1
|
Veeramachineni VM, Ubayawardhana ST, Murkin AS. Kinetic characterization of methylthio-d-ribose-1-phosphate isomerase. Methods Enzymol 2023; 685:279-318. [PMID: 37245905 DOI: 10.1016/bs.mie.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Methylthio-d-ribose-1-phosphate (MTR1P) isomerase (MtnA) catalyzes the reversible isomerization of the aldose MTR1P into the ketose methylthio-d-ribulose 1-phosphate. It serves as a member of the methionine salvage pathway that many organisms require for recycling methylthio-d-adenosine, a byproduct of S-adenosylmethionine metabolism, back to methionine. MtnA is of mechanistic interest because unlike most other aldose-ketose isomerases, its substrate exists as an anomeric phosphate ester and therefore cannot equilibrate with a ring-opened aldehyde that is otherwise required to promote isomerization. To investigate the mechanism of MtnA, it is necessary to establish reliable methods for determining the concentration of MTR1P and to measure enzyme activity in a continuous assay. This chapter describes several such protocols needed to perform steady-state kinetics measurements. It additionally outlines the preparation of [32P]MTR1P, its use in radioactively labeling the enzyme, and the characterization of the resulting phosphoryl adduct.
Collapse
Affiliation(s)
- Vamsee M Veeramachineni
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Subashi T Ubayawardhana
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, United States
| | - Andrew S Murkin
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, United States.
| |
Collapse
|
2
|
Bierbaumer S, Nattermann M, Schulz L, Zschoche R, Erb TJ, Winkler CK, Tinzl M, Glueck SM. Enzymatic Conversion of CO 2: From Natural to Artificial Utilization. Chem Rev 2023; 123:5702-5754. [PMID: 36692850 PMCID: PMC10176493 DOI: 10.1021/acs.chemrev.2c00581] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Indexed: 01/25/2023]
Abstract
Enzymatic carbon dioxide fixation is one of the most important metabolic reactions as it allows the capture of inorganic carbon from the atmosphere and its conversion into organic biomass. However, due to the often unfavorable thermodynamics and the difficulties associated with the utilization of CO2, a gaseous substrate that is found in comparatively low concentrations in the atmosphere, such reactions remain challenging for biotechnological applications. Nature has tackled these problems by evolution of dedicated CO2-fixing enzymes, i.e., carboxylases, and embedding them in complex metabolic pathways. Biotechnology employs such carboxylating and decarboxylating enzymes for the carboxylation of aromatic and aliphatic substrates either by embedding them into more complex reaction cascades or by shifting the reaction equilibrium via reaction engineering. This review aims to provide an overview of natural CO2-fixing enzymes and their mechanistic similarities. We also discuss biocatalytic applications of carboxylases and decarboxylases for the synthesis of valuable products and provide a separate summary of strategies to improve the efficiency of such processes. We briefly summarize natural CO2 fixation pathways, provide a roadmap for the design and implementation of artificial carbon fixation pathways, and highlight examples of biocatalytic cascades involving carboxylases. Additionally, we suggest that biochemical utilization of reduced CO2 derivates, such as formate or methanol, represents a suitable alternative to direct use of CO2 and provide several examples. Our discussion closes with a techno-economic perspective on enzymatic CO2 fixation and its potential to reduce CO2 emissions.
Collapse
Affiliation(s)
- Sarah Bierbaumer
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Maren Nattermann
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Luca Schulz
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | | | - Tobias J. Erb
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Christoph K. Winkler
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Matthias Tinzl
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Silvia M. Glueck
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| |
Collapse
|
3
|
Waheeda K, Kitchel H, Wang Q, Chiu PL. Molecular mechanism of Rubisco activase: Dynamic assembly and Rubisco remodeling. Front Mol Biosci 2023; 10:1125922. [PMID: 36845545 PMCID: PMC9951593 DOI: 10.3389/fmolb.2023.1125922] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Ribulose-1,5-bisphosphate (RuBP) carboxylase-oxygenase (Rubisco) enzyme is the limiting step of photosynthetic carbon fixation, and its activation is regulated by its co-evolved chaperone, Rubisco activase (Rca). Rca removes the intrinsic sugar phosphate inhibitors occupying the Rubisco active site, allowing RuBP to split into two 3-phosphoglycerate (3PGA) molecules. This review summarizes the evolution, structure, and function of Rca and describes the recent findings regarding the mechanistic model of Rubisco activation by Rca. New knowledge in these areas can significantly enhance crop engineering techniques used to improve crop productivity.
Collapse
Affiliation(s)
- Kazi Waheeda
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, United States
| | - Heidi Kitchel
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, United States
| | - Quan Wang
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Po-Lin Chiu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
4
|
Sato T, Utashima S(H, Yoshii Y, Hirata K, Kanda S, Onoda Y, Jin JQ, Xiao S, Minami R, Fukushima H, Noguchi A, Manabe Y, Fukase K, Atomi H. A non-carboxylating pentose bisphosphate pathway in halophilic archaea. Commun Biol 2022; 5:1290. [PMID: 36434094 PMCID: PMC9700705 DOI: 10.1038/s42003-022-04247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Bacteria and Eucarya utilize the non-oxidative pentose phosphate pathway to direct the ribose moieties of nucleosides to central carbon metabolism. Many archaea do not possess this pathway, and instead, Thermococcales utilize a pentose bisphosphate pathway involving ribose-1,5-bisphosphate (R15P) isomerase and ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco). Intriguingly, multiple genomes from halophilic archaea seem only to harbor R15P isomerase, and do not harbor Rubisco. In this study, we identify a previously unrecognized nucleoside degradation pathway in halophilic archaea, composed of guanosine phosphorylase, ATP-dependent ribose-1-phosphate kinase, R15P isomerase, RuBP phosphatase, ribulose-1-phosphate aldolase, and glycolaldehyde reductase. The pathway converts the ribose moiety of guanosine to dihydroxyacetone phosphate and ethylene glycol. Although the metabolic route from guanosine to RuBP via R15P is similar to that of the pentose bisphosphate pathway in Thermococcales, the downstream route does not utilize Rubisco and is unique to halophilic archaea.
Collapse
Affiliation(s)
- Takaaki Sato
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan ,grid.258799.80000 0004 0372 2033Integrated Research Center for Carbon Negative Science, Kyoto University, Kyoto, Japan
| | - Sanae (Hodo) Utashima
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yuta Yoshii
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kosuke Hirata
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shuichiro Kanda
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Yushi Onoda
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Jian-qiang Jin
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Suyi Xiao
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Ryoko Minami
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hikaru Fukushima
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Ayako Noguchi
- grid.136593.b0000 0004 0373 3971Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yoshiyuki Manabe
- grid.136593.b0000 0004 0373 3971Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Forefront Research Center, Osaka University, Osaka, Japan
| | - Koichi Fukase
- grid.136593.b0000 0004 0373 3971Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan ,grid.136593.b0000 0004 0373 3971Forefront Research Center, Osaka University, Osaka, Japan
| | - Haruyuki Atomi
- grid.258799.80000 0004 0372 2033Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan ,grid.258799.80000 0004 0372 2033Integrated Research Center for Carbon Negative Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
5
|
Genome Sequence and Characterization of a Xanthorhodopsin-Containing, Aerobic Anoxygenic Phototrophic Rhodobacter Species, Isolated from Mesophilic Conditions at Yellowstone National Park. Microorganisms 2022; 10:microorganisms10061169. [PMID: 35744687 PMCID: PMC9231093 DOI: 10.3390/microorganisms10061169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/17/2022] Open
Abstract
The genus Rhodobacter consists of purple nonsulfur photosynthetic alphaproteobacteria known for their diverse metabolic capabilities. Here, we report the genome sequence and initial characterization of a novel Rhodobacter species, strain M37P, isolated from Mushroom hot spring runoff in Yellowstone National Park at 37 °C. Genome-based analyses and initial growth characteristics helped to define the differentiating characteristics of this species and identified it as an aerobic anoxygenic phototroph (AAP). This is the first AAP identified in the genus Rhodobacter. Strain M37P has a pinkish-red pigmentation that is present under aerobic dark conditions but disappears under light incubation. Whole genome-based analysis and average nucleotide identity (ANI) comparison indicate that strain M37P belongs to a specific clade of recently identified species that are genetically and physiologically unique from other representative Rhodobacter species. The genome encodes a unique xanthorhodopsin, not found in any other Rhodobacter species, which may be responsible for the pinkish-red pigmentation. These analyses indicates that strain M37P is a unique species that is well-adapted to optimized growth in the Yellowstone hot spring runoff, for which we propose the name Rhodobacter calidifons sp. nov.
Collapse
|
6
|
Veeramachineni VM, Ubayawardhana ST, Murkin AS. Covalent Adduct Formation in Methylthio-d-ribose-1-phosphate Isomerase: Reaction Intermediate or Artifact? Biochemistry 2022; 61:1124-1135. [PMID: 35580612 DOI: 10.1021/acs.biochem.2c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylthio-d-ribose-1-phosphate (MTR1P) isomerase (MtnA) functions in the methionine salvage pathway by converting the cyclic aldose MTR1P to its open-chain ketose isomer methylthio-d-ribulose 1-phosphate (MTRu1P). What is particularly challenging for this enzyme is that the substrate's phosphate ester prevents facile equilibration to an aldehyde, which in other aldose-ketose isomerases is known to activate the α-hydrogen for proton or hydride transfer between adjacent carbons. We speculated that MtnA could use covalent catalysis via a phosphorylated residue to permit isomerization by one of the canonical mechanisms, followed by phosphoryl transfer back to form the product. In apparent support of this mechanism, [32P]MTR1P was found by SDS-PAGE and gel-filtration chromatography to radiolabel the enzyme. Susceptibility of this adduct to strongly acidic and basic pH and nucleophilic agents is consistent with an acyl phosphate. C160S and D240N, mutants of two conserved active-site residues, however, exhibited no difference in radiolabeling despite a reduction in activity of ∼107, leading to the conclusion that phosphorylation is unrelated to catalysis. Unexpectedly, prolonged incubations with C160S revealed up to 30% accumulation of radioactivity, which was identified by 31P and 13C NMR to be the result of a second adduct─a hemiketal formed between Ser160 and the carbonyl of MTRu1P. These results are interpreted as indirect support for a mechanism involving transfer of the proton from C-2 to C-1 by Cys160.
Collapse
Affiliation(s)
- Vamsee M Veeramachineni
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Subashi T Ubayawardhana
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Andrew S Murkin
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
7
|
North JA, Narrowe AB, Xiong W, Byerly KM, Zhao G, Young SJ, Murali S, Wildenthal JA, Cannon WR, Wrighton KC, Hettich RL, Tabita FR. A nitrogenase-like enzyme system catalyzes methionine, ethylene, and methane biogenesis. Science 2020; 369:1094-1098. [PMID: 32855335 DOI: 10.1126/science.abb6310] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/12/2020] [Indexed: 12/16/2022]
Abstract
Bacterial production of gaseous hydrocarbons such as ethylene and methane affects soil environments and atmospheric climate. We demonstrate that biogenic methane and ethylene from terrestrial and freshwater bacteria are directly produced by a previously unknown methionine biosynthesis pathway. This pathway, present in numerous species, uses a nitrogenase-like reductase that is distinct from known nitrogenases and nitrogenase-like reductases and specifically functions in C-S bond breakage to reduce ubiquitous and appreciable volatile organic sulfur compounds such as dimethyl sulfide and (2-methylthio)ethanol. Liberated methanethiol serves as the immediate precursor to methionine, while ethylene or methane is released into the environment. Anaerobic ethylene production by this pathway apparently explains the long-standing observation of ethylene accumulation in oxygen-depleted soils. Methane production reveals an additional bacterial pathway distinct from archaeal methanogenesis.
Collapse
Affiliation(s)
- Justin A North
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Adrienne B Narrowe
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Weili Xiong
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Kathryn M Byerly
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Guanqi Zhao
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Sarah J Young
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Srividya Murali
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - John A Wildenthal
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - William R Cannon
- Pacific Northwest National Laboratory, Richland, WA 99352, USA.,Department of Mathematics, University of California, Riverside, Riverside, CA 92507, USA
| | - Kelly C Wrighton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
North JA, Wildenthal JA, Erb TJ, Evans BS, Byerly KM, Gerlt JA, Tabita FR. A bifunctional salvage pathway for two distinct S-adenosylmethionine by-products that is widespread in bacteria, including pathogenic Escherichia coli. Mol Microbiol 2020; 113:923-937. [PMID: 31950558 DOI: 10.1111/mmi.14459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 01/19/2023]
Abstract
S-adenosyl-l-methionine (SAM) is a necessary cosubstrate for numerous essential enzymatic reactions including protein and nucleotide methylations, secondary metabolite synthesis and radical-mediated processes. Radical SAM enzymes produce 5'-deoxyadenosine, and SAM-dependent enzymes for polyamine, neurotransmitter and quorum sensing compound synthesis produce 5'-methylthioadenosine as by-products. Both are inhibitory and must be addressed by all cells. This work establishes a bifunctional oxygen-independent salvage pathway for 5'-deoxyadenosine and 5'-methylthioadenosine in both Rhodospirillum rubrum and Extraintestinal Pathogenic Escherichia coli. Homologous genes for this pathway are widespread in bacteria, notably pathogenic strains within several families. A phosphorylase (Rhodospirillum rubrum) or separate nucleoside and kinase (Escherichia coli) followed by an isomerase and aldolase sequentially function to salvage these two wasteful and inhibitory compounds into adenine, dihydroxyacetone phosphate and acetaldehyde or (2-methylthio)acetaldehyde during both aerobic and anaerobic growth. Both SAM by-products are metabolized with equal affinity during aerobic and anaerobic growth conditions, suggesting that the dual-purpose salvage pathway plays a central role in numerous environments, notably the human body during infection. Our newly discovered bifunctional oxygen-independent pathway, widespread in bacteria, salvages at least two by-products of SAM-dependent enzymes for carbon and sulfur salvage, contributing to cell growth.
Collapse
Affiliation(s)
- Justin A North
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - John A Wildenthal
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Tobias J Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Bradley S Evans
- The Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Kathryn M Byerly
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - John A Gerlt
- Department of Biochemistry, The Institute for Genomic Biology, Champaign, IL, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Fred R Tabita
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
9
|
Im SW, Ha H, Yang W, Jang JH, Kang B, Seo DH, Seo J, Nam KT. Light polarization dependency existing in the biological photosystem and possible implications for artificial antenna systems. PHOTOSYNTHESIS RESEARCH 2020; 143:205-220. [PMID: 31643017 DOI: 10.1007/s11120-019-00682-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
The processes of biological photosynthesis provide inspiration and valuable lessons for artificial energy collection, transfer, and conversion systems. The extraordinary efficiency of each sequential process of light to biomass conversion originates from the unique architecture and mechanism of photosynthetic proteins. Near 100% quantum efficiency of energy transfer in biological photosystems is achieved by the chlorophyll assemblies in antenna complexes, which also exhibit a significant degree of light polarization. The three-dimensional chiral assembly of chlorophylls is an optimized biological architecture that enables maximum energy transfer efficiency with precisely designed coupling between chlorophylls. In this review, we summarize the key lessons from the photosynthetic processes in biological photosystems, and move our focus to energy transfer mechanisms and the chiral structure of the chlorophyll assembly. Then, we introduce recent approaches and possible implications to realize the biological energy transfer processes on bioinspired scaffold-based artificial antenna systems.
Collapse
Affiliation(s)
- Sang Won Im
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Heonjin Ha
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Woojin Yang
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Jun Ho Jang
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Boyeong Kang
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Da Hye Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Jiwon Seo
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| | - Ki Tae Nam
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
10
|
Satagopan S, North JA, Arbing MA, Varaljay VA, Haines SN, Wildenthal JA, Byerly KM, Shin A, Tabita FR. Structural Perturbations of Rhodopseudomonas palustris Form II RuBisCO Mutant Enzymes That Affect CO2 Fixation. Biochemistry 2019; 58:3880-3892. [DOI: 10.1021/acs.biochem.9b00617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sriram Satagopan
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Justin A. North
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mark A. Arbing
- UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Vanessa A. Varaljay
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sidney N. Haines
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - John A. Wildenthal
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kathryn M. Byerly
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Annie Shin
- UCLA-DOE Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - F. Robert Tabita
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
11
|
Sekowska A, Ashida H, Danchin A. Revisiting the methionine salvage pathway and its paralogues. Microb Biotechnol 2019; 12:77-97. [PMID: 30306718 PMCID: PMC6302742 DOI: 10.1111/1751-7915.13324] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/24/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022] Open
Abstract
Methionine is essential for life. Its chemistry makes it fragile in the presence of oxygen. Aerobic living organisms have selected a salvage pathway (the MSP) that uses dioxygen to regenerate methionine, associated to a ratchet-like step that prevents methionine back degradation. Here, we describe the variation on this theme, developed across the tree of life. Oxygen appeared long after life had developed on Earth. The canonical MSP evolved from ancestors that used both predecessors of ribulose bisphosphate carboxylase oxygenase (RuBisCO) and methanethiol in intermediate steps. We document how these likely promiscuous pathways were also used to metabolize the omnipresent by-products of S-adenosylmethionine radical enzymes as well as the aromatic and isoprene skeleton of quinone electron acceptors.
Collapse
Affiliation(s)
- Agnieszka Sekowska
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐SalpêtrièreParisFrance
| | - Hiroki Ashida
- Graduate School of Human Development and EnvironmentKobe UniversityKobeJapan
| | - Antoine Danchin
- Institute of Cardiometabolism and NutritionHôpital de la Pitié‐SalpêtrièreParisFrance
- Institute of Synthetic BiologyShenzhen Institutes of Advanced StudiesShenzhenChina
| |
Collapse
|
12
|
Carter MS, Zhang X, Huang H, Bouvier JT, Francisco BS, Vetting MW, Al-Obaidi N, Bonanno JB, Ghosh A, Zallot RG, Andersen HM, Almo SC, Gerlt JA. Functional assignment of multiple catabolic pathways for D-apiose. Nat Chem Biol 2018; 14:696-705. [PMID: 29867142 DOI: 10.1038/s41589-018-0067-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/29/2018] [Indexed: 11/09/2022]
Abstract
Colocation of the genes encoding ABC, TRAP, and TCT transport systems and catabolic pathways for the transported ligand provides a strategy for discovering novel microbial enzymes and pathways. We screened solute-binding proteins (SBPs) for ABC transport systems and identified three that bind D-apiose, a branched pentose in the cell walls of higher plants. Guided by sequence similarity networks (SSNs) and genome neighborhood networks (GNNs), the identities of the SBPs enabled the discovery of four catabolic pathways for D-apiose with eleven previously unknown reactions. The new enzymes include D-apionate oxidoisomerase, which catalyzes hydroxymethyl group migration, as well as 3-oxo-isoapionate-4-phosphate decarboxylase and 3-oxo-isoapionate-4-phosphate transcarboxylase/hydrolase, which are RuBisCO-like proteins (RLPs). The web tools for generating SSNs and GNNs are publicly accessible ( http://efi.igb.illinois.edu/efi-est/ ), so similar 'genomic enzymology' strategies for discovering novel pathways can be used by the community.
Collapse
Affiliation(s)
- Michael S Carter
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xinshuai Zhang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Hua Huang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jason T Bouvier
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Brian San Francisco
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew W Vetting
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nawar Al-Obaidi
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey B Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rémi G Zallot
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Harvey M Andersen
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - John A Gerlt
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
13
|
Ślesak I, Ślesak H, Kruk J. RubisCO Early Oxygenase Activity: A Kinetic and Evolutionary Perspective. Bioessays 2017; 39. [PMID: 28976010 DOI: 10.1002/bies.201700071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/10/2017] [Indexed: 11/09/2022]
Abstract
RubisCO (D-ribulose 1,5-bisphosphate carboxylase/oxygenase) is Earth's main enzyme responsible for CO2 fixation via carboxylation of ribulose-1,5-bisphosphate (RuBP) into organic matter. Besides the carboxylation reaction, RubisCO also catalyzes the oxygenation of RuBP by O2 , which is probably as old as its carboxylation properties. Based on molecular phylogeny, the occurrence of the reactive oxygen species (ROS)-removing system and kinetic properties of different RubisCO forms, we postulated that RubisCO oxygenase activity appeared in local microoxic areas, yet before the appearance of oxygenic photosynthesis. Here, in reviewing the literature, we present a novel hypothesis: the RubisCO early oxygenase activity hypothesis. This hypothesis may be compared with the exaptation hypothesis, according to which latent RubisCO oxygenase properties emerged later during the oxygenation of the Earth's atmosphere. The reconstruction of ancestral RubisCO forms using ancestral sequence reconstruction (ASR) techniques, as a promising way for testing of RubisCO early oxygenase activity hypothesis, is presented.
Collapse
Affiliation(s)
- Ireneusz Ślesak
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, Kraków 30-239, Poland
| | - Halina Ślesak
- Institute of Botany, Jagiellonian University, Gronostajowa 9, Kraków 30-387, Poland
| | - Jerzy Kruk
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Krakow 30-387, Poland
| |
Collapse
|
14
|
Erb TJ, Zarzycki J. A short history of RubisCO: the rise and fall (?) of Nature's predominant CO 2 fixing enzyme. Curr Opin Biotechnol 2017; 49:100-107. [PMID: 28843191 DOI: 10.1016/j.copbio.2017.07.017] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/26/2017] [Accepted: 07/26/2017] [Indexed: 11/18/2022]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is arguably one of the most abundant proteins in the biosphere and a key enzyme in the global carbon cycle. Although RubisCO has been intensively studied, its evolutionary origins and rise as Nature's most dominant carbon dioxide (CO2)-fixing enzyme still remain in the dark. In this review we will bring together biochemical, structural, physiological, microbiological, as well as phylogenetic data to speculate on the evolutionary roots of the CO2-fixation reaction of RubisCO, the emergence of RubisCO-based autotrophic CO2-fixation in the context of the Calvin-Benson-Bassham cycle, and the further evolution of RubisCO into the 'RubisCOsome', a complex of various proteins assembling and interacting with the enzyme to improve its operational capacity (functionality) under different biological and environmental conditions.
Collapse
Affiliation(s)
- Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, Department of Biochemistry and Synthetic Metabolism, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.
| | - Jan Zarzycki
- Max Planck Institute for Terrestrial Microbiology, Department of Biochemistry and Synthetic Metabolism, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| |
Collapse
|
15
|
Metabolic Regulation as a Consequence of Anaerobic 5-Methylthioadenosine Recycling in Rhodospirillum rubrum. mBio 2016; 7:mBio.00855-16. [PMID: 27406564 PMCID: PMC4958253 DOI: 10.1128/mbio.00855-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Rhodospirillum rubrum possesses a novel oxygen-independent, aerobic methionine salvage pathway (MSP) for recycling methionine from 5-methylthioadenosine (MTA), the MTA-isoprenoid shunt. This organism can also metabolize MTA as a sulfur source under anaerobic conditions, suggesting that the MTA-isoprenoid shunt may also function anaerobically as well. In this study, deep proteomics profiling, directed metabolite analysis, and reverse transcriptase quantitative PCR (RT-qPCR) revealed metabolic changes in response to anaerobic growth on MTA versus sulfate as sole sulfur source. The abundance of protein levels associated with methionine transport, cell motility, and chemotaxis increased in the presence of MTA over that in the presence of sulfate. Purine salvage from MTA resulted primarily in hypoxanthine accumulation and a decrease in protein levels involved in GMP-to-AMP conversion to balance purine pools. Acyl coenzyme A (acyl-CoA) metabolic protein levels for lipid metabolism were lower in abundance, whereas poly-β-hydroxybutyrate synthesis and storage were increased nearly 10-fold. The known R. rubrum aerobic MSP was also shown to be upregulated, to function anaerobically, and to recycle MTA. This suggested that other organisms with gene homologues for the MTA-isoprenoid shunt may also possess a functioning anaerobic MSP. In support of our previous findings that ribulose-1,5-carboxylase/oxygenase (RubisCO) is required for an apparently purely anaerobic MSP, RubisCO transcript and protein levels both increased in abundance by over 10-fold in cells grown anaerobically on MTA over those in cells grown on sulfate, resulting in increased intracellular RubisCO activity. These results reveal for the first time global metabolic responses as a consequence of anaerobic MTA metabolism compared to using sulfate as the sulfur source. In nearly all organisms, sulfur-containing byproducts result from many metabolic reactions. Unless these compounds are further metabolized, valuable organic sulfur is lost and can become limiting. To regenerate the sulfur-containing amino acid methionine, organisms typically employ one of several variations of a “universal” methionine salvage pathway (MSP). A common aspect of the universal MSP is a final oxygenation step. This work establishes that the metabolically versatile bacterium Rhodospirillum rubrum employs a novel MSP that does not require oxygen under either aerobic or anaerobic conditions. There is also a separate, dedicated anaerobic MTA metabolic route in R. rubrum. This work reveals global changes in cellular metabolism in response to anaerobic MTA metabolism compared to using sulfate as a sulfur source. We found that cell mobility and transport were enhanced, along with lipid, nucleotide, and carbohydrate metabolism, when cells were grown in the presence of MTA.
Collapse
|
16
|
Záhonová K, Füssy Z, Oborník M, Eliáš M, Yurchenko V. RuBisCO in Non-Photosynthetic Alga Euglena longa: Divergent Features, Transcriptomic Analysis and Regulation of Complex Formation. PLoS One 2016; 11:e0158790. [PMID: 27391690 PMCID: PMC4938576 DOI: 10.1371/journal.pone.0158790] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/22/2016] [Indexed: 01/10/2023] Open
Abstract
Euglena longa, a close relative of the photosynthetic model alga Euglena gracilis, possesses an enigmatic non-photosynthetic plastid. Its genome has retained a gene for the large subunit of the enzyme RuBisCO (rbcL). Here we provide new data illuminating the putative role of RuBisCO in E. longa. We demonstrated that the E. longa RBCL protein sequence is extremely divergent compared to its homologs from the photosynthetic relatives, suggesting a possible functional shift upon the loss of photosynthesis. Similarly to E. gracilis, E. longa harbors a nuclear gene encoding the small subunit of RuBisCO (RBCS) as a precursor polyprotein comprising multiple RBCS repeats, but one of them is highly divergent. Both RBCL and the RBCS proteins are synthesized in E. longa, but their abundance is very low compared to E. gracilis. No RBCS monomers could be detected in E. longa, suggesting that processing of the precursor polyprotein is inefficient in this species. The abundance of RBCS is regulated post-transcriptionally. Indeed, blocking the cytoplasmic translation by cycloheximide has no immediate effect on the RBCS stability in photosynthetically grown E. gracilis, but in E. longa, the protein is rapidly degraded. Altogether, our results revealed signatures of evolutionary degradation (becoming defunct) of RuBisCO in E. longa and suggest that its biological role in this species may be rather unorthodox, if any.
Collapse
Affiliation(s)
- Kristína Záhonová
- Life Science Research Centre, Department of Biology and Ecology and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 701 00 Ostrava, Czech Republic
| | - Zoltán Füssy
- Institute of Parasitology, Biology Centre ASCR, 370 05 České Budějovice, Czech Republic
| | - Miroslav Oborník
- Institute of Parasitology, Biology Centre ASCR, 370 05 České Budějovice, Czech Republic
- University of South Bohemia, Faculty of Science, 370 05 České Budějovice, Czech Republic
- Institute of Microbiology ASCR, Centrum Agaltech, 379 01 Třeboň, Czech Republic
| | - Marek Eliáš
- Life Science Research Centre, Department of Biology and Ecology and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 701 00 Ostrava, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Department of Biology and Ecology and Institute of Environmental Technologies, Faculty of Science, University of Ostrava, 701 00 Ostrava, Czech Republic
- Institute of Parasitology, Biology Centre ASCR, 370 05 České Budějovice, Czech Republic
- * E-mail:
| |
Collapse
|
17
|
Wen L, Zheng Y, Li T, Wang PG. Enzymatic synthesis of 3-deoxy-d-manno-octulosonic acid (KDO) and its application for LPS assembly. Bioorg Med Chem Lett 2016; 26:2825-2828. [PMID: 27173798 PMCID: PMC5972366 DOI: 10.1016/j.bmcl.2016.04.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/21/2016] [Indexed: 11/15/2022]
Abstract
The studies of 3-deoxy-d-manno-octulosonic acid (KDO) have been hindered due to its limited availability. Herein, an efficient enzymatic system for the facile synthesis of KDO from easy-to-get starting materials is described. In this one-pot three-enzyme (OPME) system, d-ribulose 5-phosphate, which was prepared from d-xylose, was employed as starting materials. The reaction process involves the isomerization of d-ribulose 5-phosphate to d-arabinose 5-phosphate catalyzed by d-arabinose 5-phosphate isomerase (KdsD), the aldol condensation of d-arabinose 5-phosphate and phosphoenolpyruvate (PEP) catalyzed by KDO 8-phosphate synthetase (KdsA), and the hydrolysis of KDO-8-phosphate catalyzed by KDO 8-phosphate phosphatase (KdsC). By using this OPME system, 72% isolated yield was obtained. The obtained KDO was further transferred to lipid A by KDO transferase from Escherichia coli (WaaA).
Collapse
Affiliation(s)
- Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Yuan Zheng
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Tiehai Li
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA.
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
18
|
Affiliation(s)
- Liuqing Wen
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kenneth Huang
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Yunpeng Liu
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
- National
Glycoengineering Research Center, Shandong University, Jinan 250100, China
| | - Peng George Wang
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
- National
Glycoengineering Research Center, Shandong University, Jinan 250100, China
| |
Collapse
|
19
|
Dey S, North JA, Sriram J, Evans BS, Tabita FR. In Vivo Studies in Rhodospirillum rubrum Indicate That Ribulose-1,5-bisphosphate Carboxylase/Oxygenase (Rubisco) Catalyzes Two Obligatorily Required and Physiologically Significant Reactions for Distinct Carbon and Sulfur Metabolic Pathways. J Biol Chem 2015; 290:30658-68. [PMID: 26511314 DOI: 10.1074/jbc.m115.691295] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 12/19/2022] Open
Abstract
All organisms possess fundamental metabolic pathways to ensure that needed carbon and sulfur compounds are provided to the cell in the proper chemical form and oxidation state. For most organisms capable of using CO2 as sole source of carbon, ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) catalyzes primary carbon dioxide assimilation. In addition, sulfur salvage pathways are necessary to ensure that key sulfur-containing compounds are both available and, where necessary, detoxified in the cell. Using knock-out mutations and metabolomics in the bacterium Rhodospirillum rubrum, we show here that Rubisco concurrently catalyzes key and essential reactions for seemingly unrelated but physiologically essential central carbon and sulfur salvage metabolic pathways of the cell. In this study, complementation and mutagenesis studies indicated that representatives of all known extant functional Rubisco forms found in nature are capable of simultaneously catalyzing reactions required for both CO2-dependent growth as well as growth using 5-methylthioadenosine as sole sulfur source under anaerobic photosynthetic conditions. Moreover, specific inactivation of the CO2 fixation reaction did not affect the ability of Rubisco to support anaerobic 5-methylthioadenosine metabolism, suggesting that the active site of Rubisco has evolved to ensure that this enzyme maintains both key functions. Thus, despite the coevolution of both functions, the active site of this protein may be differentially modified to affect only one of its key functions.
Collapse
Affiliation(s)
- Swati Dey
- From the Department of Microbiology, The Ohio State University, Columbus, Ohio 43210 and
| | - Justin A North
- From the Department of Microbiology, The Ohio State University, Columbus, Ohio 43210 and
| | - Jaya Sriram
- From the Department of Microbiology, The Ohio State University, Columbus, Ohio 43210 and
| | - Bradley S Evans
- the Donald Danforth Plant Science Center, St. Louis, Missouri, 63132
| | - F Robert Tabita
- From the Department of Microbiology, The Ohio State University, Columbus, Ohio 43210 and
| |
Collapse
|
20
|
|
21
|
Deng H, Ma L, Bandaranayaka N, Qin Z, Mann G, Kyeremeh K, Yu Y, Shepherd T, Naismith JH, O'Hagan D. Identification of fluorinases from Streptomyces sp MA37, Norcardia brasiliensis, and Actinoplanes sp N902-109 by genome mining. Chembiochem 2014; 15:364-8. [PMID: 24449539 DOI: 10.1002/cbic.201300732] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Indexed: 11/10/2022]
Abstract
The fluorinase is an enzyme that catalyses the combination of S-adenosyl-L-methionine (SAM) and a fluoride ion to generate 5'-fluorodeoxy adenosine (FDA) and L-methionine through a nucleophilic substitution reaction with a fluoride ion as the nucleophile. It is the only native fluorination enzyme that has been characterised. The fluorinase was isolated in 2002 from Streptomyces cattleya, and, to date, this has been the only source of the fluorinase enzyme. Herein, we report three new fluorinase isolates that have been identified by genome mining. The novel fluorinases from Streptomyces sp. MA37, Nocardia brasiliensis, and an Actinoplanes sp. have high homology (80-87 % identity) to the original S. cattleya enzyme. They all possess a characteristic 21-residue loop. The three newly identified genes were overexpressed in E. coli and shown to be fluorination enzymes. An X-ray crystallographic study of the Streptomyces sp. MA37 enzyme demonstrated that it is almost identical in structure to the original fluorinase. Culturing of the Streptomyces sp. MA37 strain demonstrated that it not only also elaborates the fluorometabolites, fluoroacetate and 4-fluorothreonine, similar to S. cattleya, but this strain also produces a range of unidentified fluorometabolites. These are the first new fluorinases to be reported since the first isolate, over a decade ago, and their identification extends the range of fluorination genes available for fluorination biotechnology.
Collapse
Affiliation(s)
- Hai Deng
- UK Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE (UK).
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schada von Borzyskowski L, Rosenthal RG, Erb TJ. Evolutionary history and biotechnological future of carboxylases. J Biotechnol 2013; 168:243-51. [PMID: 23702164 DOI: 10.1016/j.jbiotec.2013.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022]
Abstract
Carbon dioxide (CO2) is a potent greenhouse gas whose presence in the atmosphere is a critical factor for global warming. At the same time atmospheric CO2 is also a cheap and readily available carbon source that can in principle be used to synthesize value-added products. However, as uncatalyzed chemical CO2-fixation reactions usually require quite harsh conditions to functionalize the CO2 molecule, not many processes have been developed that make use of CO2. In contrast to synthetical chemistry, Nature provides a multitude of different carboxylating enzymes whose carboxylating principle(s) might be exploited in biotechnology. This review focuses on the biochemical features of carboxylases, highlights possible evolutionary scenarios for the emergence of their reactivity, and discusses current, as well as potential future applications of carboxylases in organic synthesis, biotechnology and synthetic biology.
Collapse
|
23
|
Hover BM, Loksztejn A, Ribeiro AA, Yokoyama K. Identification of a cyclic nucleotide as a cryptic intermediate in molybdenum cofactor biosynthesis. J Am Chem Soc 2013; 135:7019-32. [PMID: 23627491 PMCID: PMC3777439 DOI: 10.1021/ja401781t] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molybdenum cofactor (Moco) is a redox cofactor found in all kingdoms of life, and its biosynthesis is essential for survival of many organisms, including humans. The first step of Moco biosynthesis is a unique transformation of guanosine 5'-triphosphate (GTP) into cyclic pyranopterin monophosphate (cPMP). In bacteria, MoaA and MoaC catalyze this transformation, although the specific functions of these enzymes were not fully understood. Here, we report the first isolation and structural characterization of a product of MoaA. This molecule was isolated under anaerobic conditions from a solution of MoaA incubated with GTP, S-adenosyl-L-methionine, and sodium dithionite in the absence of MoaC. Structural characterization by chemical derivatization, MS, and NMR spectroscopy suggested the structure of this molecule to be (8S)-3',8-cyclo-7,8-dihydroguanosine 5'-triphosphate (3',8-cH2GTP). The isolated 3',8-cH2GTP was converted to cPMP by MoaC or its human homologue, MOCS1B, with high specificities (Km < 0.060 μM and 0.79 ± 0.24 μM for MoaC and MOCS1B, respectively), suggesting the physiological relevance of 3',8-cH2GTP. These observations, in combination with some mechanistic studies of MoaA, unambiguously demonstrate that MoaA catalyzes a unique radical C-C bond formation reaction and that, in contrast to previous proposals, MoaC plays a major role in the complex rearrangement to generate the pyranopterin ring.
Collapse
Affiliation(s)
- Bradley M. Hover
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710
| | - Anna Loksztejn
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710
| | - Anthony A. Ribeiro
- Duke NMR Spectroscopy Center and Department of Radiology, Duke University Medical Center, Durham, NC, 27710
| | - Kenichi Yokoyama
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710
| |
Collapse
|
24
|
Plausible novel ribose metabolism catalyzed by enzymes of the methionine salvage pathway in Bacillus subtilis. Biosci Biotechnol Biochem 2013; 77:1104-7. [PMID: 23649237 DOI: 10.1271/bbb.120932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The methionine salvage pathway (MSP) recycles reduced sulfur from 5-methylthioribose. Here we propose a novel ribose metabolic pathway performed by MSP enzymes of Bacilli. MtnK, an initial catalyst of MSP, had significant ribose kinase activity, with Vmax and Km values of 2.9 µmol min(-1) mg of protein(-1) and 4.8 mM. Downstream enzymes catalyzed the isomerization of ribose-1-phosphate and subsequent dehydration, enolization, dephosphorylation, and dioxygenation.
Collapse
|
25
|
Guo X, Yin H, Cong J, Dai Z, Liang Y, Liu X. RubisCO gene clusters found in a metagenome microarray from acid mine drainage. Appl Environ Microbiol 2013; 79:2019-26. [PMID: 23335778 PMCID: PMC3592212 DOI: 10.1128/aem.03400-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/11/2013] [Indexed: 11/20/2022] Open
Abstract
The enzyme responsible for carbon dioxide fixation in the Calvin cycle, ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), is always detected as a phylogenetic marker to analyze the distribution and activity of autotrophic bacteria. However, such an approach provides no indication as to the significance of genomic content and organization. Horizontal transfers of RubisCO genes occurring in eubacteria and plastids may seriously affect the credibility of this approach. Here, we presented a new method to analyze the diversity and genomic content of RubisCO genes in acid mine drainage (AMD). A metagenome microarray containing 7,776 large-insertion fosmids was constructed to quickly screen genome fragments containing RubisCO form I large-subunit genes (cbbL). Forty-six cbbL-containing fosmids were detected, and six fosmids were fully sequenced. To evaluate the reliability of the metagenome microarray and understand the microbial community in AMD, the diversities of cbbL and the 16S rRNA gene were analyzed. Fosmid sequences revealed that the form I RubisCO gene cluster could be subdivided into form IA and IB RubisCO gene clusters in AMD, because of significant divergences in molecular phylogenetics and conservative genomic organization. Interestingly, the form I RubisCO gene cluster coexisted with the form II RubisCO gene cluster in one fosmid genomic fragment. Phylogenetic analyses revealed that horizontal transfers of RubisCO genes may occur widely in AMD, which makes the evolutionary history of RubisCO difficult to reconcile with organismal phylogeny.
Collapse
Affiliation(s)
- Xue Guo
- School of Mineral Processing and Bioengineering, Central South University, Changsha, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, People's Republic of China
| | - Huaqun Yin
- School of Mineral Processing and Bioengineering, Central South University, Changsha, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, People's Republic of China
| | - Jing Cong
- School of Mineral Processing and Bioengineering, Central South University, Changsha, People's Republic of China
| | - Zhimin Dai
- School of Mineral Processing and Bioengineering, Central South University, Changsha, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, People's Republic of China
| | - Yili Liang
- School of Mineral Processing and Bioengineering, Central South University, Changsha, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, People's Republic of China
| | - Xueduan Liu
- School of Mineral Processing and Bioengineering, Central South University, Changsha, People's Republic of China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, People's Republic of China
| |
Collapse
|
26
|
His267 is involved in carbamylation and catalysis of RuBisCO-like protein from Bacillus subtilis. Biochem Biophys Res Commun 2013; 431:176-80. [DOI: 10.1016/j.bbrc.2012.12.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/28/2012] [Indexed: 11/24/2022]
|
27
|
Allpress CJ, Grubel K, Szajna-Fuller E, Arif AM, Berreau LM. Regioselective aliphatic carbon-carbon bond cleavage by a model system of relevance to iron-containing acireductone dioxygenase. J Am Chem Soc 2012; 135:659-68. [PMID: 23214721 DOI: 10.1021/ja3038189] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mononuclear Fe(II) complexes ([(6-Ph(2)TPA)Fe(PhC(O)C(R)C(O)Ph)]X (3-X: R = OH, X = ClO(4) or OTf; 4: R = H, X = ClO(4))) supported by the 6-Ph(2)TPA chelate ligand (6-Ph(2)TPA = N,N-bis((6-phenyl-2-pyridyl)methyl)-N-(2-pyridylmethyl)amine) and containing a β-diketonate ligand bound via a six-membered chelate ring have been synthesized. The complexes have all been characterized by (1)H NMR, UV-vis, and infrared spectroscopy and variably by elemental analysis, mass spectrometry, and X-ray crystallography. Treatment of dry CH(3)CN solutions of 3-OTf with O(2) leads to oxidative cleavage of the C(1)-C(2) and C(2)-C(3) bonds of the acireductone via a dioxygenase reaction, leading to formation of carbon monoxide and 2 equiv of benzoic acid as well as two other products not derived from dioxygenase reactivity: 2-oxo-2-phenylethylbenzoate and benzil. Treatment of CH(3)CN/H(2)O solutions of 3-X with O(2) leads to the formation of an additional product, benzoylformic acid, indicative of the operation of a new reaction pathway in which only the C(1)-C(2) bond is cleaved. Mechanistic studies show that the change in regioselectivity is due to the hydration of a vicinal triketone intermediate in the presence of both an iron center and water. This is the first structural and functional model of relevance to iron-containing acireductone dioxygenase (Fe-ARD'), an enzyme in the methionine salvage pathway that catalyzes the regiospecific oxidation of 1,2-dihydroxy-3-oxo-(S)-methylthiopentene to form 2-oxo-4-methylthiobutyrate. Importantly, this model system is found to control the regioselectivity of aliphatic carbon-carbon bond cleavage by changes involving an intermediate in the reaction pathway, rather than by the binding mode of the substrate, as had been proposed in studies of acireductone enzymes.
Collapse
Affiliation(s)
- Caleb J Allpress
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| | | | | | | | | |
Collapse
|
28
|
Warlick BPE, Imker HJ, Sriram J, Tabita FR, Gerlt JA. Mechanistic diversity in the RuBisCO superfamily: RuBisCO from Rhodospirillum rubrum is not promiscuous for reactions catalyzed by RuBisCO-like proteins. Biochemistry 2012; 51:9470-9. [PMID: 23110715 DOI: 10.1021/bi301311t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
d-Ribulose 1,5-bisphosphate carboxylase/oxygenases (RuBisCOs) are promiscuous, catalyzing not only carboxylation and oxygenation of d-ribulose 1,5-bisphosphate but also other promiscuous, presumably nonphysiological, reactions initiated by abstraction of the 3-proton of d-ribulose 1,5-bisphosphate. Also, RuBisCO has homologues that do not catalyze carboxylation; these are designated RuBisCO-like proteins or RLPs. Members of the two families of RLPs catalyze reactions in the recycling of 5'-methylthioadenosine (MTA) generated by polyamine synthesis: (1) the 2,3-diketo-5-methylthiopentane 1-phosphate (DK-MTP 1-P) "enolase" reaction in the well-known "methionine salvage" pathway in Bacillus sp. and (2) the 5-methylthio-d-ribulose 1-phosphate (MTRu 1-P) 1,3-isomerase reaction in the recently discovered "MTA-isoprenoid shunt" that generates 1-deoxy-d-xylulose 5-phosphate for nonmevalonate isoprene synthesis in Rhodospirillum rubrum. We first studied the structure and reactivity of DK-MTP 1-P that was reported to decompose rapidly [Ashida, H., Saito, Y., Kojima, C., and Yokota, A. (2008) Biosci., Biotechnol., Biochem. 72, 959-967]. The 2-carbonyl group of DK-MTP 1-P is rapidly hydrated and can undergo enolization both nonenzymatically and enzymatically via the small amount of unhydrated material that is present. We then examined the ability of RuBisCO from R. rubrum to catalyze both of the RLP-catalyzed reactions. Contrary to a previous report [Ashida, H., Saito, Y., Kojima, C., Kobayashi, K., Ogasawara, N., and Yokota, A. (2003) Science 302, 286-290], we were unable to confirm that this RuBisCO catalyzes the DK-MTP 1-P "enolase" reaction either in vitro or in vivo. We also determined that this RuBisCO does not catalyze the MTRu 1-P 1,3-isomerase reaction in vitro. Thus, although RuBisCOs can be functionally promiscuous, RuBisCO from R. rubrum is not promiscuous for either of the known RLP-catalyzed reactions.
Collapse
Affiliation(s)
- Benjamin P E Warlick
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
29
|
A RubisCO-like protein links SAM metabolism with isoprenoid biosynthesis. Nat Chem Biol 2012; 8:926-32. [PMID: 23042035 PMCID: PMC3475740 DOI: 10.1038/nchembio.1087] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 09/06/2012] [Indexed: 02/01/2023]
Abstract
Functional assignment of uncharacterized proteins is a challenge in the era of large-scale genome sequencing. Here, we combine in extracto-NMR, proteomics, and transcriptomics with a newly developed (knock-out) metabolomics platform to determine a potential physiological role for a ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein (RLP) from Rhodospirillum rubrum. Our studies unravelled an unexpected link in bacterial central carbon metabolism between S-adenosylmethionine (SAM)-dependent polyamine metabolism and isoprenoid biosynthesis and also provide an alternative approach to assign enzyme function at the organismic level.
Collapse
|
30
|
Insights into the pH up-shift responsive mechanism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling. Folia Microbiol (Praha) 2011; 56:439-51. [DOI: 10.1007/s12223-011-0067-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 08/28/2011] [Indexed: 10/17/2022]
|
31
|
|
32
|
French JB, Ealick SE. Structural and mechanistic studies on Klebsiella pneumoniae 2-Oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline decarboxylase. J Biol Chem 2010; 285:35446-54. [PMID: 20826786 PMCID: PMC2975168 DOI: 10.1074/jbc.m110.156034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 08/31/2010] [Indexed: 11/06/2022] Open
Abstract
The stereospecific oxidative degradation of uric acid to (S)-allantoin was recently shown to proceed via three enzymatic steps. The final conversion is a decarboxylation of the unstable intermediate 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) and is catalyzed by OHCU decarboxylase. Here we present the structures of Klebsiella pneumoniae OHCU decarboxylase in unliganded form and with bound allantoin. These structures provide evidence that ligand binding organizes the active site residues for catalysis. Modeling of the substrate and intermediates provides additional support for this hypothesis. In addition we characterize the steady state kinetics of this enzyme and report the first OHCU decarboxylase inhibitor, allopurinol, a structural isomer of hypoxanthine. This molecule is a competitive inhibitor of K. pneumoniae OHCU decarboxylase with a K(i) of 30 ± 2 μM. Circular dichroism measurements confirm structural observations that this inhibitor disrupts the necessary organization of the active site. Our structural and biochemical studies also provide further insights into the mechanism of catalysis of OHCU decarboxylation.
Collapse
Affiliation(s)
- Jarrod B. French
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Steven E. Ealick
- From the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| |
Collapse
|
33
|
Nakano T, Ashida H, Mizohata E, Matsumura H, Yokota A. An evolutionally conserved Lys122 is essential for function in Rhodospirillum rubrum bona fide RuBisCO and Bacillus subtilis RuBisCO-like protein. Biochem Biophys Res Commun 2010; 392:212-6. [DOI: 10.1016/j.bbrc.2010.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 11/28/2022]
|
34
|
Roles of RubisCO and the RubisCO-like protein in 5-methylthioadenosine metabolism in the Nonsulfur purple bacterium Rhodospirillum rubrum. J Bacteriol 2009; 192:1324-31. [PMID: 20038587 DOI: 10.1128/jb.01442-09] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) catalyzes the assimilation of atmospheric CO(2) into organic matter and is thus central to the existence of life on earth. The beginning of the 2000s was marked by the discovery of a new family of proteins, the RubisCO-like proteins (RLPs), which are structural homologs of RubisCO. RLPs are unable to catalyze CO(2) fixation. The RLPs from Chlorobaculum tepidum, Bacillus subtilis, Geobacillus kaustophilus, and Microcystis aeruginosa have been shown to participate in sulfur metabolism. Whereas the precise function of C. tepidum RLP is unknown, the B. subtilis, G. kaustophilus, and M. aeruginosa RLPs function as tautomerases/enolases in a methionine salvage pathway (MSP). Here, we show that the form II RubisCO enzyme from the nonsulfur purple bacterium Rhodospirillum rubrum is also able to function as an enolase in vivo as part of an MSP, but only under anaerobic conditions. However, unlike B. subtilis RLP, R. rubrum RLP does not catalyze the enolization of 2,3-diketo-5-methylthiopentyl-1-phosphate. Instead, under aerobic growth conditions, R. rubrum RLP employs another intermediate of the MSP, 5-methylthioribulose-1-phosphate, as a substrate, resulting in the formation of different products. To further determine the interrelationship between RubisCOs and RLPs (and the potential integration of cellular carbon and sulfur metabolism), the functional roles of both RubisCO and RLP have been examined in vivo via the use of specific knockout strains and complementation studies of R. rubrum. The presence of functional, yet separate, MSPs in R. rubrum under both aerobic (chemoheterotrophic) and anaerobic (photoheterotrophic) growth conditions has not been observed previously in any organism. Moreover, the aerobic and anaerobic sulfur salvage pathways appear to be differentially controlled, with novel and previously undescribed steps apparent for sulfur salvage in this organism.
Collapse
|
35
|
Albers E. Metabolic characteristics and importance of the universal methionine salvage pathway recycling methionine from 5â²-methylthioadenosine. IUBMB Life 2009; 61:1132-42. [DOI: 10.1002/iub.278] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Saito Y, Ashida H, Sakiyama T, de Marsac NT, Danchin A, Sekowska A, Yokota A. Structural and functional similarities between a ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)-like protein from Bacillus subtilis and photosynthetic RuBisCO. J Biol Chem 2009; 284:13256-64. [PMID: 19279009 DOI: 10.1074/jbc.m807095200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sequences classified as genes for various ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (RuBisCO)-like proteins (RLPs) are widely distributed among bacteria, archaea, and eukaryota. In the phylogenic tree constructed with these sequences, RuBisCOs and RLPs are grouped into four separate clades, forms I-IV. In RuBisCO enzymes encoded by form I, II, and III sequences, 19 conserved amino acid residues are essential for CO(2) fixation; however, 1-11 of these 19 residues are substituted with other amino acids in form IV RLPs. Among form IV RLPs, the only enzymatic activity detected to date is a 2,3-diketo-5-methylthiopentyl 1-phosphate (DK-MTP-1-P) enolase reaction catalyzed by Bacillus subtilis, Microcystis aeruginosa, and Geobacillus kaustophilus form IV RLPs. RLPs from Rhodospirillum rubrum, Rhodopseudomonas palustris, Chlorobium tepidum, and Bordetella bronchiseptica were inactive in the enolase reaction. DK-MTP-1-P enolase activity of B. subtilis RLP required Mg(2+) for catalysis and, like RuBisCO, was stimulated by CO(2). Four residues that are essential for the enolization reaction of RuBisCO, Lys(175), Lys(201), Asp(203), and Glu(204), were conserved in RLPs and were essential for DK-MTP-1-P enolase catalysis. Lys(123), the residue conserved in DK-MTP-1-P enolases, was also essential for B. subtilis RLP enolase activity. Similarities between the active site structures of RuBisCO and B. subtilis RLP were examined by analyzing the effects of structural analogs of RuBP on DK-MTP-1-P enolase activity. A transition state analog for the RuBP carboxylation of RuBisCO was a competitive inhibitor in the DK-MTP-1-P enolase reaction with a K(i) value of 103 mum. RuBP and d-phosphoglyceric acid, the substrate and product, respectively, of RuBisCO, were weaker competitive inhibitors. These results suggest that the amino acid residues utilized in the B. subtilis RLP enolase reaction are the same as those utilized in the RuBisCO RuBP enolization reaction.
Collapse
Affiliation(s)
- Yohtaro Saito
- Nara Institute of Science and Technology, Graduate School of Biological Sciences, Ikoma, Nara, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Target selection and annotation for the structural genomics of the amidohydrolase and enolase superfamilies. ACTA ACUST UNITED AC 2009; 10:107-25. [PMID: 19219566 PMCID: PMC2693957 DOI: 10.1007/s10969-008-9056-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 12/12/2008] [Indexed: 10/25/2022]
Abstract
To study the substrate specificity of enzymes, we use the amidohydrolase and enolase superfamilies as model systems; members of these superfamilies share a common TIM barrel fold and catalyze a wide range of chemical reactions. Here, we describe a collaboration between the Enzyme Specificity Consortium (ENSPEC) and the New York SGX Research Center for Structural Genomics (NYSGXRC) that aims to maximize the structural coverage of the amidohydrolase and enolase superfamilies. Using sequence- and structure-based protein comparisons, we first selected 535 target proteins from a variety of genomes for high-throughput structure determination by X-ray crystallography; 63 of these targets were not previously annotated as superfamily members. To date, 20 unique amidohydrolase and 41 unique enolase structures have been determined, increasing the fraction of sequences in the two superfamilies that can be modeled based on at least 30% sequence identity from 45% to 73%. We present case studies of proteins related to uronate isomerase (an amidohydrolase superfamily member) and mandelate racemase (an enolase superfamily member), to illustrate how this structure-focused approach can be used to generate hypotheses about sequence-structure-function relationships.
Collapse
|
38
|
Tamura H, Ashida H, Koga S, Saito Y, Yadani T, Kai Y, Inoue T, Yokota A, Matsumura H. Crystallization and preliminary X-ray analysis of 2,3-diketo-5-methylthiopentyl-1-phosphate enolase from Bacillus subtilis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:147-50. [PMID: 19194007 PMCID: PMC2635871 DOI: 10.1107/s174430910804311x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/18/2008] [Indexed: 11/11/2022]
Abstract
2,3-Diketo-5-methylthiopentyl-1-phosphate enolase (DK-MTP-1P enolase) from Bacillus subtilis was crystallized using the hanging-drop vapour-diffusion method. Crystals grew using PEG 3350 as the precipitant at 293 K. The crystals diffracted to 2.3 A resolution at 100 K using synchrotron radiation and were found to belong to the monoclinic space group P2(1), with unit-cell parameters a = 79.3, b = 91.5, c = 107.0 A, beta = 90.8 degrees. The asymmetric unit contained four molecules of DK-MTP-1P enolase, with a V(M) value of 2.2 A(3) Da(-1) and a solvent content of 43%.
Collapse
Affiliation(s)
- Haruka Tamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki Ashida
- Department of Molecular Biology, Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Shogo Koga
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yohtaro Saito
- Department of Molecular Biology, Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Tomonori Yadani
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasushi Kai
- Department of Environmental and Biotechnological Future Engineering, Fukui University of Technology, Fukui 910-8505, Japan
| | - Tsuyoshi Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- CREST (SOSHO Project), Suita, Osaka 565-0871, Japan
| | - Akiho Yokota
- Department of Molecular Biology, Graduate School of Biological Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | - Hiroyoshi Matsumura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- CREST (SOSHO Project), Suita, Osaka 565-0871, Japan
| |
Collapse
|
39
|
Swingley WD, Blankenship RE, Raymond J. Evolutionary Relationships Among Purple Photosynthetic Bacteria and the Origin of Proteobacterial Photosynthetic Systems. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4020-8815-5_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R, Eisen JA, Holmes DS. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 2008; 9:597. [PMID: 19077236 PMCID: PMC2621215 DOI: 10.1186/1471-2164-9-597] [Citation(s) in RCA: 325] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 12/11/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acidithiobacillus ferrooxidans is a major participant in consortia of microorganisms used for the industrial recovery of copper (bioleaching or biomining). It is a chemolithoautrophic, gamma-proteobacterium using energy from the oxidation of iron- and sulfur-containing minerals for growth. It thrives at extremely low pH (pH 1-2) and fixes both carbon and nitrogen from the atmosphere. It solubilizes copper and other metals from rocks and plays an important role in nutrient and metal biogeochemical cycling in acid environments. The lack of a well-developed system for genetic manipulation has prevented thorough exploration of its physiology. Also, confusion has been caused by prior metabolic models constructed based upon the examination of multiple, and sometimes distantly related, strains of the microorganism. RESULTS The genome of the type strain A. ferrooxidans ATCC 23270 was sequenced and annotated to identify general features and provide a framework for in silico metabolic reconstruction. Earlier models of iron and sulfur oxidation, biofilm formation, quorum sensing, inorganic ion uptake, and amino acid metabolism are confirmed and extended. Initial models are presented for central carbon metabolism, anaerobic metabolism (including sulfur reduction, hydrogen metabolism and nitrogen fixation), stress responses, DNA repair, and metal and toxic compound fluxes. CONCLUSION Bioinformatics analysis provides a valuable platform for gene discovery and functional prediction that helps explain the activity of A. ferrooxidans in industrial bioleaching and its role as a primary producer in acidic environments. An analysis of the genome of the type strain provides a coherent view of its gene content and metabolic potential.
Collapse
Affiliation(s)
- Jorge Valdés
- Center for Bioinformatics and Genome Biology, Fundación Ciencia para la Vida, Facultad de Ciencias de la Salud, Universidad Andres Bello, Santiago, Chile.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Imker HJ, Singh J, Warlick BP, Tabita FR, Gerlt JA. Mechanistic diversity in the RuBisCO superfamily: a novel isomerization reaction catalyzed by the RuBisCO-like protein from Rhodospirillum rubrum. Biochemistry 2008; 47:11171-3. [PMID: 18826254 DOI: 10.1021/bi801685f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Some homologues of D-ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) do not catalyze carboxylation and are designated RuBisCO-like proteins (RLPs). The RLP from Rhodospirillum rubrum (gi:83593333) catalyzes a novel isomerization reaction (overall 1,3-proton transfer reaction; likely, two 1,2-proton transfer reactions) that converts 5-methylthio-D-ribulose 1-phosphate to a 3:1 mixture of 1-methylthioxylulose 5-phosphate and 1-methylthioribulose 5-phosphate. Disruption of the gene encoding the RLP abolishes the ability of R. rubrum to utilize 5'-methylthioadenosine as a sole sulfur source, implicating a new, as-yet-uncharacterized, pathway for sulfur salvage.
Collapse
Affiliation(s)
- Heidi J Imker
- Department of Microbiology and Plant Cellular and Molecular Biology Department/Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
42
|
Phylogenetic and evolutionary relationships of RubisCO and the RubisCO-like proteins and the functional lessons provided by diverse molecular forms. Philos Trans R Soc Lond B Biol Sci 2008; 363:2629-40. [PMID: 18487131 PMCID: PMC2606765 DOI: 10.1098/rstb.2008.0023] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ribulose 1,5-bisphosphate (RuBP) carboxylase/oxygenase (RubisCO) catalyses the key reaction by which inorganic carbon may be assimilated into organic carbon. Phylogenetic analyses indicate that there are three classes of bona fide RubisCO proteins, forms I, II and III, which all catalyse the same reactions. In addition, there exists another form of RubisCO, form IV, which does not catalyse RuBP carboxylation or oxygenation. Form IV is actually a homologue of RubisCO and is called the RubisCO-like protein (RLP). Both RubisCO and RLP appear to have evolved from an ancestor protein in a methanogenic archaeon, and comprehensive analyses indicate that the different forms (I, II, III and IV) contain various subgroups, with individual sequences derived from representatives of all three kingdoms of life. The diversity of RubisCO molecules, many of which function in distinct milieus, has provided convenient model systems to study the ways in which the active site of this protein has evolved to accommodate necessary molecular adaptations. Such studies have proven useful to help provide a framework for understanding the molecular basis for many important aspects of RubisCO catalysis, including the elucidation of factors or functional groups that impinge on RubisCO carbon dioxide/oxygen substrate discrimination.
Collapse
|
43
|
Function, structure, and evolution of the RubisCO-like proteins and their RubisCO homologs. Microbiol Mol Biol Rev 2008; 71:576-99. [PMID: 18063718 DOI: 10.1128/mmbr.00015-07] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
About 30 years have now passed since it was discovered that microbes synthesize RubisCO molecules that differ from the typical plant paradigm. RubisCOs of forms I, II, and III catalyze CO(2) fixation reactions, albeit for potentially different physiological purposes, while the RubisCO-like protein (RLP) (form IV RubisCO) has evolved, thus far at least, to catalyze reactions that are important for sulfur metabolism. RubisCO is the major global CO(2) fixation catalyst, and RLP is a somewhat related protein, exemplified by the fact that some of the latter proteins, along with RubisCO, catalyze similar enolization reactions as a part of their respective catalytic mechanisms. RLP in some organisms catalyzes a key reaction of a methionine salvage pathway, while in green sulfur bacteria, RLP plays a role in oxidative thiosulfate metabolism. In many organisms, the function of RLP is unknown. Indeed, there now appear to be at least six different clades of RLP molecules found in nature. Consideration of the many RubisCO (forms I, II, and III) and RLP (form IV) sequences in the database has subsequently led to a coherent picture of how these proteins may have evolved, with a form III RubisCO arising from the Methanomicrobia as the most likely ultimate source of all RubisCO and RLP lineages. In addition, structure-function analyses of RLP and RubisCO have provided information as to how the active sites of these proteins have evolved for their specific functions.
Collapse
|
44
|
Andersson I, Backlund A. Structure and function of Rubisco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:275-91. [PMID: 18294858 DOI: 10.1016/j.plaphy.2008.01.001] [Citation(s) in RCA: 322] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Indexed: 05/18/2023]
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the major enzyme assimilating CO(2) into the biosphere. At the same time Rubisco is an extremely inefficient catalyst and its carboxylase activity is compromised by an opposing oxygenase activity involving atmospheric O(2). The shortcomings of Rubisco have implications for crop yield, nitrogen and water usage, and for the global carbon cycle. Numerous high-resolution crystal structures of different forms of Rubisco are now available, including structures of mutant enzymes. This review uses the information provided in these structures in a structure-based sequence alignment and discusses Rubisco function in the context of structural variations at all levels--amino acid sequence, fold, tertiary and quaternary structure--with an evolutionary perspective and an emphasis on the structural features of the enzyme that may determine its function as a carboxylase.
Collapse
Affiliation(s)
- Inger Andersson
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Husargatan 3, BMC Box 590, S-751 24 Uppsala, Sweden.
| | | |
Collapse
|