1
|
Zhang QY, Li X, Luo J, Li X, Song J, Wei D. Cofactor-Free Dioxygenases-Catalyzed Reaction Pathway via Proton-Coupled Electron Transfer. J Phys Chem B 2023; 127:95-103. [PMID: 36525303 DOI: 10.1021/acs.jpcb.2c03161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding the general mechanism of the metal-free and cofactor-free oxidases and oxygenases catalyzed activation of triplet O2 is one of the most challenging questions in the field of enzymatic catalysis. Herein, we have performed Quantum Mechanics/Molecular Mechanics (QM/MM) multiscale simulations to reveal the detailed mechanism of the HOD catalyzed (i.e., 1-H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase from Arthrobacter nitroguajacolicus Rü61a) decomposition of N-heteroaromatic compounds. The complete catalytic mechanism includes four steps: (1) proton transfer from 1-H-3-hydroxy-4-oxoquinaldine (QND) substrate to His251 residue coupled with an electron transfer from QND to triplet O2 (i.e., PCET), (2) formation of C-O bond via an open-shell singlet diradical recombination pathway, (3) ring-closure to form a bicyclic ring, and (4) dissociation of CO. The dissociation of CO is determined as the rate-limiting step, and its calculated energy barrier of 14.9 kcal/mol is consistent with the 15.5 kcal/mol barrier derived from experimental kinetic data. The mechanistic profile is not only valuable for understanding the fundamental pathway of cofactor-free oxidases and oxygenases-catalyzed reactions involving the triplet O2 activation but also discloses a new pathway that undergoes the processes of PCET and open-shell singlet transition state.
Collapse
Affiliation(s)
- Qiao-Yu Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan450001, China
| | - Xing Li
- Department of Traditional Chinese Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong510280, China
| | - Jing Luo
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan450001, China
| | - Xue Li
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials and Engineering, Henan University, Kaifeng475001, China
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan450001, China
| | - Donghui Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan450001, China
| |
Collapse
|
2
|
Hareng L, Schuster P, Haake V, Walk T, Herold M, Laue H, Natsch A. Towards the mechanism of spermatotoxicity of p-tert-butyl-alpha-methylhydrocinnamic aldehyde: inhibition of late stage ex-vivo spermatogenesis in rat seminiferous tubule cultures by para-tert-butyl- benzoic acid. Arch Toxicol 2023; 97:279-294. [PMID: 36173422 DOI: 10.1007/s00204-022-03379-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/07/2022] [Indexed: 01/19/2023]
Abstract
Molecules metabolized to para-tert-butyl-benzoic acid (p-TBBA) affect male reproduction in rats through effects on spermatogenesis. This toxicity is specific to p-TBBA and not observed in meta-substituted analogues. The underlying mode of action was evaluated by comparing effects of p-TBBA and the position isomer m-TBBA (2-50 µM) in an ex vivo 3D primary seminiferous tubule cell culture system from juvenile Sprague Dawley rats (Bio-AlteR®). Treated cultures were evaluated for CoA-conjugate formation, cytotoxicity, blood-testis barrier functionality and different germ cell populations to assess effects on spermatogenesis. In addition, an evaluation of the metabolome of treated cultures was performed by using MxP® Broad Profiling via a LC-MS/MS and GC-MS platform. Para-TBBA decreased germ cell populations of late stages of spermatogenesis and led to the formation of CoA-conjugates in the ex vivo tissue. In addition, p-TBBA had a pronounced effect on the metabolome by affecting lipid balance and other CoA-dependent pathways contributing to energy production and the redox system. Meta-TBBA did not affect germ cell populations and no m-TBBA related CoA-conjugates were detectable. The metabolic profile of m-TBBA treated cells was comparable to vehicle control treated cultures, indicating that formation of CoA-conjugates, inhibition of spermatogenesis, and effects on the metabolome are mechanistically linked events. Thus, for this specific chemical group an adverse outcome pathway can be postulated, including the formation of benzoic acid metabolites, accumulation of CoA-conjugates to a certain threshold and CoA depletion, which affects the metabolic and lipid profile and leads to tissue specific effects with impaired functionalities such as spermatogenesis.
Collapse
Affiliation(s)
- Lars Hareng
- Product Safety, Regulations, Toxicology and Ecology, BASF SE, Z470, 67056, Ludwigshafen, Germany.
| | | | | | - Tilman Walk
- BASF Metabolome Solutions GmbH, Berlin, Germany
| | | | - Heike Laue
- Fragrances S&T, Ingredients Research, Givaudan Schweiz AG, 8310, Kemptthal, Switzerland
| | - Andreas Natsch
- Fragrances S&T, Ingredients Research, Givaudan Schweiz AG, 8310, Kemptthal, Switzerland
| |
Collapse
|
3
|
Li X, Li X, Zhang QY, Lv P, Jia Y, Wei D. Cofactor-free ActVA-Orf6 monooxygenase catalysis via proton-coupled electron transfer: A QM/MM study. Org Biomol Chem 2022; 20:5525-5534. [DOI: 10.1039/d2ob00848c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uncovering the comprehensive catalytic mechanism for the activation of triplet O2 through metal-free and cofactor-free oxidases and oxygenases remains one of the most challenging questions in the area of enzymatic...
Collapse
|
4
|
Ortega P, Zanchet A, Sanz-Sanz C, Gómez-Carrasco S, González-Sánchez L, Jambrina PG. DpgC-Catalyzed Peroxidation of 3,5-Dihydroxyphenylacetyl-CoA (DPA-CoA): Insights into the Spin-Forbidden Transition and Charge Transfer Mechanisms*. Chemistry 2020; 27:1700-1712. [PMID: 32975323 DOI: 10.1002/chem.202002993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Indexed: 11/06/2022]
Abstract
Despite being a very strong oxidizing agent, most organic molecules are not oxidized in the presence of O2 at room temperature because O2 is a diradical whereas most organic molecules are closed-shell. Oxidation then requires a change in the spin state of the system, which is forbidden according to non-relativistic quantum theory. To overcome this limitation, oxygenases usually rely on metal or redox cofactors to catalyze the incorporation of, at least, one oxygen atom into an organic substrate. However, some oxygenases do not require any cofactor, and the detailed mechanism followed by these enzymes remains elusive. To fill this gap, here the mechanism for the enzymatic cofactor-independent oxidation of 3,5-dihydroxyphenylacetyl-CoA (DPA-CoA) is studied by combining multireference calculations on a model system with QM/MM calculations. Our results reveal that intersystem crossing takes place without requiring the previous protonation of molecular oxygen. The characterization of the electronic states reveals that electron transfer is concomitant with the triplet-singlet transition. The enzyme plays a passive role in promoting the intersystem crossing, although spontaneous reorganization of the water wire connecting the active site with the bulk presets the substrate for subsequent chemical transformations. The results show that the stabilization of the singlet radical-pair between dioxygen and enolate is enough to promote spin-forbidden reaction without the need for neither metal cofactors nor basic residues in the active site.
Collapse
Affiliation(s)
- Pablo Ortega
- Departamento de Química Física, University of Salamanca, Salamanca, 37008, Spain
| | - Alexandre Zanchet
- Departamento de Química Física, University of Salamanca, Salamanca, 37008, Spain.,Instituto de Física Fundamental (CSIC), Madrid, 28006, Spain
| | - Cristina Sanz-Sanz
- Departamento de Química Física Aplicada, University Autónoma de Madrid, Madrid, 28049, Spain
| | | | | | - Pablo G Jambrina
- Departamento de Química Física, University of Salamanca, Salamanca, 37008, Spain
| |
Collapse
|
5
|
Laue H, Kern S, Badertscher RP, Ellis G, Natsch A. p-Alkyl-Benzoyl-CoA Conjugates as Relevant Metabolites of Aromatic Aldehydes With Rat Testicular Toxicity-Studies Leading to the Design of a Safer New Fragrance Chemical. Toxicol Sci 2018; 160:244-255. [PMID: 28973542 DOI: 10.1093/toxsci/kfx178] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Several aromatic aldehydes such as 3-(4-tert-butylphenyl)-2-methylpropanal were shown to adversely affect the reproductive system in male rats following oral gavage dose of ≥ 25 mg/kg bw/d. It was hypothesized that these aldehydes are metabolized to benzoic acids such as p-tert-butylbenzoic acid as key toxic principle and that Coenzyme A (CoA) conjugates may be formed from such acids. Here we performed a detailed structure activity relationship study on the formation of benzoic acids from p-alkyl-phenylpropanals and related chemicals in rat hepatocytes in suspension. Formation of CoA conjugates from either p-alkyl-phenylpropanals directly or from their benzoic acid metabolites was further assessed in plated rat hepatocytes using high resolution LC-MS. All of the test chemicals causing reproductive adverse effects in male rats formed p-alkyl-benzoic acids in rat hepatocytes in suspension. Compounds metabolized to p-alkyl-benzoic acids led to accumulation of p-alkyl-benzoyl-CoA conjugates at high and steady levels in plated rat hepatocytes, whereas CoA conjugates of most other xenobiotic acids were only transiently detected in this in vitro system. The correlation between this metabolic fate and the toxic outcome may indicate that accumulation of the alkyl-benzoyl-CoA conjugates in testicular cells could impair male reproduction by adversely affecting CoA-dependent processes required for spermatogenesis. This hypothesis prompted a search for new p-alkyl-phenylpropanal derivatives which do not form benzoic acid metabolites and the corresponding CoA conjugates. It was found that such metabolism did not occur with a derivative containing an o-methyl substituent, ie, 3-(4-isobutyl-2-methylphenyl)propanal. This congener preserved the fragrance quality but lacked the male reproductive toxicity in a 28-day rat study, as predicted from its in vitro metabolism.
Collapse
Affiliation(s)
- Heike Laue
- Fragrances S&T, Ingredients Research, Givaudan Schweiz AG, CH-8600 Duebendorf, Switzerland
| | - Susanne Kern
- Fragrances S&T, Ingredients Research, Givaudan Schweiz AG, CH-8600 Duebendorf, Switzerland
| | - Remo P Badertscher
- Fragrances S&T, Ingredients Research, Givaudan Schweiz AG, CH-8600 Duebendorf, Switzerland
| | - Graham Ellis
- Regulatory Affairs and Product Safety, Givaudan International SA, CH-1214 Vernier, Switzerland
| | - Andreas Natsch
- Fragrances S&T, Ingredients Research, Givaudan Schweiz AG, CH-8600 Duebendorf, Switzerland
| |
Collapse
|
6
|
Guengerich FP, Yoshimoto FK. Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions. Chem Rev 2018; 118:6573-6655. [PMID: 29932643 DOI: 10.1021/acs.chemrev.8b00031] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many oxidation-reduction (redox) enzymes, particularly oxygenases, have roles in reactions that make and break C-C bonds. The list includes cytochrome P450 and other heme-based monooxygenases, heme-based dioxygenases, nonheme iron mono- and dioxygenases, flavoproteins, radical S-adenosylmethionine enzymes, copper enzymes, and peroxidases. Reactions involve steroids, intermediary metabolism, secondary natural products, drugs, and industrial and agricultural chemicals. Many C-C bonds are formed via either (i) coupling of diradicals or (ii) generation of unstable products that rearrange. C-C cleavage reactions involve several themes: (i) rearrangement of unstable oxidized products produced by the enzymes, (ii) oxidation and collapse of radicals or cations via rearrangement, (iii) oxygenation to yield products that are readily hydrolyzed by other enzymes, and (iv) activation of O2 in systems in which the binding of a substrate facilitates O2 activation. Many of the enzymes involve metals, but of these, iron is clearly predominant.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| | - Francis K Yoshimoto
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| |
Collapse
|
7
|
Lohans CT, Wang DY, Wang J, Hamed RB, Schofield CJ. Crotonases: Nature’s Exceedingly Convertible Catalysts. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Christopher T. Lohans
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - David Y. Wang
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Jimmy Wang
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Refaat B. Hamed
- Department
of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
8
|
Li K, Fielding EN, Condurso HL, Bruner SD. Probing the structural basis of oxygen binding in a cofactor-independent dioxygenase. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2017; 73:573-580. [DOI: 10.1107/s2059798317007045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/10/2017] [Indexed: 11/11/2022]
Abstract
The enzyme DpgC is included in the small family of cofactor-independent dioxygenases. The chemistry of DpgC is uncommon as the protein binds and utilizes dioxygen without the aid of a metal or organic cofactor. Previous structural and biochemical studies identified the substrate-binding mode and the components of the active site that are important in the catalytic mechanism. In addition, the results delineated a putative binding pocket and migration pathway for the co-substrate dioxygen. Here, structural biology is utilized, along with site-directed mutagenesis, to probe the assigned dioxygen-binding pocket. The key residues implicated in dioxygen trafficking were studied to probe the process of binding, activation and chemistry. The results support the proposed chemistry and provide insight into the general mechanism of dioxygen binding and activation.
Collapse
|
9
|
New insight into cofactor-free oxygenation from combined experimental and computational approaches. Curr Opin Struct Biol 2016; 41:109-118. [DOI: 10.1016/j.sbi.2016.06.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 06/22/2016] [Indexed: 01/07/2023]
|
10
|
Sun Y, Song H, Li J, Jiang M, Li Y, Zhou J, Guo Z. Active site binding and catalytic role of bicarbonate in 1,4-dihydroxy-2-naphthoyl coenzyme A synthases from vitamin K biosynthetic pathways. Biochemistry 2012; 51:4580-9. [PMID: 22606952 DOI: 10.1021/bi300486j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase, or MenB, catalyzes a carbon-carbon bond formation reaction in the biosynthesis of both vitamin K1 and K2. Bicarbonate is crucial to the activity of a large subset of its orthologues but lacks a clearly defined structural and mechanistic role. Here we determine the crystal structure of the holoenzymes from Escherichia coli at 2.30 Å and Synechocystis sp. PCC6803 at 2.04 Å, in which the bicarbonate cofactor is bound to the enzyme active site at a position equivalent to that of the side chain carboxylate of an aspartate residue conserved among bicarbonate-insensitive DHNA-CoA synthases. Binding of the planar anion involves both nonspecific electrostatic attraction and specific hydrogen bonding and hydrophobic interactions. In the absence of bicarbonate, the anion binding site is occupied by a chloride ion or nitrate, an inhibitor directly competing with bicarbonate. These results provide a solid structural basis for the bicarbonate dependence of the enzymatic activity of type I DHNA-CoA synthases. The unique location of the bicarbonate ion in relation to the expected position of the substrate α-proton in the enzyme's active site suggests a critical catalytic role for the anionic cofactor as a catalytic base in enolate formation.
Collapse
Affiliation(s)
- Yueru Sun
- Department of Chemistry and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Kharel MK, Rohr J. Delineation of gilvocarcin, jadomycin, and landomycin pathways through combinatorial biosynthetic enzymology. Curr Opin Chem Biol 2012; 16:150-61. [PMID: 22465094 DOI: 10.1016/j.cbpa.2012.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 11/30/2022]
Abstract
The exact sequence of events in biosyntheses of natural products is essential not only to understand and learn from nature's strategies and tricks to assemble complex natural products, but also for yield optimization of desired natural products, and for pathway engineering and muta-synthetic preparation of analogues of bioactive natural products. Biosyntheses of natural products were classically studied applying in vivo experiments, usually by combining incorporation experiments with stable-isotope labeled precursors with cross-feeding experiments of putative intermediates. Later genetic studies were dominant, which consist of gene cluster determination and analysis of gene inactivation experiments. From such studies various biosynthetic pathways were proposed, to a large extent just through in silico analyses of the biosynthetic gene clusters after DNA sequencing. Investigations of the complex biosyntheses of the angucycline group anticancer drugs landomycin, jadomycin and gilvocarcin revealed that in vivo and in silico studies were insufficient to delineate the true biosynthetic sequence of events. Neither was it possible to unambiguously assign enzyme activities, especially where multiple functional enzymes were involved. However, many of the intriguing ambiguities could be solved after in vitro reconstitution of major segments of these pathways, and subsequent systematic variations of the used enzyme mixtures. This method has been recently termed 'combinatorial biosynthetic enzymology'.
Collapse
Affiliation(s)
- Madan K Kharel
- Midway College School of Pharmacy, 120 Scott Perry Drive, Paintsville, KY 42240, USA
| | | |
Collapse
|
12
|
Li HJ, Li X, Liu N, Zhang H, Truglio JJ, Mishra S, Kisker C, Garcia-Diaz M, Tonge PJ. Mechanism of the intramolecular Claisen condensation reaction catalyzed by MenB, a crotonase superfamily member. Biochemistry 2011; 50:9532-44. [PMID: 21830810 PMCID: PMC4119599 DOI: 10.1021/bi200877x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MenB, the 1,4-dihydroxy-2-naphthoyl-CoA synthase from the bacterial menaquinone biosynthesis pathway, catalyzes an intramolecular Claisen condensation (Dieckmann reaction) in which the electrophile is an unactivated carboxylic acid. Mechanistic studies on this crotonase family member have been hindered by partial active site disorder in existing MenB X-ray structures. In the current work the 2.0 Å structure of O-succinylbenzoyl-aminoCoA (OSB-NCoA) bound to the MenB from Escherichia coli provides important insight into the catalytic mechanism by revealing the position of all active site residues. This has been accomplished by the use of a stable analogue of the O-succinylbenzoyl-CoA (OSB-CoA) substrate in which the CoA thiol has been replaced by an amine. The resulting OSB-NCoA is stable, and the X-ray structure of this molecule bound to MenB reveals the structure of the enzyme-substrate complex poised for carbon-carbon bond formation. The structural data support a mechanism in which two conserved active site Tyr residues, Y97 and Y258, participate directly in the intramolecular transfer of the substrate α-proton to the benzylic carboxylate of the substrate, leading to protonation of the electrophile and formation of the required carbanion. Y97 and Y258 are also ideally positioned to function as the second oxyanion hole required for stabilization of the tetrahedral intermediate formed during carbon-carbon bond formation. In contrast, D163, which is structurally homologous to the acid-base catalyst E144 in crotonase (enoyl-CoA hydratase), is not directly involved in carbanion formation and may instead play a structural role by stabilizing the loop that carries Y97. When similar studies were performed on the MenB from Mycobacterium tuberculosis, a twisted hexamer was unexpectedly observed, demonstrating the flexibility of the interfacial loops that are involved in the generation of the novel tertiary and quaternary structures found in the crotonase superfamily. This work reinforces the utility of using a stable substrate analogue as a mechanistic probe in which only one atom has been altered leading to a decrease in α-proton acidity.
Collapse
Affiliation(s)
- Huei-Jiun Li
- Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Xiaokai Li
- Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Nina Liu
- Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Huaning Zhang
- Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - James J. Truglio
- Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Shambhavi Mishra
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Würzburg, Germany
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, USA
| | - Peter J. Tonge
- Institute for Chemical Biology & Drug Discovery and Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
13
|
Cofactor-independent oxidases and oxygenases. Appl Microbiol Biotechnol 2010; 86:791-804. [DOI: 10.1007/s00253-010-2455-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
|
14
|
Widboom PF, Bruner SD. Complex Oxidation Chemistry in the Biosynthetic Pathways to Vancomycin/Teicoplanin Antibiotics. Chembiochem 2009; 10:1757-64. [DOI: 10.1002/cbic.200900117] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Sattely ES, Fischbach MA, Walsh CT. Total biosynthesis: in vitro reconstitution of polyketide and nonribosomal peptide pathways. Nat Prod Rep 2008; 25:757-93. [DOI: 10.1039/b801747f] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|