1
|
Brito e Cunha D, Bartkevihi L, Robert J, Cipolatti E, Ferreira A, Oliveira D, Gomes-Neto F, Almeida R, Fernandez-Lafuente R, Freire D, Anobom C. Structural differences of commercial and recombinant lipase B from Candida antarctica: An important implication on enzymes thermostability. Int J Biol Macromol 2019; 140:761-770. [DOI: 10.1016/j.ijbiomac.2019.08.148] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 01/29/2023]
|
2
|
Victoria-Acosta G, Martínez-Archundia M, Moreno-Vargas L, Meléndez-Zajgla J, Martínez-Ruiz GU. Is there something else besides the proapoptotic AVPI-segment in the Smac/DIABLO protein? BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:365-371. [PMID: 29421280 DOI: 10.1016/j.bmhimx.2016.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022] Open
Abstract
In mammals, apoptosis is the main mechanism to eliminate unwanted cells, securing tissue homeostasis and consequently maintaining the health in the organism. Classically, apoptosis culminates with the activation of caspases, which are enzymes that display cysteine protease activity to degrade specific substrates implied in essential cellular processes. This process is highly regulated. A key regulation mechanism is mediated by the Inhibitor of Apoptosis Proteins (IAPs) family members, which inhibit the activated forms of caspases through physical interaction with them. Smac/DIABLO, a mitochondrial protein that is translocated to the cytoplasm in apoptotic conditions, derepresses the IAP-mediated caspase inhibition through physical interaction with IAPs. The first four amino acids (AVPI) of Smac/DIABLO mediate the interaction with IAPs and subsequent apoptosis induction. This interaction has lead to the creation of small molecules mimicking the AVPI segment for potential anticancer therapy. Nevertheless, several studies have pointed out the existence of AVPI-independent functions of Smac/DIABLO. The aim of this review was to provide a landscape of these underestimated AVPI-independent biological functions that have been observed using different approaches, such as the study of endogenous splice variant isoforms and truncated and mutated artificial proteins.
Collapse
Affiliation(s)
- Georgina Victoria-Acosta
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Marlet Martínez-Archundia
- Laboratorio de Modelado Molecular, Diseño de Fármacos y Bioinformática, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Liliana Moreno-Vargas
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jorge Meléndez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Gustavo Ulises Martínez-Ruiz
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico; División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
3
|
Abstract
Fluorescence is the most widely used technique to study the effect of pressure on biochemical systems. The use of pressure as a physical variable sheds light into volumetric characteristics of reactions. Here we focus on the effect of pressure on protein solutions using a simple unfolding example in order to illustrate the applications of the methodology. Topics covered in this review include the relationships between practical aspects and technical limitations; the effect of pressure and the study of protein cavities; the interpretation of thermodynamic and relaxation kinetics; and the study of relaxation amplitudes. Finally, we discuss the insights available from the combination of fluorescence and other methods adapted to high pressure, such as SAXS or NMR. Because of the simplicity and accessibility of high-pressure fluorescence, the technique is a starting point that complements appropriately multi-methodological approaches related to understanding protein function, disfunction, and folding from the volumetric point of view.
Collapse
|
4
|
Circular dichroism and site-directed spin labeling reveal structural and dynamical features of high-pressure states of myoglobin. Proc Natl Acad Sci U S A 2013; 110:E4714-22. [PMID: 24248390 DOI: 10.1073/pnas.1320124110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Excited states of proteins may play important roles in function, yet are difficult to study spectroscopically because of their sparse population. High hydrostatic pressure increases the equilibrium population of excited states, enabling their characterization [Akasaka K (2003) Biochemistry 42:10875-85]. High-pressure site-directed spin-labeling EPR (SDSL-EPR) was developed recently to map the site-specific structure and dynamics of excited states populated by pressure. To monitor global secondary structure content by circular dichroism (CD) at high pressure, a modified optical cell using a custom MgF2 window with a reduced aperture is introduced. Here, a combination of SDSL-EPR and CD is used to map reversible structural transitions in holomyoglobin and apomyoglobin (apoMb) as a function of applied pressure up to 2 kbar. CD shows that the high-pressure excited state of apoMb at pH 6 has helical content identical to that of native apoMb, but reversible changes reflecting the appearance of a conformational ensemble are observed by SDSL-EPR, suggesting a helical topology that fluctuates slowly on the EPR time scale. Although the high-pressure state of apoMb at pH 6 has been referred to as a molten globule, the data presented here reveal significant differences from the well-characterized pH 4.1 molten globule of apoMb. Pressure-populated states of both holomyoglobin and apoMb at pH 4.1 have significantly less helical structure, and for the latter, that may correspond to a transient folding intermediate.
Collapse
|
5
|
Dimerization of Smac is crucial for its mitochondrial retention by XIAP subsequent to mitochondrial outer membrane permeabilization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:819-26. [PMID: 21354220 DOI: 10.1016/j.bbamcr.2011.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 02/12/2011] [Accepted: 02/14/2011] [Indexed: 11/20/2022]
Abstract
Following the apoptotic permeabilization of the outer mitochondrial membrane, the inter-membrane space protein second mitochondria-derived activator of caspases (Smac) is released into the cytosol. Smac efficiently promotes apoptosis by antagonizing x-linked inhibitor of apoptosis protein (XIAP), an inhibitor of caspases-9, -3, and -7, via a short NH(2)-terminal inhibitor of apoptosis protein (IAP) binding motif (AVPI). Native Smac dimerizes to form a highly stable and inflexible elongated arch, however, a functional role for this outstretched structure so far remained unknown. Using time-lapse single-cell imaging of DLD-1 and HCT-116 colon cancer cells, we here demonstrate that upon mitochondrial outer membrane permeabilization physiological expression levels of XIAP are sufficient to selectively prolong the release of dimeric but not monomeric Smac. Elevating the expression of XIAP further extended the release duration of dimeric Smac and resulted in the mitochondrial retention of a significant proportion of the Smac pool. In contrast, monomeric Smac was always fully released and the release kinetics were not affected by altered XIAP expression. Our findings therefore indicate that the dimerization of Smac is critical for the XIAP-mediated retention of Smac at or inside the mitochondria. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
|
6
|
de Souza TLF, Sanches D, Gonçalves RB, da RochaPita SS, Pascutti PG, Bianconi ML, de Almeida FCL, Silva JL, de Oliveira AC. Conformational selection, dynamic restriction and the hydrophobic effect coupled to stabilization of the BIR3 domain of the human X-linked inhibitor of apoptosis protein by the tetrapeptide AVPI. Biophys Chem 2010; 152:99-108. [DOI: 10.1016/j.bpc.2010.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
|
7
|
Burke SP, Smith JB. Monomerization of cytosolic mature smac attenuates interaction with IAPs and potentiation of caspase activation. PLoS One 2010; 5. [PMID: 20957035 PMCID: PMC2948501 DOI: 10.1371/journal.pone.0013094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 09/03/2010] [Indexed: 11/18/2022] Open
Abstract
The four residues at the amino-terminus of mature Smac/DIABLO are an IAP binding motif (IBM). Upon exit from mitochondria, mature Smac interacts with inhibitor of apoptosis proteins (IAPs), abrogating caspase inhibition. We used the ubiquitin fusion model to express mature Smac in the cytosol. Transiently expressed mature Smac56-239 (called Smac56) and Smac60-239 (called Smac60), which lacks the IBM, interacted with X-linked inhibitor of apoptosis protein (XIAP). However, stable expression produced wild type Smac56 that failed to homodimerize, interact with XIAP, and potentiate caspase activation. Cytosolic Smac60 retained these functions. Cytosolic Smac56 apparently becomes posttranslationally modified at the dimer interface region, which obliterated the epitope for a monoclonal antibody. Cytosolic Smacδ, which has the IBM but lacks amino acids 62–105, homodimerized and weakly interacted with XIAP, but failed to potentiate apoptosis. These findings suggest that the IBM of Smac is a recognition point for a posttranslational modification(s) that blocks homodimerization and IAP interaction, and that amino acids 62–105 are required for the proapoptotic function of Smac.
Collapse
Affiliation(s)
- Stephen P. Burke
- Department of Pharmacology and Toxicology, School of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jeffrey B. Smith
- Department of Pharmacology and Toxicology, School of Medicine and Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
8
|
Burke SP, Smith L, Smith JB. cIAP1 cooperatively inhibits procaspase-3 activation by the caspase-9 apoptosome. J Biol Chem 2010; 285:30061-8. [PMID: 20667824 DOI: 10.1074/jbc.m110.125955] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although early studies of inhibitor of apoptosis proteins (IAPs) suggested that cIAP1 directly binds and inhibits caspases similarly to X-linked IAP (XIAP), a recent one found that micromolar concentrations of cIAP1 only weakly inhibit caspase-3, -7, or -9. Here, we show that cIAP1 specifically and cooperatively blocks the cytochrome c-dependent apoptosome in vitro. Hence, cIAP1 prevented the activation of procaspase-3 but had no effect on the processing of procaspase-9 or the activity of prior activated caspase-3. Like cIAP1, XIAP had no effect on procaspase-9 processing and was a more potent inhibitor of procaspase-3 activation than of already activated caspase-3 activity. Inhibition of procaspase-3 activation depended on BIR2 and BIR3 of cIAP1 and was independent of BIR1, RING, CARD, and UBA domains. Smac prevented cIAP1 from inhibiting procaspase-3 activation and reversed the inhibition by prior addition of cIAP1. A procaspase-9 mutant (D315A) that cannot produce the p12 subunit was resistant to inhibition by cIAP1. Therefore, the N-terminal Ala-Thr-Pro-Phe motif of the p12 subunit of the caspase-9 apoptosome facilitates apoptosome blockade. Consequently, cIAP1 cooperatively interacts with oligomerized processed caspase-9 in the apoptosome and blocks procaspase-3 activation.
Collapse
Affiliation(s)
- Stephen P Burke
- Department of Pharmacology and Toxicology, Schools of Medicine and Dentistry, University of Alabama at Birmingham, Alabama 35294-0019, USA
| | | | | |
Collapse
|
9
|
Silva JL, Foguel D. Hydration, cavities and volume in protein folding, aggregation and amyloid assembly. Phys Biol 2009; 6:015002. [DOI: 10.1088/1478-3975/6/1/015002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG. IAP-targeted therapies for cancer. Oncogene 2008; 27:6252-75. [PMID: 18931692 DOI: 10.1038/onc.2008.302] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA damage, chromosomal abnormalities, oncogene activation, viral infection, substrate detachment and hypoxia can all trigger apoptosis in normal cells. However, cancer cells acquire mutations that allow them to survive these threats that are part and parcel of the transformation process or that may affect the growth and dissemination of the tumor. Eventually, cancer cells accumulate further mutations that make them resistant to apoptosis mediated by standard cytotoxic chemotherapy or radiotherapy. The inhibitor of apoptosis (IAP) family members, defined by the presence of a baculovirus IAP repeat (BIR) protein domain, are key regulators of cytokinesis, apoptosis and signal transduction. Specific IAPs regulate either cell division, caspase activity or survival pathways mediated through binding to their BIR domains, and/or through their ubiquitin-ligase RING domain activity. These protein-protein interactions and post-translational modifications are the subject of intense investigations that shed light on how these proteins contribute to oncogenesis and resistance to therapy. In the past several years, we have seen multiple approaches of IAP antagonism enter the clinic, and the rewards of such strategies are about to reap benefit. Significantly, small molecule pan-IAP antagonists that mimic an endogenous inhibitor of the IAPs, called Smac, have demonstrated an unexpected ability to sensitize cancer cells to tumor necrosis factor-alpha and to promote autocrine or paracrine production of this cytokine by the tumor cell and possibly, other cells too. This review will focus on these and other developmental therapeutics that target the IAPs in cancer.
Collapse
Affiliation(s)
- E C LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|