1
|
Kladova OA, Tyugashev TE, Yakimov DV, Mikushina ES, Novopashina DS, Kuznetsov NA, Kuznetsova AA. The Impact of SNP-Induced Amino Acid Substitutions L19P and G66R in the dRP-Lyase Domain of Human DNA Polymerase β on Enzyme Activities. Int J Mol Sci 2024; 25:4182. [PMID: 38673769 PMCID: PMC11050361 DOI: 10.3390/ijms25084182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Base excision repair (BER), which involves the sequential activity of DNA glycosylases, apurinic/apyrimidinic endonucleases, DNA polymerases, and DNA ligases, is one of the enzymatic systems that preserve the integrity of the genome. Normal BER is effective, but due to single-nucleotide polymorphisms (SNPs), the enzymes themselves-whose main function is to identify and eliminate damaged bases-can undergo amino acid changes. One of the enzymes in BER is DNA polymerase β (Polβ), whose function is to fill gaps in DNA. SNPs can significantly affect the catalytic activity of an enzyme by causing an amino acid substitution. In this work, pre-steady-state kinetic analyses and molecular dynamics simulations were used to examine the activity of naturally occurring variants of Polβ that have the substitutions L19P and G66R in the dRP-lyase domain. Despite the substantial distance between the dRP-lyase domain and the nucleotidyltransferase active site, it was found that the capacity to form a complex with DNA and with an incoming dNTP is significantly altered by these substitutions. Therefore, the lower activity of the tested polymorphic variants may be associated with a greater number of unrepaired DNA lesions.
Collapse
Affiliation(s)
- Olga A. Kladova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| | - Timofey E. Tyugashev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| | - Denis V. Yakimov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Elena S. Mikushina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| | - Daria S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Aleksandra A. Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia (N.A.K.)
| |
Collapse
|
2
|
Brovarets’ OO, Hovorun DM. Key microstructural mechanisms of the 2-aminopurine mutagenicity: Results of extensive quantum-chemical research. J Biomol Struct Dyn 2019; 37:2716-2732. [DOI: 10.1080/07391102.2018.1495577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Ol’ha O. Brovarets’
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 2-h Akademika Hlushkova Ave, Kyiv, Ukraine
| | - Dmytro M. Hovorun
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
- Department of Molecular Biotechnology and Bioinformatics, Institute of High Technologies, Taras Shevchenko National University of Kyiv, 2-h Akademika Hlushkova Ave, Kyiv, Ukraine
| |
Collapse
|
3
|
Brovarets' OO, Voiteshenko IS, Pérez-Sánchez H, Hovorun DM. A QM/QTAIM detailed look at the Watson-Crick↔wobble tautomeric transformations of the 2-aminopurine·pyrimidine mispairs. J Biomol Struct Dyn 2017; 36:1649-1665. [PMID: 28514900 DOI: 10.1080/07391102.2017.1331864] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This work is devoted to the careful QM/QTAIM analysis of the evolution of the basic physico-chemical parameters along the intrinsic reaction coordinate (IRC) of the biologically important 2AP·T(WC)↔2AP·T*(w) and 2AP·C*(WC)↔2AP·C(w) Watson-Crick(WC)↔wobble(w) tautomeric transformations obtained at each point of the IRC using original authors' methodology. Established profiles reflect the high similarity between the courses of these processes. Basing on the scrupulous analysis of the profiles of their geometric and electron-topological parameters, it was established that the dipole-active WC↔w tautomerizations of the Watson-Crick-like 2AP·T(WC)/2AP·C*(WC) mispairs, stabilized by the two classical N3H⋯N1, N2H⋯O2 and one weak C6H⋯O4/N4 H-bonds, into the wobble 2AP·T*(w)/2AP·C(w) base pairs, respectively, joined by the two classical N2H⋯N3 and O4/N4H⋯N1 H-bonds, proceed via the concerted stepwise mechanism through the sequential intrapair proton transfer and subsequent large-scale shifting of the bases relative each other, through the planar, highly stable, zwitterionic transition states stabilized by the participation of the four H-bonds - N1+H⋯O4-/N4-, N1+H⋯N3-, N2+H⋯N3-, and N2+H⋯O2-. Moreover, it was found out that the 2AP·T(WC)↔2AP·T*(w)/2AP·C*(WC)↔2AP·C(w) tautomerization reactions occur non-dissociatively and are accompanied by the consequent replacement of the 10 unique patterns of the specific intermolecular interactions along the IRC. Obtained data are of paramount importance in view of their possible application for the control and management of the proton transfer, e.g. by external electric or laser fields.
Collapse
Affiliation(s)
- Ol'ha O Brovarets'
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., Kyiv 03680 , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| | - Ivan S Voiteshenko
- b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| | - Horacio Pérez-Sánchez
- c Computer Science Department , Bioinformatics and High Performance Computing (BIO-HPC) Research Group, Universidad Católica San Antonio de Murcia (UCAM) , Guadalupe, Murcia 30107 , Spain
| | - Dmytro M Hovorun
- a Department of Molecular and Quantum Biophysics , Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine , 150 Akademika Zabolotnoho Str., Kyiv 03680 , Ukraine.,b Department of Molecular Biotechnology and Bioinformatics , Institute of High Technologies, Taras Shevchenko National University of Kyiv , 2-h Akademika Hlushkova Ave., Kyiv 03022 , Ukraine
| |
Collapse
|
4
|
Corrigan N, Rosli D, Jones JWJ, Xu J, Boyer C. Oxygen Tolerance in Living Radical Polymerization: Investigation of Mechanism and Implementation in Continuous Flow Polymerization. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01306] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Dzulfadhli Rosli
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Jesse Warren Jeffery Jones
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical
Engineering, and ‡Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Johnson NP, Ji H, Steinberg TH, von Hippel PH, Marcus AH. Sequence-Dependent Conformational Heterogeneity and Proton-Transfer Reactivity of the Fluorescent Guanine Analogue 6-Methyl Isoxanthopterin (6-MI) in DNA. J Phys Chem B 2015; 119:12798-807. [PMID: 26368400 DOI: 10.1021/acs.jpcb.5b06361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The local conformations of individual nucleic acid bases in DNA are important components in processes fundamental to gene regulation. Fluorescent nucleic acid base analogues, which can be substituted for natural bases in DNA, can serve as useful spectroscopic probes of average local base conformation and conformational heterogeneity. Here we report excitation-emission peak shift (EES) measurements of the fluorescent guanine (G) analogue 6-methyl isoxanthoptherin (6-MI), both as a ribonucleotide monophosphate (NMP) in solution and as a site-specific substituent for G in various DNA constructs. Changes in the peak positions of the fluorescence spectra as a function of excitation energy indicate that distinct subpopulations of conformational states exist in these samples on time scales longer than the fluorescence lifetime. Our pH-dependent measurements of the 6-MI NMP in solution show that these states can be identified as protonated and deprotonated forms of the 6-MI fluorescent probe. We implement a simple two-state model, which includes four vibrationally coupled electronic levels to estimate the free energy change, the free energy of activation, and the equilibrium constant for the proton transfer reaction. These parameters vary in single-stranded and duplex DNA constructs, and also depend on the sequence context of flanking bases. Our results suggest that proton transfer in 6-MI-substituted DNA constructs is coupled to conformational heterogeneity of the probe base, and can be interpreted to suggest that Watson-Crick base pairing between 6-MI and its complementary cytosine in duplex DNA involves a "low-barrier-hydrogen-bond". These findings may be important in using the 6-MI probe to understand local base conformational fluctuations, which likely play a central role in protein-DNA and ligand-DNA interactions.
Collapse
Affiliation(s)
- Neil P Johnson
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States.,Oregon Center for Optics and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| | - Huiying Ji
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States.,Oregon Center for Optics and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| | - Thomas H Steinberg
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| | - Peter H von Hippel
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| | - Andrew H Marcus
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States.,Oregon Center for Optics and Department of Chemistry and Biochemistry, University of Oregon , Eugene, Oregon 97403, United States
| |
Collapse
|
6
|
2-aminopurine as a fluorescent probe of DNA conformation and the DNA–enzyme interface. Q Rev Biophys 2015; 48:244-79. [DOI: 10.1017/s0033583514000158] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractNearly 50 years since its potential as a fluorescent base analogue was first recognized, 2-aminopurine (2AP) continues to be the most widely used fluorescent probe of DNA structure and the perturbation of that structure by interaction with enzymes and other molecules. In this review, we begin by considering the origin of the dramatic and intriguing difference in photophysical properties between 2AP and its structural isomer, adenine; although 2AP differs from the natural base only in the position of the exocyclic amine group, its fluorescence intensity is one thousand times greater. We then discuss the mechanism of interbase quenching of 2AP fluorescence in DNA, which is the basis of its use as a conformational probe but remains imperfectly understood. There are hundreds of examples in the literature of the use of changes in the fluorescence intensity of 2AP as the basis of assays of conformational change; however, in this review we will consider in detail only a few intensity-based studies. Our primary aim is to highlight the use of time-resolved fluorescence measurements, and the interpretation of fluorescence decay parameters, to explore the structure and dynamics of DNA. We discuss the salient features of the fluorescence decay of 2AP when incorporated in DNA and review the use of decay measurements in studying duplexes, single strands and other structures. We survey the use of 2AP as a probe of DNA-enzyme interaction and enzyme-induced distortion, focusing particularly on its use to study base flipping and the enhanced mechanistic insights that can be gained by a detailed analysis of the decay parameters, rather than merely monitoring changes in fluorescence intensity. Finally we reflect on the merits and shortcomings of 2AP and the prospects for its wider adoption as a fluorescence-decay-based probe.
Collapse
|
7
|
Zhao G, Tang S, Li J, Hu T, Guan Y. Effects of cations on small fragment of DNA polymerase I using a novel FRET assay. Acta Biochim Biophys Sin (Shanghai) 2014; 46:659-67. [PMID: 24966186 DOI: 10.1093/abbs/gmu050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DNA polymerase I (PolI) digested by protease produces a small fragment (SF) containing 5'-3' exonuclease activity. The 5'-3' exonuclease activity of polI cleaves the downstream RNA primer strands during DNA replication in vivo. Previous in vitro studies suggested its capability of cleaving duplex from 5' terminal and a flap-structure-specific endonuclease activity. From the crystal structures of other nucleases and biochemical data, a two-metal-ion mechanism has been proposed but has not been determined. In this study, we cloned, expressed, and purified the SF protein, and established a novel fluorescence resonance energy transfer (FRET) assay to analyze the catalytic activity of the SF protein. The effects of several metal ions on its catalytic capability were analyzed using this FRET assay. Results showed that Mg2+, Mn2+, and Zn2+ were able to activate the cleavage of SF, while Ca2+, Ni2 +, and Co2+ were not suitable for SF catalysis. The effects of K+, Na+, and dNTP were also determined.
Collapse
|
8
|
G-Quadruplex conformational change driven by pH variation with potential application as a nanoswitch. Biochim Biophys Acta Gen Subj 2013; 1830:4935-42. [DOI: 10.1016/j.bbagen.2013.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/16/2013] [Accepted: 06/19/2013] [Indexed: 12/18/2022]
|
9
|
El-Yazbi AF, Loppnow GR. 2-Aminopurine hairpin probes for the detection of ultraviolet-induced DNA damage. Anal Chim Acta 2012; 726:44-9. [DOI: 10.1016/j.aca.2012.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 11/25/2022]
|
10
|
Sigel A, Operschall BP, Sigel H. Steric guiding of metal ion binding to a purine residue by a non-coordinating amino group: Examplified by 9-[(2-phosphonomethoxy)ethyl]-2-aminopurine (PME2AP), an isomer of the antiviral nucleotide analogue 9-[(2-phosphonomethoxy)ethyl]adenine (PMEA), and by related compounds. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2011.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Reha-Krantz LJ, Hariharan C, Subuddhi U, Xia S, Zhao C, Beckman J, Christian T, Konigsberg W. Structure of the 2-aminopurine-cytosine base pair formed in the polymerase active site of the RB69 Y567A-DNA polymerase. Biochemistry 2011; 50:10136-49. [PMID: 22023103 PMCID: PMC3228362 DOI: 10.1021/bi2014618] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The adenine base analogue 2-aminopurine (2AP) is a potent base substitution mutagen in prokaryotes because of its enhanceed ability to form a mutagenic base pair with an incoming dCTP. Despite more than 50 years of research, the structure of the 2AP-C base pair remains unclear. We report the structure of the 2AP-dCTP base pair formed within the polymerase active site of the RB69 Y567A-DNA polymerase. A modified wobble 2AP-C base pair was detected with one H-bond between N1 of 2AP and a proton from the C4 amino group of cytosine and an apparent bifurcated H-bond between a proton on the 2-amino group of 2-aminopurine and the ring N3 and O2 atoms of cytosine. Interestingly, a primer-terminal region rich in AT base pairs, compared to GC base pairs, facilitated dCTP binding opposite template 2AP. We propose that the increased flexibility of the nucleotide binding pocket formed in the Y567A-DNA polymerase and increased "breathing" at the primer-terminal junction of A+T-rich DNA facilitate dCTP binding opposite template 2AP. Thus, interactions between DNA polymerase residues with a dynamic primer-terminal junction play a role in determining base selectivity within the polymerase active site of RB69 DNA polymerase.
Collapse
Affiliation(s)
- Linda J. Reha-Krantz
- To whom correspondence should be addressed. L.J.R-K.: Telephone: (780) 492-5383. Fax: (780) 494-9234. . W.H.K.
| | | | | | | | | | | | | | - William Konigsberg
- To whom correspondence should be addressed. L.J.R-K.: Telephone: (780) 492-5383. Fax: (780) 494-9234. . W.H.K.
| |
Collapse
|
12
|
Dallmann A, Dehmel L, Peters T, Mügge C, Griesinger C, Tuma J, Ernsting NP. 2-Aminopurine incorporation perturbs the dynamics and structure of DNA. Angew Chem Int Ed Engl 2010; 49:5989-92. [PMID: 20632340 DOI: 10.1002/anie.201001312] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- André Dallmann
- Humboldt Universität zu Berlin, Institut für Chemie, 12489 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Dallmann A, Dehmel L, Peters T, Mügge C, Griesinger C, Tuma J, Ernsting N. Der Einbau von 2-Aminopurin beeinflusst die Dynamik und Struktur von DNA. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201001312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Gührs KH, Groth M, Grosse F. A label-free assay of exonuclease activity using a pyrosequencing technique. Anal Biochem 2010; 405:11-8. [PMID: 20522331 DOI: 10.1016/j.ab.2010.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/17/2010] [Accepted: 05/19/2010] [Indexed: 12/01/2022]
Abstract
Enzymes with 3'-5' exonuclease activities are important in promoting the accuracy of DNA replication and DNA repair by proofreading. The alteration of the function of these enzymes by endogenous or exogenous effectors could, therefore, have a considerable impact on DNA replication and ultimately on genome integrity. We have developed a label-free high-throughput screening method for quantifying the effects of different reagents on exonuclease activity. The assay is based on a hairpin-forming biotinylated oligonucleotide substrate that contains one or more exonuclease-resistant phosphorothioate nucleotides. The activity and specificity of the selected 3'-5' exonuclease is determined indirectly using a sensitive pyrosequencing reaction after cleanup of the samples. In this pyrosequencing step, the amount of nucleotides filled into each position of the exonucleolytically degraded 3' end of the substrate can be recorded quantitatively and equals the amount of the nucleotides removed by the exonuclease. This system allows the estimation of both processivity and efficiency of the exonuclease activity. We have employed compounds reported in the literature to inhibit the exonuclease activities of either exonuclease III or the large fragment of polymerase I (Klenow fragment) to evaluate the assay.
Collapse
Affiliation(s)
- Karl-Heinz Gührs
- Biochemistry Workgroup, Leibniz Institute for Age Research-Fritz Lipmann Institute, D-07745 Jena, Germany.
| | | | | |
Collapse
|
15
|
Reha-Krantz LJ. DNA polymerase proofreading: Multiple roles maintain genome stability. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1049-63. [DOI: 10.1016/j.bbapap.2009.06.012] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 11/16/2022]
|
16
|
Means JA, Simson CM, Zhou S, Rachford AA, Rack JJ, Hines JV. Fluorescence probing of T box antiterminator RNA: insights into riboswitch discernment of the tRNA discriminator base. Biochem Biophys Res Commun 2009; 389:616-21. [PMID: 19755116 DOI: 10.1016/j.bbrc.2009.09.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 09/10/2009] [Indexed: 11/28/2022]
Abstract
The T box transcription antitermination riboswitch is one of the main regulatory mechanisms utilized by Gram-positive bacteria to regulate genes that are involved in amino acid metabolism. The details of the antitermination event, including the role that Mg(2+) plays, in this riboswitch have not been completely elucidated. In these studies, details of the antitermination event were investigated utilizing 2-aminopurine to monitor structural changes of a model antiterminator RNA when it was bound to model tRNA. Based on the results of these fluorescence studies, the model tRNA binds the model antiterminator RNA via an induced-fit. This binding is enhanced by the presence of Mg(2+), facilitating the complete base pairing of the model tRNA acceptor end with the complementary bases in the model antiterminator bulge.
Collapse
Affiliation(s)
- John A Means
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | | | | | | | | | | |
Collapse
|
17
|
Datta K, Johnson NP, LiCata VJ, von Hippel PH. Local conformations and competitive binding affinities of single- and double-stranded primer-template DNA at the polymerization and editing active sites of DNA polymerases. J Biol Chem 2009; 284:17180-17193. [PMID: 19411253 DOI: 10.1074/jbc.m109.007641] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to their capacity for template-directed 5' --> 3' DNA synthesis at the polymerase (pol) site, DNA polymerases have a separate 3' --> 5' exonuclease (exo) editing activity that is involved in assuring the fidelity of DNA replication. Upon misincorporation of an incorrect nucleotide residue, the 3' terminus of the primer strand at the primer-template (P/T) junction is preferentially transferred to the exo site, where the faulty residue is excised, allowing the shortened primer to rebind to the template strand at the pol site and incorporate the correct dNTP. Here we describe the conformational changes that occur in the primer strand as it shuttles between the pol and exo sites of replication-competent Klenow and Klentaq DNA polymerase complexes in solution and use these conformational changes to measure the equilibrium distribution of the primer between these sites for P/T DNA constructs carrying both matched and mismatched primer termini. To this end, we have measured the fluorescence and circular dichroism spectra at wavelengths of >300 nm for conformational probes comprising pairs of 2-aminopurine bases site-specifically replacing adenine bases at various positions in the primer strand of P/T DNA constructs bound to DNA polymerases. Control experiments that compare primer conformations with available x-ray structures confirm the validity of this approach. These distributions and the conformational changes in the P/T DNA that occur during template-directed DNA synthesis in solution illuminate some of the mechanisms used by DNA polymerases to assure the fidelity of DNA synthesis.
Collapse
Affiliation(s)
- Kausiki Datta
- From the Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1229
| | - Neil P Johnson
- Institut de Pharmacologie et de Biologie Structurale, UMR 5089, CNRS, 205 Route de Narbonne, 31077 Toulouse, France
| | - Vince J LiCata
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Peter H von Hippel
- From the Institute of Molecular Biology and Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1229.
| |
Collapse
|
18
|
Reha-Krantz LJ. The use of 2-aminopurine fluorescence to study DNA polymerase function. Methods Mol Biol 2009; 521:381-96. [PMID: 19563118 DOI: 10.1007/978-1-60327-815-7_21] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fluorescence of the base analog 2-aminopurine (2AP) is used in highly sensitive assays to determine kinetic parameters for DNA polymerase catalyzed reactions, including exonucleolytic proofreading and nucleotide binding and incorporation. Since 2AP fluorescence can also be used to probe DNA polymerase-induced conformational changes in 2AP-labeled DNA substrates, reaction steps that occur before product formation can be detected. Instruction is provided here in the use of 2AP fluorescence in steady-state and presteady-state assays to study DNA polymerase function and DNA replication.
Collapse
Affiliation(s)
- Linda J Reha-Krantz
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
19
|
Tang KH, Tsai MD. Structure and function of 2:1 DNA polymerase.DNA complexes. J Cell Physiol 2008; 216:315-20. [PMID: 18393274 DOI: 10.1002/jcp.21458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
DNA polymerases are required for DNA replication and DNA repair in all of the living organisms. Different DNA polymerases are responsible different stages of DNA metabolism, and many of them are multifunctional enzymes. It was generally assumed that the different reactions are catalyzed by the same enzyme molecule. In addition to 1:1 DNA polymerase.DNA complex reported by crystallization studies, 2:1 and higher order DNA polymerase.DNA complexes have been identified in solution studies by various biochemical and biophysical approaches. Further, abundant evidences for the DNA polymerase-DNA interactions in several DNA polymerases suggested that the 2:1 complex represents the more active form. This review describes the current status of this emerging subject and explores their potential in vitro and in vivo functional significance, particularly for the 2:1 complexes of mammalian DNA polymerase beta (Pol beta), the Klenow fragment of E. coli DNA polymerase I (KF), and T4 DNA polymerase.
Collapse
Affiliation(s)
- Kuo-Hsiang Tang
- Department of Chemistry, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
20
|
Ballin JD, Prevas JP, Bharill S, Gryczynski I, Gryczynski Z, Wilson GM. Local RNA conformational dynamics revealed by 2-aminopurine solvent accessibility. Biochemistry 2008; 47:7043-52. [PMID: 18543944 DOI: 10.1021/bi800487c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acrylamide quenching is widely used to monitor the solvent exposure of fluorescent probes in vitro. Here, we tested the utility of this technique to discriminate local RNA secondary structures using the fluorescent adenine analogue 2-aminopurine (2-AP). Under native conditions, the solvent accessibilities of most 2-AP-labeled RNA substrates were poorly resolved by classical single-population models; rather, a two-state quencher accessibility algorithm was required to model acrylamide-dependent changes in 2-AP fluorescence in structured RNA contexts. Comparing 2-AP quenching parameters between structured and unstructured RNA substrates permitted the effects of local RNA structure on 2-AP solvent exposure to be distinguished from nearest neighbor effects or environmental influences on intrinsic 2-AP photophysics. Using this strategy, the fractional accessibility of 2-AP for acrylamide ( f a) was found to be highly sensitive to local RNA structure. Base-paired 2-AP exhibited relatively poor accessibility, consistent with extensive shielding by adjacent bases. 2-AP in a single-base bulge was uniformly accessible to solvent, whereas the fractional accessibility of 2-AP in a hexanucleotide loop was indistinguishable from that of an unstructured RNA. However, these studies also provided evidence that the f a parameter reflects local conformational dynamics in base-paired RNA. Enhanced base pair dynamics at elevated temperatures were accompanied by increased f a values, while restricting local RNA breathing by adding a C-G base pair clamp or positioning 2-AP within extended RNA duplexes significantly decreased this parameter. Together, these studies show that 2-AP quenching studies can reveal local RNA structural and dynamic features beyond those that can be measured by conventional spectroscopic approaches.
Collapse
Affiliation(s)
- Jeff D Ballin
- Department of Biochemistry and Molecular Biology and Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
21
|
Subuddhi U, Hogg M, Reha-Krantz LJ. Use of 2-aminopurine fluorescence to study the role of the beta hairpin in the proofreading pathway catalyzed by the phage T4 and RB69 DNA polymerases. Biochemistry 2008; 47:6130-7. [PMID: 18481871 DOI: 10.1021/bi800211f] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For DNA polymerases to proofread a misincorporated nucleotide, the terminal 3-4 nucleotides of the primer strand must be separated from the template strand before being bound in the exonuclease active center. Genetic and biochemical studies of the bacteriophage T4 DNA polymerase revealed that a prominent beta-hairpin structure in the exonuclease domain is needed to efficiently form the strand-separated exonuclease complexes. We present here further mutational analysis of the loop region of the T4 DNA polymerase beta-hairpin structure, which provides additional evidence that residues in the loop, namely, Y254 and G255, are important for DNA replication fidelity. The mechanism of strand separation was probed in in vitro reactions using the fluorescence of the base analogue 2-aminopurine (2AP) and mutant RB69 DNA polymerases that have modifications to the beta hairpin, to the exonuclease active site, or to both. We propose from these studies that the beta hairpin in the exonuclease domain of the T4 and RB69 DNA polymerases functions to facilitate strand separation, but residues in the exonuclease active center are required to capture the 3' end of the primer strand following strand separation.
Collapse
Affiliation(s)
- Usharani Subuddhi
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | |
Collapse
|
22
|
Sandin P, Börjesson K, Li H, Mårtensson J, Brown T, Wilhelmsson LM, Albinsson B. Characterization and use of an unprecedentedly bright and structurally non-perturbing fluorescent DNA base analogue. Nucleic Acids Res 2007; 36:157-67. [PMID: 18003656 PMCID: PMC2248743 DOI: 10.1093/nar/gkm1006] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
This article presents the first evidence that the DNA base analogue 1,3-diaza-2-oxophenoxazine, tC(O), is highly fluorescent, both as free nucleoside and incorporated in an arbitrary DNA structure. tC(O) is thoroughly characterized with respect to its photophysical properties and structural performance in single- and double-stranded oligonucleotides. The lowest energy absorption band at 360 nm (epsilon = 9000 M(-1) cm(-1)) is dominated by a single in-plane polarized electronic transition and the fluorescence, centred at 465 nm, has a quantum yield of 0.3. When incorporated into double-stranded DNA, tC(O) shows only minor variations in fluorescence intensity and lifetime with neighbouring bases, and the average quantum yield is 0.22. These features make tC(O), on average, the brightest DNA-incorporated base analogue so far reported. Furthermore, it base pairs exclusively with guanine and causes minimal perturbations to the native structure of DNA. These properties make tC(O) a promising base analogue that is perfectly suited for e.g. photophysical studies of DNA interacting with macromolecules (proteins) or for determining size and shape of DNA tertiary structures using techniques such as fluorescence anisotropy and fluorescence resonance energy transfer (FRET).
Collapse
Affiliation(s)
- Peter Sandin
- Department of Chemical and Biological Engineering/Physical Chemistry, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
23
|
Fidalgo da Silva E, Reha-Krantz LJ. DNA polymerase proofreading: active site switching catalyzed by the bacteriophage T4 DNA polymerase. Nucleic Acids Res 2007; 35:5452-63. [PMID: 17702757 PMCID: PMC2018640 DOI: 10.1093/nar/gkm591] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA polymerases achieve high-fidelity DNA replication in part by checking the accuracy of each nucleotide that is incorporated and, if a mistake is made, the incorrect nucleotide is removed before further primer extension takes place. In order to proofread, the primer-end must be separated from the template strand and transferred from the polymerase to the exonuclease active center where the excision reaction takes place; then the trimmed primer-end is returned to the polymerase active center. Thus, proofreading requires polymerase-to-exonuclease and exonuclease-to-polymerase active site switching. We have used a fluorescence assay that uses differences in the fluorescence intensity of 2-aminopurine (2AP) to measure the rates of active site switching for the bacteriophage T4 DNA polymerase. There are three findings: (i) the rate of return of the trimmed primer-end from the exonuclease to the polymerase active center is rapid, >500 s−1; (ii) T4 DNA polymerase can remove two incorrect nucleotides under single turnover conditions, which includes presumed exonuclease-to-polymerase and polymerase-to-exonuclease active site switching steps and (iii) proofreading reactions that initiate in the polymerase active center are not intrinsically processive.
Collapse
|