1
|
Ke X, Dong HD, Zhao XM, Wang XX, Liu ZQ, Zheng YG. Functional Expression and Construction of a Self-Sufficient Cytochrome P450 Chimera for Efficient Steroidal C14α Hydroxylation in Escherichia coli. Biotechnol Bioeng 2024. [PMID: 39702940 DOI: 10.1002/bit.28911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
C14-functionalized steroids enabled diverse biological activities in anti-gonadotropin and anticancer therapy. However, access to C14-functionalized steroids was impeded by the deficiency of chemical synthetic methods. Recently, several membrane-bound fungal cytochrome P450s (CYPs) have been identified with steroid C14α-hydroxylation activity. However, the lack of efficient heterologous overexpression strategy hampered their further characterization and molecular engineering. In the present study, sequences of fungi-derived CYP genes encoding putative 14α-hydroxylase were selected and bioinformatically analyzed. Substitution of the N-terminal hydrophobic helix by a soluble maltose binding protein tag significantly enhanced the soluble expression level in Escherichia coli. A novel CYP originated from Bipolaris oryzae was discovered with high steroidal C14α-hydroxylation activity when coupled with the redox partner CPRlun. A catalytically self-sufficient chimeric CYP-CPR was built by intramolecular fusion, and the electronic transfer rate was improved. A coenzyme NADPH regeneration system was finally constructed by the co-expression of glucose dehydrogenase. The developed soluble multi-enzyme cascade biotransformation system supported the selective C14α-hydroxylation toward progesterone with a final titer of 34.54 mg/L, the highest level achieved in E. coli-based heterologous expression system. This study provides insightful ideas on the functional expression of fungi-derived CYPs and promises an efficient C14α-hydroxylation system for steroidal drugs through protein engineering.
Collapse
Affiliation(s)
- Xia Ke
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Hong-Duo Dong
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xi-Man Zhao
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Xin-Xin Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Choral Chemicals, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
2
|
Zhang F, Qiu F, Zeng J, Xu Z, Tang Y, Zhao T, Gou Y, Su F, Wang S, Sun X, Xue Z, Wang W, Yang C, Zeng L, Lan X, Chen M, Zhou J, Liao Z. Revealing evolution of tropane alkaloid biosynthesis by analyzing two genomes in the Solanaceae family. Nat Commun 2023; 14:1446. [PMID: 36922496 PMCID: PMC10017790 DOI: 10.1038/s41467-023-37133-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Tropane alkaloids (TAs) are widely distributed in the Solanaceae, while some important medicinal tropane alkaloids (mTAs), such as hyoscyamine and scopolamine, are restricted to certain species/tribes in this family. Little is known about the genomic basis and evolution of TAs biosynthesis and specialization in the Solanaceae. Here, we present chromosome-level genomes of two representative mTAs-producing species: Atropa belladonna and Datura stramonium. Our results reveal that the two species employ a conserved biosynthetic pathway to produce mTAs despite being distantly related within the nightshade family. A conserved gene cluster combined with gene duplication underlies the wide distribution of TAs in this family. We also provide evidence that branching genes leading to mTAs likely have evolved in early ancestral Solanaceae species but have been lost in most of the lineages, with A. belladonna and D. stramonium being exceptions. Furthermore, we identify a cytochrome P450 that modifies hyoscyamine into norhyoscyamine. Our results provide a genomic basis for evolutionary insights into the biosynthesis of TAs in the Solanaceae and will be useful for biotechnological production of mTAs via synthetic biology approaches.
Collapse
Affiliation(s)
- Fangyuan Zhang
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Fei Qiu
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Junlan Zeng
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Zhichao Xu
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Yueli Tang
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Tengfei Zhao
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Yuqin Gou
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Fei Su
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Shiyi Wang
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Xiuli Sun
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Zheyong Xue
- Heilongjiang Key Laboratory of Plant Bioactive Substance Biosynthesis and Utilization, Northeast Forestry University, Harbin, Heilongjiang, 150040, China
| | - Weixing Wang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, 400715, China
| | - Chunxian Yang
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Lingjiang Zeng
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China.,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre, Tibetan Collaborative Innovation Centre of Agricultural and Animal Husbandry Resources, Xizang Agricultural and Animal Husbandry College, Nyingchi, Tibet, 860000, China
| | - Min Chen
- College of Pharmaceutical Sciences, Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Ministry of Education), Southwest University, Chongqing, 400715, China
| | - Junhui Zhou
- State Key Laboratory of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhihua Liao
- State Key Laboratory of Silkworm Genome Biology, School of Life Sciences, Southwest University, Chongqing, 400715, China. .,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, SWU-TAAHC Medicinal Plant Joint R&D Centre, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
3
|
Wei P, Zhang C, Bian X, Lu W. Metabolic Engineering of Saccharomyces cerevisiae for Heterologous Carnosic Acid Production. Front Bioeng Biotechnol 2022; 10:916605. [PMID: 35721856 PMCID: PMC9201568 DOI: 10.3389/fbioe.2022.916605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
Carnosic acid (CA), a phenolic tricyclic diterpene, has many biological effects, including anti-inflammatory, anticancer, antiobesity, and antidiabetic activities. In this study, an efficient biosynthetic pathway was constructed to produce CA in Saccharomyces cerevisiae. First, the CA precursor miltiradiene was synthesized, after which the CA production strain was constructed by integrating the genes encoding cytochrome P450 enzymes (P450s) and cytochrome P450 reductase (CPR) SmCPR. The CA titer was further increased by the coexpression of CYP76AH1 and SmCPR ∼t28SpCytb5 fusion proteins and the overexpression of different catalases to detoxify the hydrogen peroxide (H2O2). Finally, engineering of the endoplasmic reticulum and cofactor supply increased the CA titer to 24.65 mg/L in shake flasks and 75.18 mg/L in 5 L fed-batch fermentation. This study demonstrates that the ability of engineered yeast cells to synthesize CA can be improved through metabolic engineering and synthetic biology strategies, providing a theoretical basis for microbial synthesis of other diterpenoids.
Collapse
Affiliation(s)
- Panpan Wei
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xueke Bian
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering of the Ministry of Education, Tianjin University, Tianjin, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
- *Correspondence: Wenyu Lu,
| |
Collapse
|
4
|
Ju H, Zhang C, He S, Nan W, Lu W. Construction and optimization of Saccharomyces cerevisiae for synthesizing forskolin. Appl Microbiol Biotechnol 2022; 106:1933-1944. [PMID: 35235006 DOI: 10.1007/s00253-022-11819-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/27/2022]
Abstract
Forskolin, one of the primary active metabolites of labdane-type diterpenoids, exhibits significant medicinal value, such as anticancer, antiasthmatic, and antihypertensive activities. In this study, we constructed a Saccharomyces cerevisiae cell factory that efficiently produced forskolin. First, a chassis strain that can accumulate 145.8 mg/L 13R-manoyl oxide (13R-MO), the critical precursor of forskolin, was constructed. Then, forskolin was produced by integrating CfCYP76AH15, CfCYP76AH11, CfCYP76AH16, ATR1, and CfACT1-8 into the 13R-MO chassis with a titer of 76.25 μg/L. We confirmed that cytochrome P450 enzymes (P450s) are the rate-limiting step by detecting intermediate metabolite accumulation. Forskolin production reached 759.42 μg/L by optimizing the adaptations between CfCYP76AHs, t66CfCPR, and t30AaCYB5. Moreover, multiple metabolic engineering strategies, including regulation of the target genes' copy numbers, amplification of the endoplasmic reticulum (ER) area, and cofactor metabolism enhancement, were implemented to enhance the metabolic flow to forskolin from 13R-MO, resulting in a final forskolin yield of 21.47 mg/L in shake flasks and 79.33 mg/L in a 5 L bioreactor. These promising results provide guidance for the synthesis of other natural terpenoids in S. cerevisiae, especially for those containing multiple P450s in their synthetic pathways. KEY POINTS: • The forskolin biosynthesis pathway was optimized from the perspective of system metabolism for the first time in S. cerevisiae. • The adaptation and optimization of CYP76AHs, t66CfCPR, and t30AaCYB5 promote forskolin accumulation, which can provide a reference for diterpenoids containing complex pathways, especially multiple P450s pathways. • The forskolin titer of 79.33 mg/L is the highest production currently reported and was achieved by fed-batch fermentation in a 5 L bioreactor.
Collapse
Affiliation(s)
- Haiyan Ju
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Shifan He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Weihua Nan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300350, China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300350, China.
| |
Collapse
|
5
|
Yao Y, Wang W, Shi W, Yan R, Zhang J, Wei G, Liu L, Che Y, An C, Gao SS. Overproduction of medicinal ergot alkaloids based on a fungal platform. Metab Eng 2021; 69:198-208. [PMID: 34902590 DOI: 10.1016/j.ymben.2021.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/17/2021] [Accepted: 12/08/2021] [Indexed: 12/21/2022]
Abstract
Privileged ergot alkaloids (EAs) produced by the fungal genus Claviceps are used to treat a wide range of diseases. However, their use and research have been hampered by the challenging genetic engineering of Claviceps. Here we systematically refactored and rationally engineered the EA biosynthetic pathway in heterologous host Aspergillus nidulans by using a Fungal-Yeast-Shuttle-Vector protocol. The obtained strains allowed the production of diverse EAs and related intermediates, including prechanoclavine (PCC, 333.8 mg/L), chanoclavine (CC, 241.0 mg/L), agroclavine (AC, 78.7 mg/L), and festuclavine (FC, 99.2 mg/L), etc. This fungal platform also enabled the access to the methyl-oxidized EAs (MOEAs), including elymoclavine (EC), lysergic acid (LA), dihydroelysergol (DHLG), and dihydrolysergic acid (DHLA), by overexpressing a P450 enzyme CloA. Furthermore, by optimizing the P450 electron transfer (ET) pathway and using multi-copy of cloA, the titers of EC and DHLG have been improved by 17.3- and 9.4-fold, respectively. Beyond our demonstration of A. nidulans as a robust platform for EA overproduction, our study offers a proof of concept for engineering the eukaryotic P450s-contained biosynthetic pathways in a filamentous fungal host.
Collapse
Affiliation(s)
- Yongpeng Yao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Wei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wenyu Shi
- Microbial Resource and Big Data Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Rui Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Jun Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Guangzheng Wei
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yongsheng Che
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China
| | - Chunyan An
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| | - Shu-Shan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|
6
|
Srinivasan P, Smolke CD. Engineering cellular metabolite transport for biosynthesis of computationally predicted tropane alkaloid derivatives in yeast. Proc Natl Acad Sci U S A 2021; 118:e2104460118. [PMID: 34140414 PMCID: PMC8237673 DOI: 10.1073/pnas.2104460118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microbial biosynthesis of plant natural products (PNPs) can facilitate access to valuable medicinal compounds and derivatives. Such efforts are challenged by metabolite transport limitations, which arise when complex plant pathways distributed across organelles and tissues are reconstructed in unicellular hosts without concomitant transport machinery. We recently reported an engineered yeast platform for production of the tropane alkaloid (TA) drugs hyoscyamine and scopolamine, in which product accumulation is limited by vacuolar transport. Here, we demonstrate that alleviation of transport limitations at multiple steps in an engineered pathway enables increased production of TAs and screening of useful derivatives. We first show that supervised classifier models trained on a tissue-delineated transcriptome from the TA-producing plant Atropa belladonna can predict TA transporters with greater efficacy than conventional regression- and clustering-based approaches. We demonstrate that two of the identified transporters, AbPUP1 and AbLP1, increase TA production in engineered yeast by facilitating vacuolar export and cellular reuptake of littorine and hyoscyamine. We incorporate four different plant transporters, cofactor regeneration mechanisms, and optimized growth conditions into our yeast platform to achieve improvements in de novo hyoscyamine and scopolamine production of over 100-fold (480 μg/L) and 7-fold (172 μg/L). Finally, we leverage computational tools for biosynthetic pathway prediction to produce two different classes of TA derivatives, nortropane alkaloids and tropane N-oxides, from simple precursors. Our work highlights the importance of cellular transport optimization in recapitulating complex PNP biosyntheses in microbial hosts and illustrates the utility of computational methods for gene discovery and expansion of heterologous biosynthetic diversity.
Collapse
Affiliation(s)
| | - Christina D Smolke
- Department of Bioengineering, Stanford University, Stanford, CA 94305;
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
7
|
Stiborová M, Indra R, Frei E, Kopečková K, Schmeiser HH, Eckschlager T, Adam V, Heger Z, Arlt VM, Martínek V. Cytochrome b5 plays a dual role in the reaction cycle of cytochrome P450 3A4 during oxidation of the anticancer drug ellipticine. MONATSHEFTE FUR CHEMIE 2017; 148:1983-1991. [PMID: 29104319 PMCID: PMC5653753 DOI: 10.1007/s00706-017-1986-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/13/2017] [Indexed: 12/18/2022]
Abstract
Abstract Ellipticine is an anticancer agent that forms covalent DNA adducts after enzymatic activation by cytochrome P450 (CYP) enzymes, mainly by CYP3A4. This process is one of the most important ellipticine DNA-damaging mechanisms for its antitumor action. Here, we investigated the efficiencies of human hepatic microsomes and human recombinant CYP3A4 expressed with its reductase, NADPH:CYP oxidoreductase (POR), NADH:cytochrome b5 reductase and/or cytochrome b5 in Supersomes™ to oxidize this drug. We also evaluated the effectiveness of coenzymes of two of the microsomal reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of NADH:cytochrome b5 reductase, to mediate ellipticine oxidation in these enzyme systems. Using HPLC analysis we detected up to five ellipticine metabolites, which were formed by human hepatic microsomes and human CYP3A4 in the presence of NADPH or NADH. Among ellipticine metabolites, 9-hydroxy-, 12-hydroxy-, and 13-hydroxyellipticine were formed by hepatic microsomes as the major metabolites, while 7-hydroxyellipticine and the ellipticine N2-oxide were the minor ones. Human CYP3A4 in Supersomes™ generated only three metabolic products, 9-hydroxy-, 12-hydroxy-, and 13-hydroxyellipticine. Using the 32P-postlabeling method two ellipticine-derived DNA adducts were generated by microsomes and the CYP3A4-Supersome system, both in the presence of NADPH and NADH. These adducts were derived from the reaction of 13-hydroxy- and 12-hydroxyellipticine with deoxyguanosine in DNA. In the presence of NADPH or NADH, cytochrome b5 stimulated the CYP3A4-mediated oxidation of ellipticine, but the stimulation effect differed for individual ellipticine metabolites. This heme protein also stimulated the formation of both ellipticine-DNA adducts. The results demonstrate that cytochrome b5 plays a dual role in the CYP3A4-catalyzed oxidation of ellipticine: (1) cytochrome b5 mediates CYP3A4 catalytic activities by donating the first and second electron to this enzyme in its catalytic cycle, indicating that NADH:cytochrome b5 reductase can substitute NADPH-dependent POR in this enzymatic reaction and (2) cytochrome b5 can act as an allosteric modifier of the CYP3A4 oxygenase. Graphical abstract ![]()
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Radek Indra
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Eva Frei
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Kateřina Kopečková
- Department of Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Tomáš Eckschlager
- Department of Pediatric Hematology and Oncology, 2nd Medical Faculty, Charles University and University Hospital Motol, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Vojtěch Adam
- Laboratory of Metallomics and Nanotechnology, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| | - Zbyněk Heger
- Laboratory of Metallomics and Nanotechnology, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH UK
| | - Václav Martínek
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| |
Collapse
|
8
|
Behrendorff JBYH, Gillam EMJ. Prospects for Applying Synthetic Biology to Toxicology: Future Opportunities and Current Limitations for the Repurposing of Cytochrome P450 Systems. Chem Res Toxicol 2016; 30:453-468. [DOI: 10.1021/acs.chemrestox.6b00396] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Elizabeth M. J. Gillam
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| |
Collapse
|
9
|
Hlavica P. Mechanistic basis of electron transfer to cytochromes p450 by natural redox partners and artificial donor constructs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:247-97. [PMID: 26002739 DOI: 10.1007/978-3-319-16009-2_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cytochromes P450 (P450s) are hemoproteins catalyzing oxidative biotransformation of a vast array of natural and xenobiotic compounds. Reducing equivalents required for dioxygen cleavage and substrate hydroxylation originate from different redox partners including diflavin reductases, flavodoxins, ferredoxins and phthalate dioxygenase reductase (PDR)-type proteins. Accordingly, circumstantial analysis of structural and physicochemical features governing donor-acceptor recognition and electron transfer poses an intriguing challenge. Thus, conformational flexibility reflected by togging between closed and open states of solvent exposed patches on the redox components was shown to be instrumental to steered electron transmission. Here, the membrane-interactive tails of the P450 enzymes and donor proteins were recognized to be crucial to proper orientation toward each other of surface sites on the redox modules steering functional coupling. Also, mobile electron shuttling may come into play. While charge-pairing mechanisms are of primary importance in attraction and complexation of the redox partners, hydrophobic and van der Waals cohesion forces play a minor role in docking events. Due to catalytic plasticity of P450 enzymes, there is considerable promise in biotechnological applications. Here, deeper insight into the mechanistic basis of the redox machinery will permit optimization of redox processes via directed evolution and DNA shuffling. Thus, creation of hybrid systems by fusion of the modified heme domain of P450s with proteinaceous electron carriers helps obviate the tedious reconstitution procedure and induces novel activities. Also, P450-based amperometric biosensors may open new vistas in pharmaceutical and clinical implementation and environmental monitoring.
Collapse
Affiliation(s)
- Peter Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie der LMU, Goethestrasse 33, 80336, München, Germany,
| |
Collapse
|
10
|
Miyamoto M, Yamashita T, Yasuhara Y, Hayasaki A, Hosokawa Y, Tsujino H, Uno T. Membrane Anchor of Cytochrome P450 Reductase Suppresses the Uncoupling of Cytochrome P450. Chem Pharm Bull (Tokyo) 2015; 63:286-94. [DOI: 10.1248/cpb.c15-00034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Taku Yamashita
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University
| | - Yuki Yasuhara
- Graduate School of Pharmaceutical Sciences, Osaka University
| | | | - Yukari Hosokawa
- Graduate School of Pharmaceutical Sciences, Osaka University
| | | | - Tadayuki Uno
- Graduate School of Pharmaceutical Sciences, Osaka University
| |
Collapse
|
11
|
Sadeghi SJ, Gilardi G. Chimeric P450 enzymes: Activity of artificial redox fusions driven by different reductases for biotechnological applications. Biotechnol Appl Biochem 2013; 60:102-10. [DOI: 10.1002/bab.1086] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/20/2012] [Indexed: 11/09/2022]
|
12
|
Rational design of a tripartite fusion protein of heparinase I enables one-step affinity purification and real-time activity detection. J Biotechnol 2012; 163:30-7. [PMID: 23073152 DOI: 10.1016/j.jbiotec.2012.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/05/2012] [Accepted: 09/24/2012] [Indexed: 11/22/2022]
Abstract
Enzymatic degradation of heparin has great potential as an ecological and specific way to produce low molecular weight heparin. However, the commercial use of heparinase I (HepA), one of the most important heparin lyases, has been hampered by low productivity and poor thermostability. Fusion with green fluorescent protein (GFP) or maltose-binding protein (MBP) has shown potential in facilitating the industrial use of HepA. Thus, tripartite fusion of GFP, MBP and HepA would be a promising approach. Therefore, in the present study, the tripartite fusion strategy was systematically studied, mainly focusing on the fusion order and the linker sequence, to obtain a fusion protein offering one-step purification and real-time detection of HepA activity by fluorescence as well as high HepA activity and thermostability. Our results show that fusion order is important for MBP binding affinity and HepA activity, while the linker sequences at domain junctions have significant effects on protein expression level, HepA activity and thermostability as well as GFP fluorescence. The best tripartite fusion was identified as MBP-(EAAAK)(3)-GFP-(GGGGS)(3)-HepA, which shows potential to facilitate the production of HepA and its application in industrial preparation of low molecular weight heparin.
Collapse
|
13
|
Affiliation(s)
- Rudi Fasan
- Department of Chemistry,
Hutchison Hall, University of Rochester, Rochester, New York 14627,
United States
| |
Collapse
|
14
|
Nie Y, Liang J, Fang H, Tang YQ, Wu XL. Two novel alkane hydroxylase-rubredoxin fusion genes isolated from a Dietzia bacterium and the functions of fused rubredoxin domains in long-chain n-alkane degradation. Appl Environ Microbiol 2011; 77:7279-88. [PMID: 21873474 PMCID: PMC3194844 DOI: 10.1128/aem.00203-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 08/19/2011] [Indexed: 11/20/2022] Open
Abstract
Two alkane hydroxylase-rubredoxin fusion gene homologs (alkW1 and alkW2) were cloned from a Dietzia strain, designated DQ12-45-1b, which can grow on crude oil and n-alkanes ranging in length from 6 to 40 carbon atoms as sole carbon sources. Both AlkW1 and AlkW2 have an integral-membrane alkane monooxygenase (AlkB) conserved domain and a rubredoxin (Rd) conserved domain which are fused together. Phylogenetic analysis showed that these two AlkB-fused Rd domains formed a novel third cluster with all the Rds from the alkane hydroxylase-rubredoxin fusion gene clusters in Gram-positive bacteria and that this third cluster was distant from the known AlkG1- and AlkG2-type Rds. Expression of the alkW1 gene in DQ12-45-1b was induced when cells were grown on C(8) to C(32) n-alkanes as sole carbon sources, but expression of the alkW2 gene was not detected. Functional heterologous expression in an alkB deletion mutant of Pseudomonas fluorescens KOB2Δ1 suggested the alkW1 could restore the growth of KOB2Δ1 on C(14) and C(16) n-alkanes and induce faster growth on C(18) to C(32) n-alkanes than alkW1ΔRd, the Rd domain deletion mutant gene of alkW1, which also caused faster growth than KOB2Δ1 itself. In addition, the artificial fusion of AlkB from the Gram-negative P. fluorescens CHA0 and the Rds from both Gram-negative P. fluorescens CHA0 and Gram-positive Dietzia sp. DQ12-45-1b significantly increased the degradation of C(32) alkane compared to that seen with AlkB itself. In conclusion, the alkW1 gene cloned from Dietzia species encoded an alkane hydroxylase which increased growth on and degradation of n-alkanes up to C(32) in length, with its fused rubredoxin domain being necessary to maintain the functions. In addition, the fusion of alkane hydroxylase and rubredoxin genes from both Gram-positive and -negative bacteria can increase the degradation of long-chain n-alkanes (such as C(32)) in the Gram-negative bacterium.
Collapse
Affiliation(s)
- Yong Nie
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jieliang Liang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Hui Fang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yue-Qin Tang
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Xiao-Lei Wu
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
15
|
O'Reilly E, Köhler V, Flitsch SL, Turner NJ. Cytochromes P450 as useful biocatalysts: addressing the limitations. Chem Commun (Camb) 2011; 47:2490-501. [DOI: 10.1039/c0cc03165h] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Aigrain L, Pompon D, Moréra S, Truan G. Structure of the open conformation of a functional chimeric NADPH cytochrome P450 reductase. EMBO Rep 2009; 10:742-7. [PMID: 19483672 DOI: 10.1038/embor.2009.82] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/23/2009] [Accepted: 03/23/2009] [Indexed: 11/09/2022] Open
Abstract
Two catalytic domains, bearing FMN and FAD cofactors, joined by a connecting domain, compose the core of the NADPH cytochrome P450 reductase (CPR). The FMN domain of CPR mediates electron shuttling from the FAD domain to cytochromes P450. Together, both enzymes form the main mixed-function oxidase system that participates in the metabolism of endo- and xenobiotic compounds in mammals. Available CPR structures show a closed conformation, with the two cofactors in tight proximity, which is consistent with FAD-to-FMN, but not FMN-to-P450, electron transfer. Here, we report the 2.5 A resolution crystal structure of a functionally competent yeast-human chimeric CPR in an open conformation, compatible with FMN-to-P450 electron transfer. Comparison with closed structures shows a major conformational change separating the FMN and FAD cofactors from 86 A.
Collapse
Affiliation(s)
- Louise Aigrain
- Centre de Génétique Moléculaire, FRE3144, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
17
|
Hlavica P. Assembly of non-natural electron transfer conduits in the cytochrome P450 system: A critical assessment and update of artificial redox constructs amenable to exploitation in biotechnological areas. Biotechnol Adv 2009; 27:103-21. [DOI: 10.1016/j.biotechadv.2008.10.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/29/2008] [Accepted: 10/04/2008] [Indexed: 10/21/2022]
|