced life expectancy. Thus, we conclude that FAAH has a protective function in MLD and may represent a novel therapeutic target for treatment of this fatal condition.
Collapse
Affiliation(s)
- Claudia Yaghootfam
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Bernd Gehrig
- Medical Faculty, Core Facility Mass Spectrometry, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Marc Sylvester
- Medical Faculty, Core Facility Mass Spectrometry, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Volkmar Gieselmann
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany
| | - Ulrich Matzner
- Medical Faculty, Institute of Biochemistry and Molecular Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
7
|
Hardt R, Jordans S, Winter D, Gieselmann V, Wang-Eckhardt L, Eckhardt M. Decreased turnover of the CNS myelin protein Opalin in a mouse model of hereditary spastic paraplegia 35. Hum Mol Genet 2020; 29:3616-3630. [PMID: 33215680 DOI: 10.1093/hmg/ddaa246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Spastic paraplegia 35 (SPG35) (OMIM: 612319) or fatty acid hydroxylase-associated neurodegeneration (FAHN) is caused by deficiency of fatty acid 2-hydroxylase (FA2H). This enzyme synthesizes sphingolipids containing 2-hydroxylated fatty acids, which are particularly abundant in myelin. Fa2h-deficient (Fa2h-/-) mice develop symptoms reminiscent of the human disease and therefore serve as animal model of SPG35. In order to understand further the pathogenesis of SPG35, we compared the proteome of purified CNS myelin isolated from wild type and Fa2h-/- mice at different time points of disease progression using tandem mass tag labeling. Data analysis with a focus on myelin membrane proteins revealed a significant increase of the oligodendrocytic myelin paranodal and inner loop protein (Opalin) in Fa2h-/- mice, whereas the concentration of other major myelin proteins was not significantly changed. Western blot analysis revealed an almost 6-fold increase of Opalin in myelin of Fa2h-/- mice aged 21-23 months. A concurrent unaltered Opalin gene expression suggested a decreased turnover of the Opalin protein in Fa2h-/- mice. Supporting this hypothesis, Opalin protein half-life was reduced significantly when expressed in CHO cells synthesizing 2-hydroxylated sulfatide, compared to cells synthesizing only non-hydroxylated sulfatide. Degradation of Opalin was inhibited by inhibitors of lysosomal degradation but unaffected by proteasome inhibitors. Taken together, these results reveal a new function of 2-hydroxylated sphingolipids namely affecting the turnover of a myelin membrane protein. This may play a role in the pathogenesis of SPG35.
Collapse
Affiliation(s)
- Robert Hardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Silvia Jordans
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Dominic Winter
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Volkmar Gieselmann
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Lihua Wang-Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| |
Collapse
|
8
|
Intra- and intercellular trafficking in sphingolipid metabolism in myelination. Adv Biol Regul 2018; 71:97-103. [PMID: 30497846 DOI: 10.1016/j.jbior.2018.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022]
Abstract
The myelin sheath, produced by oligodendrocytes in the central nervous system, provides essential electrical insulation to neurons, but also is critical for viability of neurons. Both the protein and lipid composition of this fascinating membrane is unique. Here the focus is on the sphingolipids that are highly abundant in myelin and, in particular, how they are produced. This review discusses how sphingolipid metabolism is regulated. In particular the subcellular localization of lipid metabolic enzymes is discussed and how inter-organelle transport can affect the metabolic routes that sphingolipid precursors take. Understanding the regulation of sphingolipid metabolism in formation of the myelin membrane will have a significant impact on strategies to treat demyelinating diseases.
Collapse
|
9
|
Honke K. Biological functions of sulfoglycolipids and the EMARS method for identification of co-clustered molecules in the membrane microdomains. J Biochem 2017; 163:253-263. [DOI: 10.1093/jb/mvx078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/03/2017] [Indexed: 01/24/2023] Open
Affiliation(s)
- Koichi Honke
- Department of Biochemistry, Kochi University Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783–8505, Japan
- Center for Innovative and Translational Medicine, Kochi University Medical School, Kohasu, Oko-cho, Nankoku, Kochi 783–8505, Japan
| |
Collapse
|
10
|
Abstract
Sulfatide is a 3-O-sulfated galactosylceramide that is abundantly expressed in the gastrointestinal tract, kidney, trachea, and particularly the central nervous system. Cellular sulfatide is mainly localized in the Golgi apparatus, cellular membrane, and lysosomes in cytosol. Since our earlier report showed that the influenza A virus specifically binds to sulfatide, we have investigated the roles of sulfatide in the influenza A virus lifecycle. The viral binding is independent of sialic acids, which function as virus receptors in virus attachment to the host cell surface. Sulfatide is recognized by the ectodomain of the viral envelope glycoprotein hemagglutinin (HA). Nascent HA is transported on the surface membrane of infected cells. The binding of HA with sulfatide on the cell surface induces apoptosis through potential loss of the mitochondrial membrane and nuclear translocation of apoptosis-inducing factor in mitochondria, where PB1-F2 peptide from the viral gene is accumulated. In the nucleus of infected cells, viral ribonucleoprotein (vRNP) complexes are formed from viral RNA genomes, viral nucleoprotein, and viral RNA polymerase subunits, and these complexes are selectively exported into cytosol through the nuclear membrane. The apoptosis significantly enhances the nuclear export of vRNP complexes, resulting in efficient formation of progeny viruses and facilitation of virus replication. At that time, activation of the Raf/mitogen-activated protein extracellular kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway through sulfatide is associated with virus replication. Our studies have demonstrated that sulfatide is not a viral receptor for virus infection, and that the binding of HA with sulfatide functions as an initiation switch for the formation of progeny viruses.
Collapse
Affiliation(s)
- Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | | |
Collapse
|
11
|
Hanada K. Co-evolution of sphingomyelin and the ceramide transport protein CERT. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:704-19. [PMID: 23845852 DOI: 10.1016/j.bbalip.2013.06.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/25/2013] [Accepted: 06/25/2013] [Indexed: 12/15/2022]
Abstract
Life creates many varieties of lipids. The choline-containing sphingophospholipid sphingomyelin (SM) exists ubiquitously or widely in vertebrates and lower animals, but is absent or rare in bacteria, fungi, protists, and plants. In the biosynthesis of SM, ceramide, which is synthesized in the endoplasmic reticulum, is transported to the Golgi region by the ceramide transport protein CERT, probably in a non-vesicular manner, and is then converted to SM by SM synthase, which catalyzes the reaction of phosphocholine transfer from phosphatidylcholine (PtdCho) to ceramide. Recent advances in genomics and lipidomics indicate that the phylogenetic occurrence of CERT and its orthologs is nearly parallel to that of SM. Based on the chemistry of lipids together with evolutionary aspects of SM and CERT, several concepts are here proposed. SM may serve as a chemically inert and robust, but non-covalently interactive lipid class at the outer leaflet of the plasma membrane. The functional domains and peptidic motifs of CERT are separated by exon units, suggesting an exon-shuffling mechanism for the generation of an ancestral CERT gene. CERT may have co-evolved with SM to bypass a competing metabolic reaction at the bifurcated point in the anabolism of ceramide. Human CERT is identical to the splicing variant of human Goodpasture antigen-binding protein (GPBP) annotated as an extracellular non-canonical serine/threonine protein kinase. The relationship between CERT and GPBP has also been discussed from an evolutionary aspect. Moreover, using an analogy of "compatible (or osmoprotective) solutes" that can accumulate to very high concentrations in the cytosol without denaturing proteins, choline phospholipids such as PtdCho and SM may act as compatible phospholipids in biomembranes. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| |
Collapse
|
12
|
The Enigmatic Role of Sulfatides: New Insights into Cellular Functions and Mechanisms of Protein Recognition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 991:27-40. [DOI: 10.1007/978-94-007-6331-9_3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Takahashi T, Suzuki T. Role of sulfatide in normal and pathological cells and tissues. J Lipid Res 2012; 53:1437-50. [PMID: 22619219 DOI: 10.1194/jlr.r026682] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sulfatide is 3-O-sulfogalactosylceramide that is synthesized by two transferases (ceramide galactosyltransferase and cerebroside sulfotransferase) from ceramide and is specifically degraded by a sulfatase (arylsulfatase A). Sulfatide is a multifunctional molecule for various biological fields including the nervous system, insulin secretion, immune system, hemostasis/thrombosis, bacterial infection, and virus infection. Therefore, abnormal metabolism or expression change of sulfatide could cause various diseases. Here, we discuss the important biological roles of sulfatide in the nervous system, insulin secretion, immune system, hemostasis/thrombosis, cancer, and microbial infections including human immunodeficiency virus and influenza A virus. Our review will be helpful to achieve a comprehensive understanding of sulfatide, which serves as a fundamental target of prevention of and therapy for nervous disorders, diabetes mellitus, immunological diseases, cancer, and infectious diseases.
Collapse
Affiliation(s)
- Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka and Global COE Program for Innovation in Human Health Sciences, 52-1 Yada, Suruga-ku, Shizuoka-shi, Shizuoka 422-8526, Japan
| | | |
Collapse
|
14
|
Xu YH, Barnes S, Sun Y, Grabowski GA. Multi-system disorders of glycosphingolipid and ganglioside metabolism. J Lipid Res 2010; 51:1643-75. [PMID: 20211931 DOI: 10.1194/jlr.r003996] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Glycosphingolipids (GSLs) and gangliosides are a group of bioactive glycolipids that include cerebrosides, globosides, and gangliosides. These lipids play major roles in signal transduction, cell adhesion, modulating growth factor/hormone receptor, antigen recognition, and protein trafficking. Specific genetic defects in lysosomal hydrolases disrupt normal GSL and ganglioside metabolism leading to their excess accumulation in cellular compartments, particularly in the lysosome, i.e., lysosomal storage diseases (LSDs). The storage diseases of GSLs and gangliosides affect all organ systems, but the central nervous system (CNS) is primarily involved in many. Current treatments can attenuate the visceral disease, but the management of CNS involvement remains an unmet medical need. Early interventions that alter the CNS disease have shown promise in delaying neurologic involvement in several CNS LSDs. Consequently, effective treatment for such devastating inherited diseases requires an understanding of the early developmental and pathological mechanisms of GSL and ganglioside flux (synthesis and degradation) that underlie the CNS diseases. These are the focus of this review.
Collapse
Affiliation(s)
- You-Hai Xu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
15
|
van Zyl R, Gieselmann V, Eckhardt M. Elevated sulfatide levels in neurons cause lethal audiogenic seizures in mice. J Neurochem 2010; 112:282-95. [DOI: 10.1111/j.1471-4159.2009.06458.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
|
17
|
Suzuki K, Kawakami F, Sasaki H, Maruyama H, Ohtsuki K. Biochemical characterization of tau protein and its associated syndapin 1 and protein kinase Cepsilon for their functional regulation in rat brain. Biochim Biophys Acta Gen Subj 2008; 1790:188-97. [PMID: 19101610 DOI: 10.1016/j.bbagen.2008.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 11/27/2022]
Abstract
BACKGROUND We recently reported that both sulfatide and cholesterol-3-sulfate (SCS) function as potent stimulators for the GSK-3beta-mediated phosphorylation of tau protein (TP) in vitro [J. Biochem. 143 (2008) 359-367]. METHODS By means of successive gel filtration on a Superdex 200 pg column and three distinct ion-exchange column chromatographies, TP and its associated proteins were highly purified from the extract of rat brain. RESULTS We found that (i) syndapin 1 and novel protein kinase Cepsilon (nPKCepsilon) were identified as the TP-associated proteins; (ii) SCS highly stimulated the phosphorylation of TP and syndapin 1 by nPKCepsilon as well as CK1; (iii) the full phosphorylation of TP and syndapin 1 by nPKCepsilon in the presence of sulfatide resulted in their dissociation; (iv) TP primed by CK1 functioned as an effective phosphate acceptor for GSK-3beta; (v) syndapin 1 highly stimulated the GSK-3beta-mediated phosphorylation of TP; and (vi) TP isoforms were highly expressed in aged brain, whereas syndapin 1 was consistently detected in adult brain, but not in newborn brain. GENERAL SIGNIFICANCE These results provided here suggest that (i) TP-associated nPKCepsilon suppresses the GSK-3beta-mediated phosphorylation of TP through the phosphorylation of GSK-3beta by the kinase in vitro; and (ii) SCS act as effective sole mediators to induce the GSK-3beta-mediated high phosphorylation of both TP and its associated syndapin 1 involved in the biochemical processes of neuronal diseases, including Alzheimer's disease.
Collapse
Affiliation(s)
- Kanzo Suzuki
- Laboratory of Molecular Signal Biology, Graduate School of Medical Sciences, Kitasato University, Sagamihara 228-8555, Japan
| | | | | | | | | |
Collapse
|
18
|
The Role and Metabolism of Sulfatide in the Nervous System. Mol Neurobiol 2008; 37:93-103. [DOI: 10.1007/s12035-008-8022-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Accepted: 04/09/2008] [Indexed: 12/16/2022]
|