1
|
Malde AK, Hill TA, Iyer A, Fairlie DP. Crystal Structures of Protein-Bound Cyclic Peptides. Chem Rev 2019; 119:9861-9914. [DOI: 10.1021/acs.chemrev.8b00807] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alpeshkumar K. Malde
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Timothy A. Hill
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Abishek Iyer
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
2
|
Windsor IW, Gold B, Raines RT. An n→ π* Interaction in the Bound Substrate of Aspartic Proteases Replicates the Oxyanion Hole. ACS Catal 2019; 9:1464-1471. [PMID: 31093467 DOI: 10.1021/acscatal.8b04142] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aspartic proteases regulate many biological processes and are prominent targets for therapeutic intervention. Structural studies have captured intermediates along the reaction pathway, including the Michaelis complex and tetrahedral intermediate. Using a Ramachandran analysis of these structures, we discovered that residues occupying the P1 and P1' positions (which flank the scissile peptide bond) adopt the dihedral angle of an inverse γ-turn and polyproline type-II helix, respectively. Computational analyses reveal that the polyproline type-II helix engenders an n→π* interaction in which the oxygen of the scissile peptide bond is the donor. This interaction stabilizes the negative charge that develops in the tetrahedral intermediate, much like the oxyanion hole of serine proteases. The inverse γ-turn serves to twist the scissile peptide bond, vacating the carbonyl π* orbital and facilitating its hydration. These previously unappreciated interactions entail a form of substrate-assisted catalysis and offer opportunities for drug design.
Collapse
Affiliation(s)
- Ian W. Windsor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Brian Gold
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev 2017; 38:1295-1331. [PMID: 29149530 DOI: 10.1002/med.21475] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/10/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
There are numerous proteases of pathogenic organisms that are currently targeted for therapeutic intervention along with many that are seen as potential drug targets. This review discusses the chemical and biological makeup of some key druggable proteases expressed by the five major classes of disease causing agents, namely bacteria, viruses, fungi, eukaryotes, and prions. While a few of these enzymes including HIV protease and HCV NS3-4A protease have been targeted to a clinically useful level, a number are yet to yield any clinical outcomes in terms of antimicrobial therapy. A significant aspect of this review discusses the chemical and pharmacological characteristics of inhibitors of the various proteases discussed. A total of 25 inhibitors have been considered potent and safe enough to be trialed in humans and are at different levels of clinical application. We assess the mechanism of action and clinical performance of the protease inhibitors against infectious agents with their developmental strategies and look to the next frontiers in the use of protease inhibitors as anti-infective agents.
Collapse
Affiliation(s)
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
4
|
Product release is rate-limiting for catalytic processing by the Dengue virus protease. Sci Rep 2016; 6:37539. [PMID: 27897196 PMCID: PMC5126634 DOI: 10.1038/srep37539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/31/2016] [Indexed: 12/17/2022] Open
Abstract
Dengue Virus (DENV) is the most prevalent global arbovirus, yet despite an increasing burden to health care there are currently no therapeutics available to treat infection. A potential target for antiviral drugs is the two-component viral protease NS2B-NS3pro, which is essential for viral replication. Interactions between the two components have been investigated here by probing the effect on the rate of enzyme catalysis of key mutations in a mobile loop within NS2B that is located at the interface of the two components. Steady-state kinetic assays indicated that the mutations greatly affect catalytic turnover. However, single turnover and fluorescence experiments have revealed that the mutations predominantly affect product release rather than substrate binding. Fluorescence analysis also indicated that the addition of substrate triggers a near-irreversible change in the enzyme conformation that activates the catalytic centre. Based on this mechanistic insight, we propose that residues within the mobile loop of NS2B control product release and present a new target for design of potent Dengue NS2B-NS3 protease inhibitors.
Collapse
|
5
|
Zhang X, Bruning JB, George JH, Abell AD. A mechanistic study on the inhibition of α-chymotrypsin by a macrocyclic peptidomimetic aldehyde. Org Biomol Chem 2016; 14:6970-8. [DOI: 10.1039/c6ob01159d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR and X-ray crystallography reveals covalent attachment of the macrocyclic aldehyde to serine195 of α-chymotrypsin and that its backbone binds as a β-strand.
Collapse
Affiliation(s)
- X. Zhang
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute for Photonics and Advanced Sensing
- Department of Chemistry
- The University of Adelaide
- Adelaide
| | - J. B. Bruning
- School of Biological Sciences
- The University of Adelaide
- Adelaide
- Australia
| | - J. H. George
- Department of Chemistry
- The University of Adelaide
- Adelaide
- Australia
| | - A. D. Abell
- ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP)
- Institute for Photonics and Advanced Sensing
- Department of Chemistry
- The University of Adelaide
- Adelaide
| |
Collapse
|
6
|
Hill TA, Shepherd NE, Diness F, Fairlie DP. Constraining cyclic peptides to mimic protein structure motifs. Angew Chem Int Ed Engl 2014; 53:13020-41. [PMID: 25287434 DOI: 10.1002/anie.201401058] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/02/2013] [Indexed: 12/18/2022]
Abstract
Many proteins exert their biological activities through small exposed surface regions called epitopes that are folded peptides of well-defined three-dimensional structures. Short synthetic peptide sequences corresponding to these bioactive protein surfaces do not form thermodynamically stable protein-like structures in water. However, short peptides can be induced to fold into protein-like bioactive conformations (strands, helices, turns) by cyclization, in conjunction with the use of other molecular constraints, that helps to fine-tune three-dimensional structure. Such constrained cyclic peptides can have protein-like biological activities and potencies, enabling their uses as biological probes and leads to therapeutics, diagnostics and vaccines. This Review highlights examples of cyclic peptides that mimic three-dimensional structures of strand, turn or helical segments of peptides and proteins, and identifies some additional restraints incorporated into natural product cyclic peptides and synthetic macrocyclic peptidomimetics that refine peptide structure and confer biological properties.
Collapse
Affiliation(s)
- Timothy A Hill
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072 (Australia)
| | | | | | | |
Collapse
|
7
|
Hill TA, Shepherd NE, Diness F, Fairlie DP. Fixierung cyclischer Peptide: Mimetika von Proteinstrukturmotiven. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201401058] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Schmidt TC, Welker A, Rieger M, Sahu PK, Sotriffer CA, Schirmeister T, Engels B. Protocol for Rational Design of Covalently Interacting Inhibitors. Chemphyschem 2014; 15:3226-35. [DOI: 10.1002/cphc.201402542] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/29/2014] [Indexed: 01/26/2023]
|
9
|
Loughlin WA, Tyndall JDA, Glenn MP, Hill TA, Fairlie DP. Update 1 of: Beta-Strand Mimetics. Chem Rev 2011; 110:PR32-69. [DOI: 10.1021/cr900395y] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wendy A. Loughlin
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - Joel D. A. Tyndall
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - Matthew P. Glenn
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - Timothy A. Hill
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - David P. Fairlie
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| |
Collapse
|
10
|
Madala PK, Tyndall JDA, Nall T, Fairlie DP. Update 1 of: Proteases Universally Recognize Beta Strands In Their Active Sites. Chem Rev 2011; 110:PR1-31. [DOI: 10.1021/cr900368a] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Praveen K. Madala
- Centre for Drug Design and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2005, 105 (3), 973−1000; Published (Web) Feb. 16, 2005. Updates to the text appear in red type
| | - Joel D. A. Tyndall
- Centre for Drug Design and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2005, 105 (3), 973−1000; Published (Web) Feb. 16, 2005. Updates to the text appear in red type
| | - Tessa Nall
- Centre for Drug Design and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2005, 105 (3), 973−1000; Published (Web) Feb. 16, 2005. Updates to the text appear in red type
| | - David P. Fairlie
- Centre for Drug Design and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2005, 105 (3), 973−1000; Published (Web) Feb. 16, 2005. Updates to the text appear in red type
| |
Collapse
|
11
|
Marsault E, Peterson ML. Macrocycles Are Great Cycles: Applications, Opportunities, and Challenges of Synthetic Macrocycles in Drug Discovery. J Med Chem 2011; 54:1961-2004. [DOI: 10.1021/jm1012374] [Citation(s) in RCA: 591] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Eric Marsault
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke Québec, J1H5N4, Canada
| | - Mark L. Peterson
- Tranzyme Pharma Inc., 3001 12e Avenue Nord, Sherbrooke, Québec, J1H5N4, Canada
| |
Collapse
|
12
|
Shang Y, Nguyen H, Wickstrom L, Okur A, Simmerling C. Improving the description of salt bridge strength and geometry in a Generalized Born model. J Mol Graph Model 2010; 29:676-84. [PMID: 21168352 DOI: 10.1016/j.jmgm.2010.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
The Generalized Born (GB) solvent model is widely used in molecular dynamics simulations because it can be less computationally expensive and it samples conformational changes more efficiently than explicit solvent simulations. Meanwhile, great efforts have been made in the past to improve its precision and accuracy. Previous studies have shown that reducing intrinsic GB radii of some hydrogen atoms would improve AMBER GB-HCT solvent model's accuracy on salt bridges. Here we present our finding that similar correction also shows dramatic improvement for the AMBER GB-OBC solvent model. Potential of mean force and cluster analysis for small peptide replica exchange molecular dynamics simulations suggested that new radii GB simulation with ff99SB/GB-OBC corrected salt bridge strength and achieved significantly higher geometry similarity with TIP3P simulation. Improved performance in 60 ns HIV-1 protease GB simulation further validated this approach for large systems.
Collapse
Affiliation(s)
- Yi Shang
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | | | | | | |
Collapse
|
13
|
Cleland W. The low-barrier hydrogen bond in enzymic catalysis. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2010. [DOI: 10.1016/s0065-3160(08)44001-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Prashar V, Bihani S, Das A, Ferrer JL, Hosur M. Catalytic water co-existing with a product peptide in the active site of HIV-1 protease revealed by X-ray structure analysis. PLoS One 2009; 4:e7860. [PMID: 19924250 PMCID: PMC2775671 DOI: 10.1371/journal.pone.0007860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 10/15/2009] [Indexed: 11/18/2022] Open
Abstract
Background It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS). In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures. Principal Findings We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product) peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product) has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates. Conclusions/Significance The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.
Collapse
Affiliation(s)
- Vishal Prashar
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Subhash Bihani
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Amit Das
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Jean-Luc Ferrer
- Laboratoire de Cristallographie et Cristallogenèse des Protéines/Le Groupe Synchrotron, Institut de Biologie Structurale, Grenoble, France
| | - Madhusoodan Hosur
- Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- * E-mail:
| |
Collapse
|
15
|
Structure of HIV-1 protease in complex with potent inhibitor KNI-272 determined by high-resolution X-ray and neutron crystallography. Proc Natl Acad Sci U S A 2009; 106:4641-6. [PMID: 19273847 DOI: 10.1073/pnas.0809400106] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
HIV-1 protease is a dimeric aspartic protease that plays an essential role in viral replication. To further understand the catalytic mechanism and inhibitor recognition of HIV-1 protease, we need to determine the locations of key hydrogen atoms in the catalytic aspartates Asp-25 and Asp-125. The structure of HIV-1 protease in complex with transition-state analog KNI-272 was determined by combined neutron crystallography at 1.9-A resolution and X-ray crystallography at 1.4-A resolution. The resulting structural data show that the catalytic residue Asp-25 is protonated and that Asp-125 (the catalytic residue from the corresponding diad-related molecule) is deprotonated. The proton on Asp-25 makes a hydrogen bond with the carbonyl group of the allophenylnorstatine (Apns) group in KNI-272. The deprotonated Asp-125 bonds to the hydroxyl proton of Apns. The results provide direct experimental evidence for proposed aspects of the catalytic mechanism of HIV-1 protease and can therefore contribute substantially to the development of specific inhibitors for therapeutic application.
Collapse
|