1
|
Tsai MA, See MS, Chiu CH, Wang PC, Chen SC. Genotypic and phenotypic analysis of Elizabethkingia meningoseptica in bullfrog Rana catesbeiana isolated in Taiwan. JOURNAL OF FISH DISEASES 2023; 46:1239-1248. [PMID: 37519120 DOI: 10.1111/jfd.13842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Elizabethkingia meningoseptica is a hazardous bacterium for agriculture production and human health. The present study identified E. meningoseptica from the bullfrog, human and reference strain BCRC 10677 by API 20NE, 50S ribosome protein L27 sequencing and pulse field gel electrophoresis to differentiate isolates of E. meningoseptica from aquatic animals and humans. All isolates from bullfrogs and humans were identified as E. meningoseptica by DNA sequencing with 98.8%-100% sequence identity. E. meningoseptica displayed significant genetic diversity when analysed using pulsed-field gel electrophoresis (PFGE). There were six distinct pulsotypes, including one pulsotype found in bullfrog isolates and five pulsotypes found in human isolates. However, E. meningoseptica from bullfrog exhibited one genotype only by PFGE. Overall, molecular epidemiological analysis of PFGE results indicated that the frog E. meningoseptica outbreaks in Taiwan were produced by genetically identical clones. The bullfrog isolates were not genetically related to other E. meningoseptica from human and reference isolates. This research provided the first comparisons of biochemical characteristics and genetic differences of E. meningoseptica from human and bullfrog isolates.
Collapse
Affiliation(s)
- Ming-An Tsai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Program in Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ming She See
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia
| | - Cheng-Hsun Chiu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Program in Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
- International Program in Ornamental Fish Technology and Aquatic Animal Health, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
- Southern Taiwan Fish Diseases Research Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| |
Collapse
|
2
|
Hubble KA, Henry MF. DPC29 promotes post-initiation mitochondrial translation in Saccharomyces cerevisiae. Nucleic Acids Res 2023; 51:1260-1276. [PMID: 36620885 PMCID: PMC9943650 DOI: 10.1093/nar/gkac1229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial ribosomes synthesize essential components of the oxidative phosphorylation (OXPHOS) system in a tightly regulated process. In the yeast Saccharomyces cerevisiae, mitochondrial mRNAs require specific translational activators, which orchestrate protein synthesis by recognition of their target gene's 5'-untranslated region (UTR). Most of these yeast genes lack orthologues in mammals, and only one such gene-specific translational activator has been proposed in humans-TACO1. The mechanism by which TACO1 acts is unclear because mammalian mitochondrial mRNAs do not have significant 5'-UTRs, and therefore must promote translation by alternative mechanisms. In this study, we examined the role of the TACO1 orthologue in yeast. We found this 29 kDa protein to be a general mitochondrial translation factor, Dpc29, rather than a COX1-specific translational activator. Its activity was necessary for the optimal expression of OXPHOS mtDNA reporters, and mutations within the mitoribosomal large subunit protein gene MRP7 produced a global reduction of mitochondrial translation in dpc29Δ cells, indicative of a general mitochondrial translation factor. Northern-based mitoribosome profiling of dpc29Δ cells showed higher footprint frequencies at the 3' ends of mRNAs, suggesting a role in translation post-initiation. Additionally, human TACO1 expressed at native levels rescued defects in dpc29Δ yeast strains, suggesting that the two proteins perform highly conserved functions.
Collapse
Affiliation(s)
- Kyle A Hubble
- Department of Molecular Biology, Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA,Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ 08084, USA
| | - Michael F Henry
- To whom correspondence should be addressed. Tel: +1 856 566 6970; Fax: +1 856 566 6291; E-mail:
| |
Collapse
|
3
|
Hotinger JA, Gallagher AH, May AE. Phage-Related Ribosomal Proteases (Prps): Discovery, Bioinformatics, and Structural Analysis. Antibiotics (Basel) 2022; 11:antibiotics11081109. [PMID: 36009978 PMCID: PMC9405229 DOI: 10.3390/antibiotics11081109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Many new antimicrobials are analogs of existing drugs, sharing the same targets and mechanisms of action. New antibiotic targets are critically needed to combat the growing threat of antimicrobial-resistant bacteria. Phage-related ribosomal proteases (Prps) are a recently structurally characterized antibiotic target found in pathogens such as Staphylococcus aureus, Clostridioides difficile, and Streptococcus pneumoniae. These bacteria encode an N-terminal extension on their ribosomal protein L27 that is not present in other bacteria. The cleavage of this N-terminal extension from L27 by Prp is necessary to create a functional ribosome. Thus, Prp inhibition may serve as an alternative to direct binding and inhibition of the ribosome. This bioinformatic and structural analysis covers the discovery, function, and structural characteristics of known Prps. This information will be helpful in future endeavors to design selective therapeutics targeting the Prps of important pathogens.
Collapse
|
4
|
Srinivas P, Keiler KC, Dunham CM. Druggable differences: Targeting mechanistic differences between trans-translation and translation for selective antibiotic action. Bioessays 2022; 44:e2200046. [PMID: 35719031 PMCID: PMC9308750 DOI: 10.1002/bies.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/03/2023]
Abstract
Bacteria use trans-translation to rescue stalled ribosomes and target incomplete proteins for proteolysis. Despite similarities between tRNAs and transfer-messenger RNA (tmRNA), the key molecule for trans-translation, new structural and biochemical data show important differences between translation and trans-translation at most steps of the pathways. tmRNA and its binding partner, SmpB, bind in the A site of the ribosome but do not trigger the same movements of nucleotides in the rRNA that are required for codon recognition by tRNA. tmRNA-SmpB moves from the A site to the P site of the ribosome without subunit rotation to generate hybrid states, and moves from the P site to a site outside the ribosome instead of to the E site. During catalysis, transpeptidation to tmRNA appears to require the ribosomal protein bL27, which is dispensable for translation, suggesting that this protein may be conserved in bacteria due to trans-translation. These differences provide insights into the fundamental nature of trans-translation, and provide targets for new antibiotics that may have decrease cross-reactivity with eukaryotic ribosomes.
Collapse
Affiliation(s)
- Pooja Srinivas
- Emory University School of Medicine, Department of Biochemistry, Atlanta, GA, USA
| | - Kenneth C. Keiler
- The Pennsylvania State University, Department of Biochemistry & Molecular Biology, University Park, PA, USA,Corresponding authors: Kenneth C. Keiler, , Christine M. Dunham,
| | - Christine M. Dunham
- Emory University School of Medicine, Department of Biochemistry, Atlanta, GA, USA,Corresponding authors: Kenneth C. Keiler, , Christine M. Dunham,
| |
Collapse
|
5
|
Hotinger JA, Pendergrass HA, Peterson D, Wright HT, May AE. Phage-Related Ribosomal Protease (Prp) of Staphylococcus aureus: In Vitro Michaelis-Menten Kinetics, Screening for Inhibitors, and Crystal Structure of a Covalent Inhibition Product Complex. Biochemistry 2022; 61:1323-1336. [PMID: 35731716 DOI: 10.1021/acs.biochem.2c00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Phage-related ribosomal proteases (Prps) are essential for the assembly and maturation of the ribosome in Firmicutes, including the human pathogens Staphylococcus aureus, Streptococcus pneumoniae, and Clostridium difficile. These bacterial proteases cleave off an N-terminal extension of a precursor of ribosomal protein L27, a processing step that is essential for the formation of functional ribosomes. This essential role of Prp in these pathogens has identified this protease as a potential antibiotic target. In this work, we determine the X-ray crystal structure of a covalent inhibition complex at 2.35 Å resolution, giving the first complete picture of the active site of a functional Prp. We also characterize the kinetic activity and screen for potential inhibitors of Prp. This work gives the most complete characterization of the structure and specificity of this novel class of proteases to date.
Collapse
Affiliation(s)
- Julia A Hotinger
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Heather A Pendergrass
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Darrell Peterson
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - H Tonie Wright
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Aaron E May
- Department of Medicinal Chemistry and Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
6
|
Wang A, Levi M, Mohanty U, Whitford PC. Diffuse Ions Coordinate Dynamics in a Ribonucleoprotein Assembly. J Am Chem Soc 2022; 144:9510-9522. [PMID: 35593477 DOI: 10.1021/jacs.2c04082] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proper ionic concentrations are required for the functional dynamics of RNA and ribonucleoprotein (RNP) assemblies. While experimental and computational techniques have provided many insights into the properties of chelated ions, less is known about the energetic contributions of diffuse ions to large-scale conformational rearrangements. To address this, we present a model that is designed to quantify the influence of diffuse monovalent and divalent ions on the dynamics of biomolecular assemblies. This model employs all-atom (non-H) resolution and explicit ions, where effective potentials account for hydration effects. We first show that the model accurately predicts the number of excess Mg2+ ions for prototypical RNA systems, at a level comparable to modern coarse-grained models. We then apply the model to a complete ribosome and show how the balance between diffuse Mg2+ and K+ ions can control the dynamics of tRNA molecules during translation. The model predicts differential effects of diffuse ions on the free-energy barrier associated with tRNA entry and the energy of tRNA binding to the ribosome. Together, this analysis reveals the direct impact of diffuse ions on the dynamics of an RNP assembly.
Collapse
Affiliation(s)
- Ailun Wang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States.,Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Mariana Levi
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Udayan Mohanty
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Paul C Whitford
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States.,Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Hassan A, Byju S, Whitford PC. The energetics of subunit rotation in the ribosome. Biophys Rev 2021; 13:1029-1037. [PMID: 35059025 PMCID: PMC8724491 DOI: 10.1007/s12551-021-00877-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Protein synthesis in the cell is controlled by an elaborate sequence of conformational rearrangements in the ribosome. The composition of a ribosome varies by species, though they typically contain ∼ 50-100 RNA and protein molecules. While advances in structural techniques have revolutionized our understanding of long-lived conformational states, a vast range of transiently visited configurations can not be directly observed. In these cases, computational/simulation methods can be used to understand the mechanical properties of the ribosome. Insights from these approaches can then help guide next-generation experimental measurements. In this short review, we discuss theoretical strategies that have been deployed to quantitatively describe the energetics of collective rearrangements in the ribosome. We focus on efforts to probe large-scale subunit rotation events, which involve the coordinated displacement of large numbers of atoms (tens of thousands). These investigations are revealing how the molecular structure of the ribosome encodes the mechanical properties that control large-scale dynamics.
Collapse
Affiliation(s)
- Asem Hassan
- Center for Theoretical Biological Physics, 360 Huntington Ave, Boston, 02115 MA USA
- Physics Department, Northeastern University, 360 Huntington Ave, Boston, 02115 MA USA
| | - Sandra Byju
- Center for Theoretical Biological Physics, 360 Huntington Ave, Boston, 02115 MA USA
- Physics Department, Northeastern University, 360 Huntington Ave, Boston, 02115 MA USA
| | - Paul C. Whitford
- Center for Theoretical Biological Physics, 360 Huntington Ave, Boston, 02115 MA USA
- Physics Department, Northeastern University, 360 Huntington Ave, Boston, 02115 MA USA
| |
Collapse
|
8
|
Structures of tmRNA and SmpB as they transit through the ribosome. Nat Commun 2021; 12:4909. [PMID: 34389707 PMCID: PMC8363625 DOI: 10.1038/s41467-021-24881-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
In bacteria, trans-translation is the main rescue system, freeing ribosomes stalled on defective messenger RNAs. This mechanism is driven by small protein B (SmpB) and transfer-messenger RNA (tmRNA), a hybrid RNA known to have both a tRNA-like and an mRNA-like domain. Here we present four cryo-EM structures of the ribosome during trans-translation at resolutions from 3.0 to 3.4 Å. These include the high-resolution structure of the whole pre-accommodated state, as well as structures of the accommodated state, the translocated state, and a translocation intermediate. Together, they shed light on the movements of the tmRNA-SmpB complex in the ribosome, from its delivery by the elongation factor EF-Tu to its passage through the ribosomal A and P sites after the opening of the B1 bridges. Additionally, we describe the interactions between the tmRNA-SmpB complex and the ribosome. These explain why the process does not interfere with canonical translation.
Collapse
|
9
|
A steric gate controls P/E hybrid-state formation of tRNA on the ribosome. Nat Commun 2020; 11:5706. [PMID: 33177497 PMCID: PMC7658246 DOI: 10.1038/s41467-020-19450-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
The ribosome is a biomolecular machine that undergoes multiple large-scale structural rearrangements during protein elongation. Here, we focus on a conformational rearrangement during translocation, known as P/E hybrid-state formation. Using a model that explicitly represents all non-hydrogen atoms, we simulated more than 120 spontaneous transitions, where the tRNA molecule is displaced between the P and E sites of the large subunit. In addition to predicting a free-energy landscape that is consistent with previous experimental observations, the simulations reveal how a six-residue gate-like region can limit P/E formation, where sub-angstrom structural perturbations lead to an order-of-magnitude change in kinetics. Thus, this precisely defined set of residues represents a novel target that may be used to control functional dynamics in bacterial ribosomes. This theoretical analysis establishes a direct relationship between ribosome structure and large-scale dynamics, and it suggests how next-generation experiments may precisely dissect the energetics of hybrid formation on the ribosome. The ribosome undergoes multiple large-scale structural rearrangements during protein elongation. Here the authors present an all-atom model of the ribosome to study the energetics of P/E hybrid-state formation, an early conformational rearrangement occurring during translocation.
Collapse
|
10
|
Liu X, Yan Y, Wu H, Zhou C, Wang X. Biological and transcriptomic studies reveal hfq is required for swimming, biofilm formation and stress response in Xanthomonas axonpodis pv. citri. BMC Microbiol 2019; 19:103. [PMID: 31113370 PMCID: PMC6530196 DOI: 10.1186/s12866-019-1476-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/07/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Hfq is a widely conserved bacterial RNA-binding protein which generally mediates the global regulatory activities involv ed in physiological process and virulence. The goal of this study was to characterize the biological function of hfq gene in Xanthomonas axonpodis pv. citri (Xac), the causal agent of citrus canker disease. RESULTS An hfq mutant in Xac was generated by plasmid integration. The loss of hfq resulted in attenuation of bacterial growth, motility and biofilm formation. In addition, the hfq mutation impaired Xac resistance to H2O2 and both high and low pH environments, but did not affect the virulence to citrus. RNA-Seq analyses indicated that Hfq played roles in regulating the expression of 746 genes. In hfq mutant, gene expression related to chemotaxis, secretion system, two-component system, quorum sensing and flagellar assembly were repressed, whereas expression of ribosomal genes were significantly up-regulated. The down-regulated expression of three bacterial chemotaxis related genes and seven flagella genes, which involved in cell growth and biofilm formation, were further validated by RT-qPCR. CONCLUSIONS The study demonstrated that hfq was involved in multiple biological processes in Xac. The results could serve as initiate points for identifying regulatory sRNAs and genes controlled by Hfq-sRNA interactions in Xac.
Collapse
Affiliation(s)
- Xuelu Liu
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, People's Republic of China
| | - Yuping Yan
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, People's Republic of China.,, Present address: Agriculture commission of Guangan district, Guangan, Sichuan, China
| | - Haodi Wu
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, People's Republic of China
| | - Changyong Zhou
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, People's Republic of China
| | - Xuefeng Wang
- National Engineering Research Center for Citrus, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, People's Republic of China.
| |
Collapse
|
11
|
Šponer J, Bussi G, Krepl M, Banáš P, Bottaro S, Cunha RA, Gil-Ley A, Pinamonti G, Poblete S, Jurečka P, Walter NG, Otyepka M. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem Rev 2018; 118:4177-4338. [PMID: 29297679 PMCID: PMC5920944 DOI: 10.1021/acs.chemrev.7b00427] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 12/14/2022]
Abstract
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Collapse
Affiliation(s)
- Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
| | - Giovanni Bussi
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences , Kralovopolska 135 , Brno 612 65 , Czech Republic
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Pavel Banáš
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Department of Biology , University of Copenhagen , Copenhagen 2200 , Denmark
| | - Richard A Cunha
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Alejandro Gil-Ley
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Giovanni Pinamonti
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Simón Poblete
- Scuola Internazionale Superiore di Studi Avanzati , Via Bonomea 265 , Trieste 34136 , Italy
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| | - Nils G Walter
- Single Molecule Analysis Group and Center for RNA Biomedicine, Department of Chemistry , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science , Palacky University Olomouc , 17. listopadu 12 , Olomouc 771 46 , Czech Republic
| |
Collapse
|
12
|
Prabhakar A, Choi J, Wang J, Petrov A, Puglisi JD. Dynamic basis of fidelity and speed in translation: Coordinated multistep mechanisms of elongation and termination. Protein Sci 2017; 26:1352-1362. [PMID: 28480640 DOI: 10.1002/pro.3190] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
Abstract
As the universal machine that transfers genetic information from RNA to protein, the ribosome synthesizes proteins with remarkably high fidelity and speed. This is a result of the accurate and efficient decoding of mRNA codons via multistep mechanisms during elongation and termination stages of translation. These mechanisms control how the correct sense codon is recognized by a tRNA for peptide elongation, how the next codon is presented to the decoding center without change of frame during translocation, and how the stop codon is discriminated for timely release of the nascent peptide. These processes occur efficiently through coupling of chemical energy expenditure, ligand interactions, and conformational changes. Understanding this coupling in detail required integration of many techniques that were developed in the past two decades. This multidisciplinary approach has revealed the dynamic nature of translational control and uncovered how external cellular factors such as tRNA abundance and mRNA modifications affect the synthesis of the protein product. Insights from these studies will aid synthetic biology and therapeutic approaches to translation.
Collapse
Affiliation(s)
- Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305.,Program in Biophysics, Stanford University, Stanford, California, 94305
| | - Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305.,Department of Applied Physics, Stanford University, Stanford, California, 94305
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305
| | - Alexey Petrov
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305
| |
Collapse
|
13
|
Nguyen K, Yang H, Whitford PC. How the Ribosomal A-Site Finger Can Lead to tRNA Species-Dependent Dynamics. J Phys Chem B 2017; 121:2767-2775. [PMID: 28276690 DOI: 10.1021/acs.jpcb.7b01072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteins are synthesized by the joint action of the ribosome and tRNA molecules, where the rate of synthesis can be affected by numerous factors, such as the concentration of tRNA, the binding affinity of tRNA for the ribosome, or post-transcriptional modifications. Here, we expand this range of contributors by demonstrating how differences in tRNA structure can give rise to tRNA species-specific dynamics in the ribosome. To show this, we perform simulations of A/P hybrid-state formation for two tRNA species (tRNAPhe and tRNALeu), which differ in the size of their variable loops (VLs). These calculations reveal that steric interactions between the VL and the ribosomal A-site finger (ASF, i.e., H38 of 23S rRNA) can directly modulate the free-energy landscape for each tRNA species. We also find that tRNA and ASF motions are highly correlated, where fluctuations of the ASF are predictive of tRNA transition events. Finally, by introducing perturbations to the model, we demonstrate that ASF flexibility is a determinant of the rate of A/P hybrid-state formation.
Collapse
Affiliation(s)
- Kien Nguyen
- Department of Physics, Northeastern University , Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Huan Yang
- Department of Physics, Northeastern University , Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Paul C Whitford
- Department of Physics, Northeastern University , Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
14
|
Nguyen K, Whitford PC. Steric interactions lead to collective tilting motion in the ribosome during mRNA-tRNA translocation. Nat Commun 2016; 7:10586. [PMID: 26838673 PMCID: PMC4742886 DOI: 10.1038/ncomms10586] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 12/31/2015] [Indexed: 12/01/2022] Open
Abstract
Translocation of mRNA and tRNA through the ribosome is associated with large-scale rearrangements of the head domain in the 30S ribosomal subunit. To elucidate the relationship between 30S head dynamics and mRNA–tRNA displacement, we apply molecular dynamics simulations using an all-atom structure-based model. Here we provide a statistical analysis of 250 spontaneous transitions between the A/P–P/E and P/P–E/E ensembles. Consistent with structural studies, the ribosome samples a chimeric ap/P–pe/E intermediate, where the 30S head is rotated ∼18°. It then transiently populates a previously unreported intermediate ensemble, which is characterized by a ∼10° tilt of the head. To identify the origins of head tilting, we analyse 781 additional simulations in which specific steric features are perturbed. These calculations show that head tilting may be attributed to specific steric interactions between tRNA and the 30S subunit (PE loop and protein S13). Taken together, this study demonstrates how molecular structure can give rise to large-scale collective rearrangements. During protein elongation, the translocation of mRNA and tRNA molecules across the 30S ribosomal subunit is associated with large-scale motions of the 30S head domain. Here the authors carry out MD simulations to probe the associated steric interactions and identify novel tilting motions during the late stages of translocation.
Collapse
Affiliation(s)
- Kien Nguyen
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | - Paul C Whitford
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
Maracci C, Wohlgemuth I, Rodnina MV. Activities of the peptidyl transferase center of ribosomes lacking protein L27. RNA (NEW YORK, N.Y.) 2015; 21:2047-2052. [PMID: 26475831 PMCID: PMC4647459 DOI: 10.1261/rna.053330.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/04/2015] [Indexed: 06/05/2023]
Abstract
The ribosome is the molecular machine responsible for protein synthesis in all living organisms. Its catalytic core, the peptidyl transferase center (PTC), is built of rRNA, although several proteins reach close to the inner rRNA shell. In the Escherichia coli ribosome, the flexible N-terminal tail of the ribosomal protein L27 contacts the A- and P-site tRNA. Based on computer simulations of the PTC and on previous biochemical evidence, the N-terminal α-amino group of L27 was suggested to take part in the peptidyl-transfer reaction. However, the contribution of this group to catalysis has not been tested experimentally. Here we investigate the role of L27 in peptide-bond formation using fast kinetics approaches. We show that the rate of peptide-bond formation at physiological pH, both with aminoacyl-tRNA or with the substrate analog puromycin, is independent of the presence of L27; furthermore, translation of natural mRNAs is only marginally affected in the absence of L27. The pH dependence of the puromycin reaction is unaltered in the absence of L27, indicating that the N-terminal α-amine is not the ionizing group taking part in catalysis. Likewise, L27 is not required for the peptidyl-tRNA hydrolysis during termination. Thus, apart from the known effect on subunit association, which most likely explains the phenotype of the deletion strains, L27 does not appear to be a key player in the core mechanism of peptide-bond formation on the ribosome.
Collapse
Affiliation(s)
- Cristina Maracci
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| |
Collapse
|
16
|
Świderek K, Marti S, Tuñón I, Moliner V, Bertran J. Peptide Bond Formation Mechanism Catalyzed by Ribosome. J Am Chem Soc 2015; 137:12024-34. [PMID: 26325003 PMCID: PMC4582011 DOI: 10.1021/jacs.5b05916] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this paper we present a study of the peptide bond formation reaction catalyzed by ribosome. Different mechanistic proposals have been explored by means of Free Energy Perturbation methods within hybrid QM/MM potentials, where the chemical system has been described by the M06-2X functional and the environment by means of the AMBER force field. According to our results, the most favorable mechanism in the ribosome would proceed through an eight-membered ring transition state, involving a proton shuttle mechanism through the hydroxyl group of the sugar and a water molecule. This transition state is similar to that described for the reaction in solution (J. Am. Chem. Soc. 2013, 135, 8708-8719), but the reaction mechanisms are noticeably different. Our simulations reproduce the experimentally determined catalytic effect of ribosome that can be explained by the different behavior of the two environments. While the solvent reorganizes during the chemical process involving an entropic penalty, the ribosome is preorganized in the formation of the Michaelis complex and does not suffer important changes along the reaction, dampening the charge redistribution of the chemical system.
Collapse
Affiliation(s)
- Katarzyna Świderek
- Departament de Química Física i Analítica; Universitat Jaume I, 12071 Castellón (Spain)
- Institute of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, (Poland)
| | - Sergio Marti
- Departament de Química Física i Analítica; Universitat Jaume I, 12071 Castellón (Spain)
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjasot, (Spain)
| | - Vicent Moliner
- Departament de Química Física i Analítica; Universitat Jaume I, 12071 Castellón (Spain)
| | - Juan Bertran
- Departament de Química; Universitat Autònoma de Barcelona, 08193 Bellaterra, (Spain)
| |
Collapse
|
17
|
Wall EA, Caufield JH, Lyons CE, Manning KA, Dokland T, Christie GE. Specific N-terminal cleavage of ribosomal protein L27 in Staphylococcus aureus and related bacteria. Mol Microbiol 2014; 95:258-69. [PMID: 25388641 DOI: 10.1111/mmi.12862] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2014] [Indexed: 11/30/2022]
Abstract
Ribosomal protein L27 is a component of the eubacterial large ribosomal subunit that has been shown to play a critical role in substrate stabilization during protein synthesis. This function is mediated by the L27 N-terminus, which protrudes into the peptidyl transferase center. In this report, we demonstrate that L27 in Staphylococcus aureus and other Firmicutes is encoded with an N-terminal extension that is not present in most Gram-negative organisms and is absent from mature ribosomes. We have identified a cysteine protease, conserved among bacteria containing the L27 N-terminal extension, which performs post-translational cleavage of L27. Ribosomal biology in eubacteria has largely been studied in the Gram-negative bacterium Escherichia coli; our findings indicate that there are aspects of the basic biology of the ribosome in S. aureus and other related bacteria that differ substantially from that of the E. coli ribosome. This research lays the foundation for the development of new therapeutic approaches that target this novel pathway.
Collapse
Affiliation(s)
- Erin A Wall
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298, USA
| | | | | | | | | | | |
Collapse
|
18
|
A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Nat Struct Mol Biol 2014; 21:787-93. [PMID: 25132179 PMCID: PMC4156881 DOI: 10.1038/nsmb.2871] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/14/2014] [Indexed: 11/12/2022]
Abstract
During peptide bond formation on the ribosome the α-amine of an aminoacyl-tRNA attacks the ester carbonyl carbon of a peptidyl-tRNA to yield a peptide lengthened by one amino acid. Although the ribosome's contribution to catalysis is predominantly entropic, the lack of high-resolution structural data for the complete active site in complex with full-length ligands has made it difficult to assess how the ribosome might influence the pathway of the reaction. Here, we present crystal structures of pre-attack and post-catalysis complexes of the Thermus thermophilus 70S ribosome at ∼2.6 Å resolution. These structures reveal a network of hydrogen bonds along which proton transfer could take place to ensure the concerted, rate-limiting formation of a tetrahedral intermediate. Unlike earlier models, we propose that the ribosome and the A-site tRNA facilitate the deprotonation of the nucleophile through the activation of a water molecule.
Collapse
|
19
|
Heavy water reduces GFP expression in prokaryotic cell-free assays at the translation level while stimulating its transcription. BIOMED RESEARCH INTERNATIONAL 2013; 2013:592745. [PMID: 24455706 PMCID: PMC3886400 DOI: 10.1155/2013/592745] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/06/2013] [Accepted: 12/06/2013] [Indexed: 11/17/2022]
Abstract
The in vitro proliferation of prokaryotic and eukaryotic cells is remarkably hampered in the presence of heavy water (D2O). Impairment of gene expression at the transcription or translation level can be the base for this effect. However, insights into the underlying mechanisms are lacking. Here, we employ a cell-free expression system for the quantitative analysis of the effect of increasing percentages of D2O on the kinetics of in-vitro GFP expression. Experiments are designed to discriminate the rates of transcription, translation, and protein folding using pDNA and mRNA vectors, respectively. We find that D2O significantly stimulates GFP expression at the transcription level but acts as a suppressor at translation and maturation (folding) in a linear dose-dependent manner. At a D2O concentration of 60%, the GFP expression rate was reduced to 40% of an undisturbed sample. We observed a similar inhibition of GFP expression by D2O in a recombinant Escherichia coli strain, although the inhibitory effect is less pronounced. These results demonstrate the suitability of cell-free systems for quantifying the impact of heavy water on gene expression and establish a platform to further assess the potential therapeutic use of heavy water as antiproliferative agent.
Collapse
|
20
|
Świderek K, Tuñón I, Martí S, Moliner V, Bertrán J. Role of Solvent on Nonenzymatic Peptide Bond Formation Mechanisms and Kinetic Isotope Effects. J Am Chem Soc 2013; 135:8708-19. [DOI: 10.1021/ja403038t] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Katarzyna Świderek
- Institute of Applied Radiation
Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
- Departament de Química
Física, Universitat de València, 46100 Burjassot, Spain
| | - Iñaki Tuñón
- Departament de Química
Física, Universitat de València, 46100 Burjassot, Spain
| | - Sergio Martí
- Departament de Química
Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | - Vicent Moliner
- Departament de Química
Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | - Juan Bertrán
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra,
Spain
| |
Collapse
|
21
|
Acosta-Silva C, Bertran J, Branchadell V, Oliva A. Quantum Mechanical Study on the Mechanism of Peptide Release in the Ribosome. J Phys Chem B 2013; 117:3503-15. [DOI: 10.1021/jp3110248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Carles Acosta-Silva
- Departament de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Joan Bertran
- Departament de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Antoni Oliva
- Departament de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
22
|
Xu J, Zhang JZH, Xiang Y. Ab Initio QM/MM Free Energy Simulations of Peptide Bond Formation in the Ribosome Support an Eight-Membered Ring Reaction Mechanism. J Am Chem Soc 2012; 134:16424-9. [DOI: 10.1021/ja3076605] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jun Xu
- State Key Laboratory of Precision
Spectroscopy, Institute of Theoretical and Computational Science,
Department of Physics, East China Normal University, Shanghai 200062, China
| | - John Z. H. Zhang
- State Key Laboratory of Precision
Spectroscopy, Institute of Theoretical and Computational Science,
Department of Physics, East China Normal University, Shanghai 200062, China
- Department of Chemistry, New York University, New York, New York 10003, United
States
| | - Yun Xiang
- State Key Laboratory of Precision
Spectroscopy, Institute of Theoretical and Computational Science,
Department of Physics, East China Normal University, Shanghai 200062, China
| |
Collapse
|
23
|
Spilman MS, Damle PK, Dearborn AD, Rodenburg CM, Chang JR, Wall EA, Christie GE, Dokland T. Assembly of bacteriophage 80α capsids in a Staphylococcus aureus expression system. Virology 2012; 434:242-50. [PMID: 22980502 DOI: 10.1016/j.virol.2012.08.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 11/26/2022]
Abstract
80α is a temperate, double-stranded DNA bacteriophage of Staphylococcus aureus that can act as a "helper" for the mobilization of S. aureus pathogenicity islands (SaPIs), including SaPI1. When SaPI1 is mobilized by 80α, the SaPI genomes are packaged into capsids that are composed of phage proteins, but that are smaller than those normally formed by the phage. This size determination is dependent on SaPI1 proteins CpmA and CpmB. Here, we show that co-expression of the 80α capsid and scaffolding proteins in S. aureus, but not in E. coli, leads to the formation of procapsid-related structures, suggesting that a host co-factor is required for assembly. The capsid and scaffolding proteins also undergo normal N-terminal processing upon expression in S. aureus, implicating a host protease. We also find that SaPI1 proteins CpmA and CpmB promote the formation of small capsids upon co-expression with 80α capsid and scaffolding proteins in S. aureus.
Collapse
Affiliation(s)
- Michael S Spilman
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Aqvist J, Lind C, Sund J, Wallin G. Bridging the gap between ribosome structure and biochemistry by mechanistic computations. Curr Opin Struct Biol 2012; 22:815-23. [PMID: 22884263 DOI: 10.1016/j.sbi.2012.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/14/2012] [Accepted: 07/09/2012] [Indexed: 11/18/2022]
Abstract
The wealth of structural and biochemical data now available for protein synthesis on the ribosome presents major new challenges for computational biochemistry. Apart from technical difficulties in modeling ribosome systems, the complexity of the overall translation cycle with a multitude of different kinetic steps presents a formidable problem for computational efforts where we have only seen the beginning. However, a range of methodologies including molecular dynamics simulations, free energy calculations, molecular docking and quantum chemical approaches have already been put to work with promising results. In particular, the combined efforts of structural biology, biochemistry, kinetics and computational modeling can lead towards a quantitative structure-based description of translation.
Collapse
Affiliation(s)
- Johan Aqvist
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden.
| | | | | | | |
Collapse
|
25
|
Acosta-Silva C, Bertran J, Branchadell V, Oliva A. Quantum-Mechanical Study on the Mechanism of Peptide Bond Formation in the Ribosome. J Am Chem Soc 2012; 134:5817-31. [DOI: 10.1021/ja209558d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Carles Acosta-Silva
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Joan Bertran
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Antoni Oliva
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
26
|
Lukeš J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW. How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life 2012; 63:528-37. [PMID: 21698757 DOI: 10.1002/iub.489] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Complex cellular machines and processes are commonly believed to be products of selection, and it is typically understood to be the job of evolutionary biologists to show how selective advantage can account for each step in their origin and subsequent growth in complexity. Here, we describe how complex machines might instead evolve in the absence of positive selection through a process of "presuppression," first termed constructive neutral evolution (CNE) more than a decade ago. If an autonomously functioning cellular component acquires mutations that make it dependent for function on another, pre-existing component or process, and if there are multiple ways in which such dependence may arise, then dependence inevitably will arise and reversal to independence is unlikely. Thus, CNE is a unidirectional evolutionary ratchet leading to complexity, if complexity is equated with the number of components or steps necessary to carry out a cellular process. CNE can explain "functions" that seem to make little sense in terms of cellular economy, like RNA editing or splicing, but it may also contribute to the complexity of machines with clear benefit to the cell, like the ribosome, and to organismal complexity overall. We suggest that CNE-based evolutionary scenarios are in these and other cases less forced than the selectionist or adaptationist narratives that are generally told.
Collapse
Affiliation(s)
- Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, České Budĕjovice (Budweis), Czech Republic
| | | | | | | | | |
Collapse
|
27
|
Zhang Z, Sanbonmatsu KY, Voth GA. Key intermolecular interactions in the E. coli 70S ribosome revealed by coarse-grained analysis. J Am Chem Soc 2011; 133:16828-38. [PMID: 21910449 DOI: 10.1021/ja2028487] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ribosome is a very large complex that consists of many RNA and protein molecules and plays a central role in protein biosynthesis in all organisms. Extensive interactions between different molecules are critical to ribosomal functional dynamics. In this work, intermolecular interactions in the Escherichia coli 70S ribosome are investigated by coarse-grained (CG) analysis. CG models are defined to preserve dynamic domains in RNAs and proteins and to capture functional motions in the ribosome, and then the CG sites are connected by harmonic springs, and spring constants are obtained by matching the computed fluctuations to those of an all-atom molecular dynamics (MD) simulation. Those spring constants indicate how strong the interactions are between the ribosomal components, and they are in good agreement with various experimental data. Nearly all the bridges between the small and large ribosomal subunits are indicated by CG interactions with large spring constants. The head of the small subunit is very mobile because it has minimal CG interactions with the rest of the subunit; however, a large number of small subunit proteins bind to maintain the internal structure of the head. The results show a clear connection between the intermolecular interactions and the structural and functional properties of the ribosome because of the reduced complexity in domain-based CG models. The present approach also provides a useful strategy to map interactions between molecules within large biomolecular complexes since it is not straightforward to investigate these by either atomistic MD simulations or residue-based elastic network models.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Department of Chemistry, James Franck Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
28
|
Leung EKY, Suslov N, Tuttle N, Sengupta R, Piccirilli JA. The Mechanism of Peptidyl Transfer Catalysis by the Ribosome. Annu Rev Biochem 2011; 80:527-55. [DOI: 10.1146/annurev-biochem-082108-165150] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Nikolai Suslov
- Department of Biochemistry and Molecular Biology, Chicago, Illinois 60637
| | - Nicole Tuttle
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637;
| | - Raghuvir Sengupta
- Department of Biochemistry, Stanford University, Stanford, California 94305
| | - Joseph Anthony Piccirilli
- Department of Biochemistry and Molecular Biology, Chicago, Illinois 60637
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
29
|
Activation of initiation factor 2 by ligands and mutations for rapid docking of ribosomal subunits. EMBO J 2010; 30:289-301. [PMID: 21151095 DOI: 10.1038/emboj.2010.328] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 11/17/2010] [Indexed: 11/08/2022] Open
Abstract
We previously identified mutations in the GTPase initiation factor 2 (IF2), located outside its tRNA-binding domain, compensating strongly (A-type) or weakly (B-type) for initiator tRNA formylation deficiency. We show here that rapid docking of 30S with 50S subunits in initiation of translation depends on switching 30S subunit-bound IF2 from its inactive to active form. Activation of wild-type IF2 requires GTP and formylated initiator tRNA (fMet-tRNA(i)). In contrast, extensive activation of A-type IF2 occurs with only GTP or with GDP and fMet-tRNA(i), implying a passive role for initiator tRNA as activator of IF2 in subunit docking. The theory of conditional switching of GTPases quantitatively accounts for all our experimental data. We find that GTP, GDP, fMet-tRNA(i) and A-type mutations multiplicatively increase the equilibrium ratio, K, between active and inactive forms of IF2 from a value of 4 × 10(-4) for wild-type apo-IF2 by factors of 300, 8, 80 and 20, respectively. Functional characterization of the A-type mutations provides keys to structural interpretation of conditional switching of IF2 and other multidomain GTPases.
Collapse
|
30
|
Mikulík K, Bobek J, Ziková A, Smětáková M, Bezoušková S. Phosphorylation of ribosomal proteins influences subunit association and translation of poly (U) in Streptomyces coelicolor. MOLECULAR BIOSYSTEMS 2010; 7:817-23. [PMID: 21152561 DOI: 10.1039/c0mb00174k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The occurrence of phosphorylated proteins in ribosomes of Streptomyces coelicolor was investigated. Little is known about which biological functions these posttranslational modifications might fulfil. A protein kinase associated with ribosomes phosphorylated six ribosomal proteins of the small subunit (S3, S4, S12, S13, S14 and S18) and seven ribosomal proteins of the large subunit (L2, L3, L7/L12, L16, L17, L23 and L27). The ribosomal proteins were phosphorylated mainly on the Ser/Thr residues. Phosphorylation of the ribosomal proteins influences ribosomal subunits association. Ribosomes with phosphorylated proteins were used to examine poly (U) translation activity. Phosphorylation induced about 50% decrease in polyphenylalanine synthesis. After preincubation of ribosomes with alkaline phosphatase the activity of ribosomes was greatly restored. Small differences were observed between phosphorylated and unphosphorylated ribosomes in the kinetic parameters of the binding of Phe-tRNA to the A-site of poly (U) programmed ribosomes, suggesting that the initial binding of Phe-tRNA is not significantly affected by phosphorylation. On contrary, the rate of peptidyl transferase was about two-fold lower than that in unphosphorylated ribosomes. The data presented demonstrate that phosphorylation of ribosomal proteins affects critical steps of protein synthesis.
Collapse
Affiliation(s)
- Karel Mikulík
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 4, Videnská 1083, Czech Republic.
| | | | | | | | | |
Collapse
|
31
|
The transition state for peptide bond formation reveals the ribosome as a water trap. Proc Natl Acad Sci U S A 2010; 107:1888-93. [PMID: 20080677 DOI: 10.1073/pnas.0914192107] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent progress in elucidating the peptide bond formation process on the ribosome has led to notion of a proton shuttle mechanism where the 2'-hydroxyl group of the P-site tRNA plays a key role in mediating proton transfer between the nucleophile and leaving group, whereas ribosomal groups do not actively participate in the reaction. Despite these advances, the detailed nature of the transition state for peptidyl transfer and the role of several trapped water molecules in the peptidyl transferase center remain major open questions. Here, we employ high-level quantum chemical ab initio calculations to locate and characterize global transition states for the reaction, described by a molecular model encompassing all the key elements of the reaction center. The calculated activation enthalpy as well as structures are in excellent agreement with experimental data and point to feasibility of an eight-membered "double proton shuttle" mechanism in which an auxiliary water molecule, observed both in computer simulations and crystal structures, actively participates. A second conserved water molecule is found to be of key importance for stabilizing developing negative charge on the substrate oxyanion and its presence is catalytically favorable both in terms of activation enthalpy and entropy. Transition states calculated both for six- and eight-membered mechanisms are invariably late and do not involve significant charge development on the attacking amino group. Predicted kinetic isotope effects consistent with this picture are similar to those observed for uncatalyzed ester aminolysis reactions in solution.
Collapse
|
32
|
Baouz S, Woisard A, Sinapah S, Le Caer JP, Argentini M, Bulygin K, Aguié G, Hountondji C. The human large subunit ribosomal protein L36A-like contacts the CCA end of P-site bound tRNA. Biochimie 2009; 91:1420-5. [DOI: 10.1016/j.biochi.2009.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/24/2009] [Indexed: 10/20/2022]
|
33
|
What recent ribosome structures have revealed about the mechanism of translation. Nature 2009; 461:1234-42. [DOI: 10.1038/nature08403] [Citation(s) in RCA: 533] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 10/01/2009] [Indexed: 11/08/2022]
|
34
|
Banáš P, Jurečka P, Walter NG, Šponer J, Otyepka M. Theoretical studies of RNA catalysis: hybrid QM/MM methods and their comparison with MD and QM. Methods 2009; 49:202-16. [PMID: 19398008 PMCID: PMC2753711 DOI: 10.1016/j.ymeth.2009.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/07/2009] [Accepted: 04/07/2009] [Indexed: 11/28/2022] Open
Abstract
Hybrid QM/MM methods combine the rigor of quantum mechanical (QM) calculations with the low computational cost of empirical molecular mechanical (MM) treatment allowing to capture dynamic properties to probe critical atomistic details of enzyme reactions. Catalysis by RNA enzymes (ribozymes) has only recently begun to be addressed with QM/MM approaches and is thus still a field under development. This review surveys methodology as well as recent advances in QM/MM applications to RNA mechanisms, including those of the HDV, hairpin, and hammerhead ribozymes, as well as the ribosome. We compare and correlate QM/MM results with those from QM and/or molecular dynamics (MD) simulations, and discuss scope and limitations with a critical eye on current shortcomings in available methodologies and computer resources. We thus hope to foster mutual appreciation and facilitate collaboration between experimentalists and theorists to jointly advance our understanding of RNA catalysis at an atomistic level.
Collapse
Affiliation(s)
- Pavel Banáš
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. Svobody 26, 771 46 Olomouc, Czech Republic
| | - Petr Jurečka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. Svobody 26, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| | - Jiří Šponer
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. Svobody 26, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Michal Otyepka
- Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, tr. Svobody 26, 771 46 Olomouc, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, 612 65 Brno, Czech Republic
| |
Collapse
|
35
|
Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat Struct Mol Biol 2009; 16:528-33. [PMID: 19363482 PMCID: PMC2679717 DOI: 10.1038/nsmb.1577] [Citation(s) in RCA: 277] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 02/19/2009] [Indexed: 11/09/2022]
Abstract
Protein synthesis is catalyzed in the peptidyl transferase center (PTC), located in the large (50S) subunit of the ribosome. No high-resolution structure of the intact ribosome has contained a complete active site including both A- and P-site tRNAs. Additionally, though structures of the 50S subunit found no ordered proteins at the PTC, biochemical evidence suggests specific proteins are capable of interacting with the 3′ ends of the tRNA ligands. Here we present structures at 3.5 Å and 3.55 Å resolution of the 70S ribosome in complex with A- and P-site tRNAs that mimic pre- and post-peptidyl transfer states. These structures demonstrate that the PTC is very similar between the 50S subunit and the intact ribosome. Additionally they reveal interactions between ribosomal proteins L16 and L27 and the tRNA substrates, helping to elucidate the role of these proteins in peptidyl transfer.
Collapse
|