1
|
Atomic Details of Biomineralization Proteins Inspiring Protein Design and Reengineering for Functional Biominerals. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biominerals are extraordinary materials that provide organisms with a variety of functions to support life. The synthesis of biominerals and organization at the macroscopic level is a consequence of the interactions of these materials with proteins. The association of biominerals and proteins is very ancient and has sparked a wealth of research across biological, medical and material sciences. Calcium carbonate, hydroxyapatite, and silica represent widespread natural biominerals. The atomic details of the interface between macromolecules and these biominerals is very intriguing from a chemical perspective, considering the association of chemical entities that are structurally different. With this review I provide an overview of the available structural studies of biomineralization proteins, explored from the Protein Data Bank (wwPDB) archive and scientific literature, and of how these studies are inspiring the design and engineering of proteins able to synthesize novel biominerals. The progression of this review from classical template proteins to silica polymerization seeks to benefit researchers involved in various interdisciplinary aspects of a biomineralization project, who need background information and a quick update on advances in the field. Lessons learned from structural studies are exemplary and will guide new projects for the imaging of new hybrid biomineral/protein superstructures at the atomic level.
Collapse
|
2
|
Mann K, Cerveau N, Gummich M, Fritz M, Mann M, Jackson DJ. In-depth proteomic analyses of Haliotis laevigata (greenlip abalone) nacre and prismatic organic shell matrix. Proteome Sci 2018; 16:11. [PMID: 29983641 PMCID: PMC6003135 DOI: 10.1186/s12953-018-0139-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/25/2018] [Indexed: 01/12/2023] Open
Abstract
Background The shells of various Haliotis species have served as models of invertebrate biomineralization and physical shell properties for more than 20 years. A focus of this research has been the nacreous inner layer of the shell with its conspicuous arrangement of aragonite platelets, resembling in cross-section a brick-and-mortar wall. In comparison, the outer, less stable, calcitic prismatic layer has received much less attention. One of the first molluscan shell proteins to be characterized at the molecular level was Lustrin A, a component of the nacreous organic matrix of Haliotis rufescens. This was soon followed by the C-type lectin perlucin and the growth factor-binding perlustrin, both isolated from H. laevigata nacre, and the crystal growth-modulating AP7 and AP24, isolated from H. rufescens nacre. Mass spectrometry-based proteomics was subsequently applied to to Haliotis biomineralization research with the analysis of the H. asinina shell matrix and yielded 14 different shell-associated proteins. That study was the most comprehensive for a Haliotis species to date. Methods The shell proteomes of nacre and prismatic layer of the marine gastropod Haliotis laevigata were analyzed combining mass spectrometry-based proteomics and next generation sequencing. Results We identified 297 proteins from the nacreous shell layer and 350 proteins from the prismatic shell layer from the green lip abalone H. laevigata. Considering the overlap between the two sets we identified a total of 448 proteins. Fifty-one nacre proteins and 43 prismatic layer proteins were defined as major proteins based on their abundance at more than 0.2% of the total. The remaining proteins occurred at low abundance and may not play any significant role in shell fabrication. The overlap of major proteins between the two shell layers was 17, amounting to a total of 77 major proteins. Conclusions The H. laevigata shell proteome shares moderate sequence similarity at the protein level with other gastropod, bivalve and more distantly related invertebrate biomineralising proteomes. Features conserved in H. laevigata and other molluscan shell proteomes include short repetitive sequences of low complexity predicted to lack intrinsic three-dimensional structure, and domains such as tyrosinase, chitin-binding, and carbonic anhydrase. This catalogue of H. laevigata shell proteins represents the most comprehensive for a haliotid and should support future efforts to elucidate the molecular mechanisms of shell assembly. Electronic supplementary material The online version of this article (10.1186/s12953-018-0139-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karlheinz Mann
- 1Abteilung Proteomics und Signaltransduktion, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Nicolas Cerveau
- 2Department of Geobiology, Georg-August University of Göttingen, Goldschmidstr. 3, 37077 Göttingen, Germany
| | - Meike Gummich
- 3Universität Bremen, Institut für Biophysik, Otto Hahn Allee NW1, D-28334 Bremen, Germany
| | - Monika Fritz
- 3Universität Bremen, Institut für Biophysik, Otto Hahn Allee NW1, D-28334 Bremen, Germany
| | - Matthias Mann
- 1Abteilung Proteomics und Signaltransduktion, Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152 Martinsried, Germany
| | - Daniel J Jackson
- 2Department of Geobiology, Georg-August University of Göttingen, Goldschmidstr. 3, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Perovic I, Verch A, Chang EP, Rao A, Cölfen H, Kröger R, Evans JS. An Oligomeric C-RING Nacre Protein Influences Prenucleation Events and Organizes Mineral Nanoparticles. Biochemistry 2014; 53:7259-68. [DOI: 10.1021/bi5008854] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Iva Perovic
- Laboratory for
Chemical Physics,
Division of Basic Sciences, and Center for Skeletal Biology, New York University, 345 East 24th Street, New York, New York 10010, United States
| | - Andreas Verch
- Department
of Physics, University of York, Heslington, York YO10
5DD, U.K
| | - Eric P. Chang
- Laboratory for
Chemical Physics,
Division of Basic Sciences, and Center for Skeletal Biology, New York University, 345 East 24th Street, New York, New York 10010, United States
| | - Ashit Rao
- Department
of Chemistry, Physical Chemistry, Universität Konstanz, Universitätstrasse
10, D-78457 Konstanz, Germany
| | - Helmut Cölfen
- Department
of Chemistry, Physical Chemistry, Universität Konstanz, Universitätstrasse
10, D-78457 Konstanz, Germany
| | - Roland Kröger
- Department
of Physics, University of York, Heslington, York YO10
5DD, U.K
| | - John Spencer Evans
- Laboratory for
Chemical Physics,
Division of Basic Sciences, and Center for Skeletal Biology, New York University, 345 East 24th Street, New York, New York 10010, United States
| |
Collapse
|
4
|
Purification of recombinant nacre-associated mineralization protein AP7 fused with maltose-binding protein. Protein Expr Purif 2014; 100:26-32. [DOI: 10.1016/j.pep.2014.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/04/2014] [Accepted: 05/06/2014] [Indexed: 11/23/2022]
|
5
|
Ndao M, Ponce CB, Evans JS. Oligomer formation, metalation, and the existence of aggregation-prone and mobile sequences within the intracrystalline protein family, Asprich. Faraday Discuss 2012. [DOI: 10.1039/c2fd20064c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Amos FF, Ndao M, Ponce CB, Evans JS. A C-RING-like domain participates in protein self-assembly and mineral nucleation. Biochemistry 2011; 50:8880-7. [PMID: 21928802 DOI: 10.1021/bi201346d] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
AP7 is a nacre-associated protein of the mollusk shell that forms supramolecular assemblies that nucleate single-crystal aragonite in vitro. AP7 possesses two major sequence regions: a random coil 30-amino acid N-terminal domain (AP7N) and a partially disordered 36-amino acid C-terminal domain (AP7C) that exhibits imperfect sequence homology to the C subclass of the intracellular RING domain family. We report here new findings that implicate the C-RING domain in AP7-mediated supramolecular assembly and single-crystal mineral formation. AP7 protein spontaneously self-assembles over a pH range of 4-9 and is monomeric at pH >9.5. AP7N and AP7C both oligomerize over the pH range of 4-9, with the AP7C sequence closely resembling AP7 in terms of particle morphology and size. In vitro mineralization experiments demonstrate that both AP7N and AP7C form supramolecular assemblies that nucleate single-crystal calcium carbonates. Comparison of previously published nuclear magnetic resonance-based structures of AP7C and AP7N reveals the significant presence of complementary anionic-cationic electrostatic molecular surfaces on AP7C that are not found on AP7N, and this may explain the noted discrepancies between the two domains in terms of self-assembly and single-crystal nucleation. We conclude that the C-RING-like sequence is an important site for AP7 self-association and mineral nucleation, and this represents the first known instance of a RING-like sequence performing these functions within an extracellular protein.
Collapse
Affiliation(s)
- Fairland F Amos
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010, USA
| | | | | | | |
Collapse
|
7
|
Vasileiou Z, Barlos K, Gatos D. Convergent solid-phase and solution approaches in the synthesis of the cysteine-rich Mdm2 RING finger domain. J Pept Sci 2010; 15:824-31. [PMID: 19824037 DOI: 10.1002/psc.1182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis.
Collapse
Affiliation(s)
- Zoe Vasileiou
- Department of Chemistry, University of Patras, Patras, Greece
| | | | | |
Collapse
|
8
|
Amos FF, Ndao M, Evans JS. Evidence of Mineralization Activity and Supramolecular Assembly by the N-Terminal Sequence of ACCBP, a Biomineralization Protein That Is Homologous to the Acetylcholine Binding Protein Family. Biomacromolecules 2009; 10:3298-305. [DOI: 10.1021/bm900893f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fairland F. Amos
- Center for Biomolecular Materials Spectroscopy, Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| | - Moise Ndao
- Center for Biomolecular Materials Spectroscopy, Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| | - John Spencer Evans
- Center for Biomolecular Materials Spectroscopy, Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| |
Collapse
|
9
|
Delak K, Collino S, Evans JS. Polyelectrolyte Domains and Intrinsic Disorder within the Prismatic Asprich Protein Family. Biochemistry 2009; 48:3669-77. [DOI: 10.1021/bi900113v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Katya Delak
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| | - Sebastiano Collino
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| | - John Spencer Evans
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| |
Collapse
|
10
|
Amos FF, Evans JS. AP7, a Partially Disordered Pseudo C-RING Protein, Is Capable of Forming Stabilized Aragonite in Vitro. Biochemistry 2009; 48:1332-9. [DOI: 10.1021/bi802148r] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fairland F. Amos
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| | - John Spencer Evans
- Laboratory for Chemical Physics, New York University, 345 East 24th Street, New York, New York 10010
| |
Collapse
|
11
|
Collino S, Evans JS. Molecular specifications of a mineral modulation sequence derived from the aragonite-promoting protein n16. Biomacromolecules 2008; 9:1909-18. [PMID: 18558739 DOI: 10.1021/bm8001599] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the nacre layer of the mollusk, proteins play an important role in regulating the morphology and lattice structure of calcium carbonate minerals. However, this process remains elusive due to the fact that we do not understand how protein sequences control the structure and morphology of biominerals. To take us a step further in this direction, we report the molecular structure of a 30 AA N-terminal mineral interactive sequence (n16N) of the aragonite-promoting protein, n16, and contrast these findings to those previously reported for two "calcite-blocker" nacre-associated sequences, AP7N and AP24N. We find that n16N is conformationally labile and adopts a random-coil conformation that possesses short, dispersed extended beta-strand segments that are located at the A1-Y2, K5-Y9, Y11-I14, and D21-N25 sequence blocks. Like AP7N and AP24N, Ca(II) ion interactions with n16N alter chain dynamics and local structure, and n16N is adsorbed onto calcite crystals and cannot easily be displaced via differential washing techniques. Furthermore, all three sequences have planar surface regions that could serve as putative sites for mineral interactions or ion cluster formation. However, what sets n16N apart from AP7N and AP24N are different folding propensities as well as unique molecular surface features and amino acid composition. n16N has a more condensed structure that, in the presence of TFE, folds into a beta-strand. This contrasts with the more open structures of AP7N and AP24N that are induced by TFE to fold into alpha-helices. Mapping of the n16N molecular surface reveals significant cationic regions and diffuse anionic charge, which contrasts with the small anionic "pocket" regions of AP7N/AP24N. Finally, n16N has 50% fewer sites for mineral surface- or ion cluster-associated water interactions compared to AP7N and AP24N. Overall, the structure of n16N is "tuned" to a different function within the in vitro mineralization scheme. The different features found in AP7N, AP24N, and n16N could be exploited for engineering polypeptides that recognize and bind to different surface features of inorganic crystalline solids.
Collapse
Affiliation(s)
- Sebastiano Collino
- Laboratory for Chemical Physics, Center for Biomolecular Materials Spectroscopy, New York University, 345 East 24th Street, Room 1007, New York, New York 10010, USA
| | | |
Collapse
|