1
|
Li D, Technau-Hafsi K, Giehl K, Hoeger PH, Has C. Targeted anti-interleukin-17 therapy for linear porokeratosis. Br J Dermatol 2023; 189:630-631. [PMID: 37406221 DOI: 10.1093/bjd/ljad223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/27/2023] [Accepted: 08/05/2023] [Indexed: 07/07/2023]
Abstract
We report a case involving a 12-year-old female patient with linear porokeratosis (LP) associated with the PMVK pathogenic variant c.329C>A, p.R110Q (monoallelic in DNA from blood and biallelic in DNA from LP). Therapeutic measures, which included a statin/cholesterol cream, did not ameliorate the patient’s skin lesions. Our findings demonstrate a strong interleukin (IL)-17A-positive inflammatory infiltrate, upregulation of IL-17-responsive genes and a significant clinical response to anti-IL-17A therapy in LP.
Collapse
Affiliation(s)
- Donglin Li
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Kristin Technau-Hafsi
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Katrin Giehl
- Department of Dermatology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Peter H Hoeger
- Catholic Children's Hospital, Wilhelmstift, Hamburg, Germany
| | - Cristina Has
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
A proteome-wide atlas of lysine-reactive chemistry. Nat Chem 2021; 13:1081-1092. [PMID: 34504315 DOI: 10.1038/s41557-021-00765-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/05/2021] [Indexed: 01/24/2023]
Abstract
Recent advances in chemical proteomics have begun to characterize the reactivity and ligandability of lysines on a global scale. Yet, only a limited diversity of aminophilic electrophiles have been evaluated for interactions with the lysine proteome. Here, we report an in-depth profiling of >30 uncharted aminophilic chemotypes that greatly expands the content of ligandable lysines in human proteins. Aminophilic electrophiles showed disparate proteomic reactivities that range from selective interactions with a handful of lysines to, for a set of dicarboxaldehyde fragments, remarkably broad engagement of the covalent small-molecule-lysine interactions captured by the entire library. We used these latter 'scout' electrophiles to efficiently map ligandable lysines in primary human immune cells under stimulatory conditions. Finally, we show that aminophilic compounds perturb diverse biochemical functions through site-selective modification of lysines in proteins, including protein-RNA interactions implicated in innate immune responses. These findings support the broad potential of covalent chemistry for targeting functional lysines in the human proteome.
Collapse
|
3
|
Wang S, Liu Z, Wang X, Sun T, Zou L. Cloning and characterization of a phosphomevalonate kinase gene from Sanghuangporus baumii. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1938678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Shixin Wang
- Department of Forest Conservation, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, PR China
| | - Zengcai Liu
- Department of Forest Conservation, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, PR China
| | - Xutong Wang
- Department of Forest Conservation, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, PR China
| | - Tingting Sun
- Department of Food Engineering, College of Food Science, Harbin University, Harbin, Heilongjiang, PR China
| | - Li Zou
- Department of Forest Conservation, College of Forestry, Northeast Forestry University, Harbin, Heilongjiang, PR China
| |
Collapse
|
4
|
Atzmony L, Khan HM, Lim YH, Paller AS, Levinsohn JL, Holland KE, Mirza FN, Yin E, Ko CJ, Leventhal JS, Choate KA. Second-Hit, Postzygotic PMVK and MVD Mutations in Linear Porokeratosis. JAMA Dermatol 2020; 155:548-555. [PMID: 30942823 DOI: 10.1001/jamadermatol.2019.0016] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Importance Linear porokeratosis features linear and whorled configurations of keratotic papules and plaques, with coronoid lamellae present on histologic examination. Because linear porokeratosis manifests in the lines of Blaschko representing the dorsoventral migration patterns of keratinocyte precursors, it has been suggested that postzygotic somatic mutation underlies the disease. However, no genetic evidence has supported this hypothesis to date. Objective To identify genetic mutations associated with linear porokeratosis. Design, Setting, and Participants Paired whole-exome sequencing of affected skin and blood/saliva samples from 3 participants from 3 academic medical centers with clinical and histologic diagnoses of linear porokeratosis. Interventions or Exposures Whole-exome sequencing of paired blood/saliva and affected tissue samples isolated from linear porokeratosis lesions. Main Outcomes and Measures Germline and somatic genomic characteristics of participants with linear porokeratosis. Results Of the 3 participants, 2 were male. Participant ages ranged from 5 to 20 years old. We found a combination of a novel germline mutation and a novel somatic mutation within affected tissue in all cases. One participant had a germline heterozygous PMVK c.329G>A mutation and a somatic copy-neutral loss of heterozygosity confined to the lesional skin, while a second had a germline heterozygous PMVK c.79G>T mutation and an additional PMVK c.379C>T mutation in the lesional skin. In a third participant, there was a germline splice-site mutation in MVD (c.70 + 5G>A) and a somatic deletion in MVD causing frameshift and premature codon termination within the lesional skin (c.811_815del, p.F271Afs*33 frameshift). Conclusions and Relevance Our findings suggest that linear porokeratosis is associated with the presence of second-hit postzygotic mutations in the genes that encode enzymes within the mevalonate biosynthesis pathway, and provide further evidence that the mevalonate pathway may be a potential target for therapeutic intervention in porokeratosis.
Collapse
Affiliation(s)
- Lihi Atzmony
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Habib M Khan
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Young H Lim
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Amy S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jonathan L Levinsohn
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | | | - Fatima Nadeem Mirza
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Emily Yin
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Christine J Ko
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Jonathan S Leventhal
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - Keith A Choate
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut.,Department of Pathology, Yale University School of Medicine, New Haven, Connecticut.,Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
5
|
Cerqueira NMFSA, Oliveira EF, Gesto DS, Santos-Martins D, Moreira C, Moorthy HN, Ramos MJ, Fernandes PA. Cholesterol Biosynthesis: A Mechanistic Overview. Biochemistry 2016; 55:5483-5506. [PMID: 27604037 DOI: 10.1021/acs.biochem.6b00342] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cholesterol is an essential component of cell membranes and the precursor for the synthesis of steroid hormones and bile acids. The synthesis of this molecule occurs partially in a membranous world (especially the last steps), where the enzymes, substrates, and products involved tend to be extremely hydrophobic. The importance of cholesterol has increased in the past half-century because of its association with cardiovascular diseases, which are considered one of the leading causes of death worldwide. In light of the current need for new drugs capable of controlling the levels of cholesterol in the bloodstream, it is important to understand how cholesterol is synthesized in the organism and identify the main enzymes involved in this process. Taking this into account, this review presents a detailed description of several enzymes involved in the biosynthesis of cholesterol. In this regard, the structure and catalytic mechanism of the enzymes involved in cholesterol biosynthesis, from the initial two-carbon acetyl-CoA building block, will be reviewed and their current pharmacological importance discussed. We believe that this review may contribute to a deeper level of understanding of cholesterol metabolism and that it will serve as a useful resource for future studies of the cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Nuno M F S A Cerqueira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Eduardo F Oliveira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Diana S Gesto
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Diogo Santos-Martins
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Cátia Moreira
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Hari N Moorthy
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Maria J Ramos
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - P A Fernandes
- UCIBO-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| |
Collapse
|
6
|
Wang J, Liu Y, Liu F, Huang C, Han S, Lv Y, Liu CJ, Zhang S, Qin Y, Ling L, Gao M, Yu S, Li C, Huang M, Liao S, Hu X, Lu Z, Liu X, Jiang T, Tang Z, Zhang H, Guo AY, Liu M. Loss-of-function Mutation in PMVK Causes Autosomal Dominant Disseminated Superficial Porokeratosis. Sci Rep 2016; 6:24226. [PMID: 27052676 PMCID: PMC4823745 DOI: 10.1038/srep24226] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/22/2016] [Indexed: 12/26/2022] Open
Abstract
Disseminated superficial porokeratosis (DSP) is a rare keratinization disorder of the epidermis. It is characterized by keratotic lesions with an atrophic center encircled by a prominent peripheral ridge. We investigated the genetic basis of DSP in two five-generation Chinese families with members diagnosed with DSP. By whole-exome sequencing, we sequencing identified a nonsense variation c.412C > T (p.Arg138*) in the phosphomevalonate kinase gene (PMVK), which encodes a cytoplasmic enzyme catalyzing the conversion of mevalonate 5-phosphate to mevalonate 5-diphosphate in the mevalonate pathway. By co-segregation and haplotype analyses as well as exclusion testing of 500 normal control subjects, we demonstrated that this genetic variant was involved in the development of DSP in both families. We obtained further evidence from studies using HaCaT cells as models that this variant disturbed subcellular localization, expression and solubility of PMVK. We also observed apparent apoptosis in and under the cornoid lamella of PMVK-deficient lesional tissues, with incomplete differentiation of keratinocytes. Our findings suggest that PMVK is a potential novel gene involved in the pathogenesis of DSP and PMVK deficiency or abnormal keratinocyte apoptosis could lead to porokeratosis.
Collapse
Affiliation(s)
- Jiuxiang Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Fei Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Changzheng Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China
| | - Shanshan Han
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Yuexia Lv
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Chun-Jie Liu
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Su Zhang
- Hubei Polytechnic Institute, Xiaogan, 432000, PR China
| | - Yayun Qin
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Lei Ling
- Department of Dermatology, Chibi People’s Hospital, Hubei, 537300, PR China
| | - Meng Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Shanshan Yu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Chang Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Mi Huang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Shengjie Liao
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Xuebin Hu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Zhaojing Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Xiliang Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Tao Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Zhaohui Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Huiping Zhang
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - An-Yuan Guo
- Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, PR China
| | - Mugen Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| |
Collapse
|
7
|
Mokry FB, Higa RH, de Alvarenga Mudadu M, Oliveira de Lima A, Meirelles SLC, Barbosa da Silva MVG, Cardoso FF, Morgado de Oliveira M, Urbinati I, Méo Niciura SC, Tullio RR, Mello de Alencar M, Correia de Almeida Regitano L. Genome-wide association study for backfat thickness in Canchim beef cattle using Random Forest approach. BMC Genet 2013; 14:47. [PMID: 23738659 PMCID: PMC3680339 DOI: 10.1186/1471-2156-14-47] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/23/2013] [Indexed: 12/17/2022] Open
Abstract
Background Meat quality involves many traits, such as marbling, tenderness, juiciness, and backfat thickness, all of which require attention from livestock producers. Backfat thickness improvement by means of traditional selection techniques in Canchim beef cattle has been challenging due to its low heritability, and it is measured late in an animal’s life. Therefore, the implementation of new methodologies for identification of single nucleotide polymorphisms (SNPs) linked to backfat thickness are an important strategy for genetic improvement of carcass and meat quality. Results The set of SNPs identified by the random forest approach explained as much as 50% of the deregressed estimated breeding value (dEBV) variance associated with backfat thickness, and a small set of 5 SNPs were able to explain 34% of the dEBV for backfat thickness. Several quantitative trait loci (QTL) for fat-related traits were found in the surrounding areas of the SNPs, as well as many genes with roles in lipid metabolism. Conclusions These results provided a better understanding of the backfat deposition and regulation pathways, and can be considered a starting point for future implementation of a genomic selection program for backfat thickness in Canchim beef cattle.
Collapse
Affiliation(s)
- Fabiana Barichello Mokry
- Department of Genetics and Evolution, Federal University of São Carlos, Rodovia Washington Luiz, km 235, PO BOX 676, 13565-905, São Carlos, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
González-Caballero N, Valenzuela JG, Ribeiro JMC, Cuervo P, Brazil RP. Transcriptome exploration of the sex pheromone gland of Lutzomyia longipalpis (Diptera: Psychodidae: Phlebotominae). Parasit Vectors 2013; 6:56. [PMID: 23497448 PMCID: PMC3632494 DOI: 10.1186/1756-3305-6-56] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/19/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Molecules involved in pheromone biosynthesis may represent alternative targets for insect population control. This may be particularly useful in managing the reproduction of Lutzomyia longipalpis, the main vector of the protozoan parasite Leishmania infantum in Latin America. Besides the chemical identity of the major components of the L. longipalpis sex pheromone, there is no information regarding the molecular biology behind its production. To understand this process, obtaining information on which genes are expressed in the pheromone gland is essential. METHODS In this study we used a transcriptomic approach to explore the pheromone gland and adjacent abdominal tergites in order to obtain substantial general sequence information. We used a laboratory-reared L. longipalpis (one spot, 9-Methyl GermacreneB) population, captured in Lapinha Cave, state of Minas Gerais, Brazil for this analysis. RESULTS From a total of 3,547 cDNA clones, 2,502 high quality sequences from the pheromone gland and adjacent tissues were obtained and assembled into 1,387 contigs. Through blast searches of public databases, a group of transcripts encoding proteins potentially involved in the production of terpenoid precursors were identified in the 4th abdominal tergite, the segment containing the pheromone gland. Among them, protein-coding transcripts for four enzymes of the mevalonate pathway such as 3-hydroxyl-3-methyl glutaryl CoA reductase, phosphomevalonate kinase, diphosphomevalonate descarboxylase, and isopentenyl pyrophosphate isomerase were identified. Moreover, transcripts coding for farnesyl diphosphate synthase and NADP+ dependent farnesol dehydrogenase were also found in the same tergite. Additionally, genes potentially involved in pheromone transportation were identified from the three abdominal tergites analyzed. CONCLUSION This study constitutes the first transcriptomic analysis exploring the repertoire of genes expressed in the tissue containing the L. longipalpis pheromone gland as well as the flanking tissues. Using a comparative approach, a set of molecules potentially present in the mevalonate pathway emerge as interesting subjects for further study regarding their association to pheromone biosynthesis. The sequences presented here may be used as a reference set for future research on pheromone production or other characteristics of pheromone communication in this insect. Moreover, some matches for transcripts of unknown function may provide fertile ground of an in-depth study of pheromone-gland specific molecules.
Collapse
Affiliation(s)
- Natalia González-Caballero
- Laboratório de Bioquímica e Fisiologia de Insetos, IOC, FIOCRUZ, Av, Brasil 4365, Manguinhos, Pav, Leônidas Deane, Sala 213, Rio de Janeiro, RJ, CEP: 21040-360, Brasil
| | | | | | | | | |
Collapse
|
9
|
Boonsri P, Neumann TS, Olson AL, Cai S, Herdendorf TJ, Miziorko HM, Hannongbua S, Sem DS. Molecular docking and NMR binding studies to identify novel inhibitors of human phosphomevalonate kinase. Biochem Biophys Res Commun 2012; 430:313-9. [PMID: 23146631 DOI: 10.1016/j.bbrc.2012.10.130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 10/31/2012] [Indexed: 11/16/2022]
Abstract
Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based (1)H-(15)N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (K(d)). Tight binding compounds with K(d)'s ranging from 6-60 μM were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.
Collapse
Affiliation(s)
- Pornthip Boonsri
- Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, WI 53201, United States
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Miziorko HM. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 2010; 505:131-43. [PMID: 20932952 DOI: 10.1016/j.abb.2010.09.028] [Citation(s) in RCA: 282] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 09/28/2010] [Accepted: 09/29/2010] [Indexed: 10/19/2022]
Abstract
The mevalonate pathway accounts for conversion of acetyl-CoA to isopentenyl 5-diphosphate, the versatile precursor of polyisoprenoid metabolites and natural products. The pathway functions in most eukaryotes, archaea, and some eubacteria. Only recently has much of the functional and structural basis for this metabolism been reported. The biosynthetic acetoacetyl-CoA thiolase and HMG-CoA synthase reactions rely on key amino acids that are different but are situated in active sites that are similar throughout the family of initial condensation enzymes. Both bacterial and animal HMG-CoA reductases have been extensively studied and the contrasts between these proteins and their interactions with statin inhibitors defined. The conversion of mevalonic acid to isopentenyl 5-diphosphate involves three ATP-dependent phosphorylation reactions. While bacterial enzymes responsible for these three reactions share a common protein fold, animal enzymes differ in this respect as the recently reported structure of human phosphomevalonate kinase demonstrates. There are significant contrasts between observations on metabolite inhibition of mevalonate phosphorylation in bacteria and animals. The structural basis for these contrasts has also recently been reported. Alternatives to the phosphomevalonate kinase and mevalonate diphosphate decarboxylase reactions may exist in archaea. Thus, new details regarding isopentenyl diphosphate synthesis from acetyl-CoA continue to emerge.
Collapse
|
11
|
Olson AL, Cai S, Herdendorf TJ, Miziorko HM, Sem DS. NMR dynamics investigation of ligand-induced changes of main and side-chain arginine N-H's in human phosphomevalonate kinase. J Am Chem Soc 2010; 132:2102-3. [PMID: 20112895 DOI: 10.1021/ja906244j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phosphomevalonate kinase (PMK) catalyzes phosphoryl transfer from adenosine triphosphate (ATP) to mevalonate 5-phosphate (M5P) on the pathway for synthesizing cholesterol and other isoprenoids. To permit this reaction, its substrates must be brought proximal, which would result in a significant and repulsive buildup of negative charge. To facilitate this difficult task, PMK contains 17 arginines and eight lysines. However, the way in which this charge neutralization and binding is achieved, from a structural and dynamics perspective, is not known. More broadly, the role of arginine side-chain dynamics in binding of charged substrates has not been experimentally defined for any protein to date. Herein we report a characterization of changes to the dynamical state of the arginine side chains in PMK due to binding of its highly charged substrates, ATP and M5P. These studies were facilitated by the use of arginine-selective labeling to eliminate spectral overlap. Model-free analysis indicated that while substrate binding has little effect on the arginine backbone dynamics, binding of either substrate leads to significant rigidification of the arginine side chains throughout the protein, even those that are >8 A from the binding site. Such a global rigidification of arginine side chains is unprecedented and suggests that there are long-range electrostatic interactions of sufficient strength to restrict the motion of arginine side chains on the picosecond-to-nanosecond time scale. It will be interesting to see whether such effects are general for arginine residues in proteins that bind highly charged substrates, once additional studies of arginine side-chain dynamics are reported.
Collapse
Affiliation(s)
- Andrew L Olson
- Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin 53201, USA
| | | | | | | | | |
Collapse
|
12
|
Olson AL, Yao H, Herdendorf TJ, Miziorko HM, Hannongbua S, Saparpakorn P, Cai S, Sem DS. Substrate induced structural and dynamics changes in human phosphomevalonate kinase and implications for mechanism. Proteins 2009; 75:127-38. [PMID: 18798562 DOI: 10.1002/prot.22228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Phosphomevalonate kinase (PMK) catalyzes an essential step in the mevalonate pathway, which is the only pathway for synthesis of isoprenoids and steroids in humans. PMK catalyzes transfer of the gamma-phosphate of ATP to mevalonate 5-phosphate (M5P) to form mevalonate 5-diphosphate. Bringing these phosphate groups in proximity to react is especially challenging, given the high negative charge density on the four phosphate groups in the active site. As such, conformational and dynamics changes needed to form the Michaelis complex are of mechanistic interest. Herein, we report the characterization of substrate induced changes (Mg-ADP, M5P, and the ternary complex) in PMK using NMR-based dynamics and chemical shift perturbation measurements. Mg-ADP and M5P K(d)'s were 6-60 microM in all complexes, consistent with there being little binding synergy. Binding of M5P causes the PMK structure to compress (tau(c) = 13.5 nsec), whereas subsequent binding of Mg-ADP opens the structure up (tau(c) = 15.6 nsec). The overall complex seems to stay very rigid on the psec-nsec timescale with an average NMR order parameter of S(2) approximately 0.88. Data are consistent with addition of M5P causing movement around a hinge region to permit domain closure, which would bring the M5P domain close to ATP to permit catalysis. Dynamics data identify potential hinge residues as H55 and R93, based on their low order parameters and their location in extended regions that connect the M5P and ATP domains in the PMK homology model. Likewise, D163 may be a hinge residue for the lid region that is homologous to the adenylate kinase lid, covering the "Walker-A" catalytic loop. Binding of ATP or ADP appears to cause similar conformational changes; however, these observations do not indicate an obvious role for gamma-phosphate binding interactions. Indeed, the role of gamma-phosphate interactions may be more subtle than suggested by ATP/ADP comparisons, because the conservative O to NH substitution in the beta-gamma bridge of ATP causes a dramatic decrease in affinity and induces few chemical shift perturbations. In terms of positioning of catalytic residues, binding of M5P induces a rigidification of Gly21 (adjacent to the catalytically important Lys22), although exchange broadening in the ternary complex suggests some motion on a slower timescale does still occur. Finally, the first nine residues of the N-terminus are highly disordered, suggesting that they may be part of a cleavable signal or regulatory peptide sequence.
Collapse
Affiliation(s)
- Andrew L Olson
- Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Chang Q, Yan XX, Gu SY, Liu JF, Liang DC. Crystal structure of human phosphomavelonate kinase at 1.8 Å resolution. Proteins 2008; 73:254-8. [DOI: 10.1002/prot.22151] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|