1
|
Xia T, Teng K, Liu Y, Guo Y, Huang F, Tahir M, Wang T, Zhong J. A Novel Two-Component Bacteriocin, Acidicin P, and Its Key Residues for Inhibiting Listeria monocytogenes by Targeting the Cell Membrane. Microbiol Spectr 2023; 11:e0521022. [PMID: 37289056 PMCID: PMC10434283 DOI: 10.1128/spectrum.05210-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Listeria monocytogenes is an important pathogen which easily contaminates food and causes fatal systemic infections in human. Bacteriocins have received much attention regarding their natural methods of controlling health-related pathogens. Here, we investigated and characterized a novel two-component bacteriocin named acidicin P from Pediococcus acidilactici LAC5-17. Acidicin P showed obvious antimicrobial activity to L. monocytogenes. Through a sequence similarity network analysis for two-component bacteriocin precursors mined in the RefSeq database, acidicin P was observed to belong to an unusual group of two-component bacteriocins. Acidicin P contains two peptides designated Adpα and Adpβ which are assessed to interact with each other and form a helical dimer structure which can be inserted into the lipid bilayer of target cell membrane. We demonstrate that A5, N7, and G9 in the A5xxxG9 motif of Adpα and S16, R19, and G20 in the S16xxxG20 motif of Adpβ played crucial roles in stabilizing the helix-helix interaction of Adpα and Adpβ and were essential for the antilisterial activity of acidicin P by site-directed mutagenesis. A positive residue, R14, in Adpα and a negative residue, D12, in Adpβ are also important for acidicin P to fight against L. monocytogenes. These key residues are supposed to form hydrogen bonding, which is crucial for the interaction of Adpα and Adpβ. Furthermore, acidicin P induces severe permeabilization and depolarization of the cytoplasmic membrane and causes dramatic changes in L. monocytogenes cell morphology and ultrastructure. Acidicin P has the potential to be applied to inhibit L. monocytogenes efficiently both in the food industry and medical treatments. IMPORTANCE L. monocytogenes can cause widespread food contamination and severe human listeriosis, which amount to a large proportion of the public health and economic burdens. Today, L. monocytogenes is usually treated with chemical compounds in the food industry or antibiotics for human listeriosis. Natural and safe antilisterial agents are urgently required. Bacteriocins are natural antimicrobial peptides that have comparable narrow antimicrobial spectra and are attractive potentials for precision therapy for pathogen infection. In this work, we discover a novel two-component bacteriocin designated acidicin P, which shows obvious antilisterial activity. We also identify the key residues in both peptides of acidicin P and demonstrate that acidicin P is inserted into the target cell membrane and disrupts the cell envelop to inhibit the growth of L. monocytogenes. We believe that acidicin P is a promising lead for further development as an antilisterial drug.
Collapse
Affiliation(s)
- Tianqi Xia
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yayong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yaoqi Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fuqing Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Tahir
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Tianwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- School of Life Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Current status and potentiality of class II bacteriocins from lactic acid bacteria: structure, mode of action and applications in the food industry. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
3
|
Nilsen T, Swedek I, Lagenaur LA, Parks TP. Novel Selective Inhibition of Lactobacillus iners by Lactobacillus-Derived Bacteriocins. Appl Environ Microbiol 2020; 86:e01594-20. [PMID: 32801180 PMCID: PMC7531956 DOI: 10.1128/aem.01594-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
Lactobacillus iners is often associated with vaginal dysbiosis and bacterial vaginosis (BV), which are risk factors for adverse gynecological and obstetric outcomes. To discover natural inhibitors of L. iners, cell-free culture supernatants (CFSs) from 77 vaginal human Lactobacillus strains and 1 human intestinal strain were screened for inhibitory activity. Three active strains were identified, and Lactobacillus paragasseri K7 (K7), a human intestinal strain, produced the most potent L. iners-inhibitory activity. The active material was purified from the K7 CFS and yielded three active peptides, identified as components of two different class IIb, two-peptide bacteriocins, gassericin K7A (GasK7A) and gassericin K7B (GasK7B). The peptides corresponded to the GasK7A α peptide and the GasK7B α and β peptides. While all three peptides exhibited individual activity against L. iners, GasK7B α was the most potent, with an MIC of 23 ng/ml (4 nM). When combined in equal amounts, the GasK7B α and β peptides showed synergistic inhibition, with an MIC of 2 ng/ml (each peptide at 0.4 nM). Among the four major vaginal Lactobacillus species, the K7 bacteriocins selectively inhibited L. iners All 21 strains of L. iners tested (100%) were inhibited by the K7 bacteriocins, whereas <20% of the vaginal Lactobacillus crispatus, L. jensenii, and L. gasseri strains were inhibited. The combination of the BV treatment metronidazole and K7 bacteriocins completely killed both L. iners and Gardnerella vaginalis in a coculture experiment to mimic BV conditions. In contrast, this treatment did not inhibit L. crispatus cultures.IMPORTANCELactobacillus iners is a prevalent species of the vaginal microbiome, but unlike other major vaginal Lactobacillus species, it is not considered protective against BV and can coexist with BV-associated bacteria. L. iners is generally the first Lactobacillus species to emerge following the treatment of BV with metronidazole, and mounting evidence suggests that it may contribute to the onset and maintenance of vaginal dysbiosis. The discovery of highly potent bacteriocins that selectively kill L. iners while sparing protective vaginal lactobacilli may provide novel pharmacological tools to better understand the roles of this enigmatic bacterium in vaginal ecology and potentially lead to new and improved therapies for dysbiosis-related conditions such as BV.
Collapse
|
4
|
Ekblad B, Kristiansen PE. NMR structures and mutational analysis of the two peptides constituting the bacteriocin plantaricin S. Sci Rep 2019; 9:2333. [PMID: 30787405 PMCID: PMC6382864 DOI: 10.1038/s41598-019-38518-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/28/2018] [Indexed: 11/08/2022] Open
Abstract
The structure of the individual peptides of the two-peptide bacteriocin plantaricin S, an antimicrobial peptide produced by a Lactobacillus plantarum strain, has been determined in DPC micelles. The two peptides of plantaricin S, Pls-α and Pls-β, form an α-helix from and including residue 8 to 24 with a less structured region around residue 16-19 and an amphiphilic α-helix from and including residue 7 to 23, respectively. Activity assays on single amino acid-substituted GxxxG and GxxxG-like motifs show that substituting the Ser and Gly residues in the G9xxxG13 motif in Pls-α and the S17xxxG21 motif in Pls-β reduced or drastically reduced the antimicrobial activity. The two-peptide bacteriocin muricidin contains GxxxG-like motifs at similar positions and displays 40-50% amino acid identity with plantaricin S. Activity assays of combinations of the peptides that constitute the bacteriocins plantaricin S and muricidin show that some combinations are highly active. Furthermore, sequence alignments show that the motifs important for plantaricin S activity align with identical motifs in muricidin. Based on sequence comparison and activity assays, a membrane-inserted model of plantaricin S in which the two peptides are oriented antiparallel relative to each other and where the GxxxG and GxxxG-like motifs important for activity come close in space, is proposed.
Collapse
Affiliation(s)
- Bie Ekblad
- Department of Biosciences, University of Oslo, PO Box 1066, Blindern, NO-, 0316, Oslo, Norway
| | - Per Eugen Kristiansen
- Department of Biosciences, University of Oslo, PO Box 1066, Blindern, NO-, 0316, Oslo, Norway.
| |
Collapse
|
5
|
Acedo JZ, Chiorean S, Vederas JC, van Belkum MJ. The expanding structural variety among bacteriocins from Gram-positive bacteria. FEMS Microbiol Rev 2019; 42:805-828. [PMID: 30085042 DOI: 10.1093/femsre/fuy033] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteria use various strategies to compete in an ecological niche, including the production of bacteriocins. Bacteriocins are ribosomally synthesized antibacterial peptides, and it has been postulated that the majority of Gram-positive bacteria produce one or more of these natural products. Bacteriocins can be used in food preservation and are also considered as potential alternatives to antibiotics. The majority of bacteriocins from Gram-positive bacteria had been traditionally divided into two major classes, namely lantibiotics, which are post-translationally modified bacteriocins, and unmodified bacteriocins. The last decade has seen an expanding number of ribosomally synthesized and post-translationally modified peptides (RiPPs) in Gram-positive bacteria that have antibacterial activity. These include linear azol(in)e-containing peptides, thiopeptides, bottromycins, glycocins, lasso peptides and lipolanthines. In addition, the three-dimensional (3D) structures of a number of modified and unmodified bacteriocins have been elucidated in recent years. This review gives an overview on the structural variety of bacteriocins from Gram-positive bacteria. It will focus on the chemical and 3D structures of these peptides, and their interactions with receptors and membranes, structure-function relationships and possible modes of action.
Collapse
Affiliation(s)
- Jeella Z Acedo
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Sorina Chiorean
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| | - Marco J van Belkum
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
6
|
Molecular mechanism of synergy between the antimicrobial peptides PGLa and magainin 2. Sci Rep 2017; 7:13153. [PMID: 29030606 PMCID: PMC5640672 DOI: 10.1038/s41598-017-12599-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/08/2017] [Indexed: 12/19/2022] Open
Abstract
PGLa and magainin 2 (MAG2) are amphiphilic α-helical membranolytic peptides from frog skin with known synergistic antimicrobial activity. By systematically mutating residues in the two peptides it was possible to identify the ones crucial for the synergy, as monitored by biological assays, fluorescence vesicle leakage, and solid-state 15N-NMR. Electrostatic interactions between anionic groups in MAG2 and cationic residues in PGLa enhance synergy but are not necessary for the synergistic effect. Instead, two Gly residues (7 and 11) in a so-called GxxxG motif in PGLa are necessary for synergy. Replacing either of them with Ala or another hydrophobic residue completely abolishes synergy according to all three methods used. The designer-made peptide MSI-103, which has a similar sequence as PGLa, shows no synergy with MAG2, but by introducing two Gly mutations it was possible to make it synergistic. A molecular model is proposed for the functionally active PGLa-MAG2 complex, consisting of a membrane-spanning antiparallel PGLa dimer that is stabilized by intimate Gly-Gly contacts, and where each PGLa monomer is in contact with one MAG2 molecule at its C-terminus.
Collapse
|
7
|
Acedo JZ, Towle KM, Lohans CT, Miskolzie M, McKay RT, Doerksen TA, Vederas JC, Martin-Visscher LA. Identification and three-dimensional structure of carnobacteriocin XY, a class IIb bacteriocin produced by Carnobacteria. FEBS Lett 2017; 591:1349-1359. [PMID: 28391617 DOI: 10.1002/1873-3468.12648] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 11/10/2022]
Abstract
In this study, we report that CbnX (33 residues) and CbnY (29 residues) comprise a class IIb (two-component) bacteriocin in Carnobacteria. Individually, CbnX and CbnY are inactive, but together act synergistically to exert a narrow spectrum of activity. The structures of CbnX and CbnY in structure-inducing conditions were determined and strongly resemble other class IIb bacteriocins (i.e., LcnG, PlnEF, PlnJK). CbnX has an extended, amphipathic α-helix and a flexible C terminus. CbnY has two α-helices (one hydrophobic, one amphipathic) connected by a short loop and a cationic C terminus. CbnX and CbnY do not appear to interact directly and likely require a membrane-bound receptor to facilitate formation of the bacteriocin complex. This is the first class IIb bacteriocin reported for Carnobacteria.
Collapse
Affiliation(s)
- Jeella Z Acedo
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Kaitlyn M Towle
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Mark Miskolzie
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Ryan T McKay
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Thomas A Doerksen
- Department of Chemistry, The King's University, Edmonton, AB, Canada
| | - John C Vederas
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | | |
Collapse
|
8
|
Ekblad B, Kyriakou PK, Oppegård C, Nissen-Meyer J, Kaznessis YN, Kristiansen PE. Structure-Function Analysis of the Two-Peptide Bacteriocin Plantaricin EF. Biochemistry 2016; 55:5106-16. [PMID: 27538436 PMCID: PMC5026404 DOI: 10.1021/acs.biochem.6b00588] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/16/2016] [Indexed: 11/30/2022]
Abstract
Plantaricin EF is a two-peptide bacteriocin that depends on the complementary action of two different peptides (PlnE and PlnF) to function. The structures of the individual peptides have previously been analyzed by nuclear magnetic resonance spectroscopy ( Fimland, N. et al. ( 2008 ) , Biochim. Biophys. Acta 1784 , 1711 - 1719 ), but the bacteriocin structure and how the two peptides interact have not been determined. All two-peptide bacteriocins identified so far contain GxxxG motifs. These motifs, together with GxxxG-like motifs, are known to mediate helix-helix interactions in membrane proteins. We have mutated all GxxxG and GxxxG-like motifs in PlnE and PlnF in order to determine if any of these motifs are important for antimicrobial activity and thus possibly for interactions between PlnE and PlnF. Moreover, the aromatic amino acids Tyr and Trp in PlnE and PlnF were substituted, and four fusion polypeptides were constructed in order to investigate the relative orientation of PlnE and PlnF in target cell membranes. The results obtained with the fusion polypeptides indicate that PlnE and PlnF interact in an antiparallel manner and that the C-terminus of PlnE and N-terminus of PlnF are on the outer part of target cell membranes and the N-terminus of PlnE and C-terminus of PlnF are on the inner part. The preference for an aromatic residue at position 6 in PlnE suggests a positioning of this residue in or near the membrane interface on the cells inside. Mutations in the GxxxG motifs indicate that the G5xxxG9 motif in PlnE and the S26xxxG30 motif in PlnF are involved in helix-helix interactions. Atomistic molecular dynamics simulation of a structural model consistent with the results confirmed the stability of the structure and its orientation in membranes. The simulation approved the anticipated interactions and revealed additional interactions that further increase the stability of the proposed structure.
Collapse
Affiliation(s)
- Bie Ekblad
- Department
of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway
| | - Panagiota K. Kyriakou
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Camilla Oppegård
- Department
of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway
| | - Jon Nissen-Meyer
- Department
of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway
| | - Yiannis N. Kaznessis
- Department
of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Per Eugen Kristiansen
- Department
of Biosciences, University of Oslo, P.O. Box 1066, Blindern, 0316 Oslo, Norway
| |
Collapse
|
9
|
Oppegård C, Kjos M, Veening JW, Nissen-Meyer J, Kristensen T. A putative amino acid transporter determines sensitivity to the two-peptide bacteriocin plantaricin JK. Microbiologyopen 2016; 5:700-8. [PMID: 27150273 PMCID: PMC4985602 DOI: 10.1002/mbo3.363] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/15/2016] [Accepted: 03/23/2016] [Indexed: 11/09/2022] Open
Abstract
Lactobacillus plantarum produces a number of antimicrobial peptides (bacteriocins) that mostly target closely related bacteria. Although bacteriocins are important for the ecology of these bacteria, very little is known about how the peptides target sensitive cells. In this work, a putative membrane protein receptor of the two-peptide bacteriocin plantaricin JK was identified by comparing Illumina sequence reads from plantaricin JK-resistant mutants to a crude assembly of the sensitive wild-type Weissella viridescens genome using the polymorphism discovery tool VAAL. Ten resistant mutants harbored altogether seven independent mutations in a gene encoding an APC superfamily protein with 12 transmembrane helices. The APC superfamily transporter thus is likely to serve as a target for plantaricin JK on sensitive cells.
Collapse
Affiliation(s)
- Camilla Oppegård
- Biochemistry and Molecular Biology Section, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo, 0316, Norway
| | - Morten Kjos
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7 9747 AG, Groningen, The Netherlands
| | - Jan-Willem Veening
- Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7 9747 AG, Groningen, The Netherlands
| | - Jon Nissen-Meyer
- Biochemistry and Molecular Biology Section, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo, 0316, Norway
| | - Tom Kristensen
- Biochemistry and Molecular Biology Section, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, Oslo, 0316, Norway
| |
Collapse
|
10
|
Malik A, Sumayyah S, Yeh CW, Heng NCK. Identification and sequence analysis of pWcMBF8-1, a bacteriocin-encoding plasmid from the lactic acid bacterium Weissella confusa. FEMS Microbiol Lett 2016; 363:fnw059. [PMID: 26976853 DOI: 10.1093/femsle/fnw059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 12/24/2022] Open
Abstract
Members of the Gram-positive lactic acid bacteria (LAB) are well-known for their beneficial properties as starter cultures and probiotics. Many LAB species produce ribosomally synthesized proteinaceous antibiotics (bacteriocins). Weissella confusa MBF8-1 is a strain isolated from a fermented soybean product that not only produces useful exopolysaccharides but also exhibits bacteriocin activity, which we call weissellicin MBF. Here, we show that bacteriocin production by W. confusa MBF8-1 is specified by a large plasmid, pWcMBF8-1. Plasmid pWcMBF8-1 (GenBank accession number KR350502), which was identified from the W. confusa MBF8-1 draft genome sequence, is 17 643 bp in length with a G + C content of 34.8% and contains 25 open reading frames (ORFs). Six ORFs constitute the weissellicin MBF locus, encoding three putative double-glycine-motif peptides (Bac1, Bac2, Bac3), an ABC transporter complex (BacTE) and a putative immunity protein (BacI). Two ORFs encode plasmid partitioning and mobilization proteins, suggesting that pWcMBF8-1 is transferable to other hosts. To the best of our knowledge, plasmid pWcMBF8-1 not only represents the first large Weissella plasmid to be sequenced but also the first to be associated with bacteriocin production in W. confusa.
Collapse
Affiliation(s)
- Amarila Malik
- Division of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Depok 16424, Indonesia
| | - Sumayyah Sumayyah
- Division of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmacy, Universitas Indonesia, UI Depok Campus, Depok 16424, Indonesia
| | - Chia-Wen Yeh
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 647, Dunedin 9054, New Zealand
| | - Nicholas C K Heng
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, PO Box 647, Dunedin 9054, New Zealand
| |
Collapse
|
11
|
Ge J, Sun Y, Xin X, Wang Y, Ping W. Purification and Partial Characterization of a Novel Bacteriocin Synthesized by Lactobacillus paracasei HD1-7 Isolated from Chinese Sauerkraut Juice. Sci Rep 2016; 6:19366. [PMID: 26763314 PMCID: PMC4725913 DOI: 10.1038/srep19366] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/11/2015] [Indexed: 11/09/2022] Open
Abstract
Bacteriocins have antimicrobial activities against food-spoiling bacteria and food-borne pathogens. Paracin 1.7, a bacteriocin synthesized by Lactobacillus paracasei HD1-7 isolated from Chinese sauerkraut juice, was studied. Following partial purification with ammonium sulfate precipitation, CM Sepharose Fast Flow, and Sephadex G-10 chromatography, the molecular weight of Paracin 1.7 was about 10 kDa based on Tricine-SDS-PAGE results. A 2.87 fold purified bacteriocin was produced, reaching a final yield of 39.93% and the specific activity of 1.56 × 10(3) AU/mg. The N-terminal amino acid sequence of Paracin 1.7 was VSNTFFA, and the LC/LTQ results revealed that the N-terminal amino acid sequence was similar to that of ABC-type oligopeptide transport system protein and N-acetylmuramoyl-L-alanine amidase. Paracin 1.7 was sensitive to protease K, had antimicrobial activities at a broad pH range (3.0-8.0), and was heat resistant (121 °C for 20 min). Paracin 1.7 from Lactobacillus paracasei HD1-7 is a novel bacteriocin that has potential applications in food preservation.
Collapse
Affiliation(s)
- Jingping Ge
- Heilongjiang University, Harbin, Heilongjiang, China
| | - Yanyang Sun
- Heilongjiang University, Harbin, Heilongjiang, China
| | - Xing Xin
- Heilongjiang University, Harbin, Heilongjiang, China
| | - Ying Wang
- Heilongjiang University, Harbin, Heilongjiang, China
| | - Wenxiang Ping
- Heilongjiang University, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Kyriakou PK, Ekblad B, Kristiansen PE, Kaznessis YN. Interactions of a class IIb bacteriocin with a model lipid bilayer, investigated through molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:824-35. [PMID: 26774214 DOI: 10.1016/j.bbamem.2016.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 01/15/2023]
Abstract
The emergence of antibiotic resistant microorganisms poses an alarming threat to global health. Antimicrobial peptides (AMPs) are considered a possible effective alternative to conventional antibiotic therapies. An understanding of the mechanism of action of AMPs is needed in order to better control and optimize their bactericidal activity. Plantaricin EF is a heterodimeric AMP, consisting of two peptides Plantaricin E (PlnE) and Plantaricin F (PlnF). We studied the behavior of these peptides on the surface of a model lipid bilayer. We identified the residues that facilitate peptide-peptide interactions. We also identified residues that mediate interactions of the dimer with the membrane. PlnE interacts with the membrane through amino acids at both its termini, while only the N terminus of PlnF approaches the membrane. By comparing the activity of single-site mutants of the two-peptide bacteriocin and the simulations of the bacteriocin on the surface of a model lipid bilayer, structure activity relationships are proposed. These studies allow us to generate hypotheses that relate biophysical interactions observed in simulations with the experimentally measured activity. We find that single-site amino acid substitutions result in markedly stronger antimicrobial activity when they strengthen the interactions between the two peptides, while, concomitantly, they weaken peptide-membrane association. This effect is more pronounced in the case of the PlnE mutant (G20A), which interacts the strongest with PlnF and the weakest with the membrane while displaying the highest activity.
Collapse
Affiliation(s)
- Panagiota K Kyriakou
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States
| | - Bie Ekblad
- Department of Biosciences, University of Oslo, Post box 1041 Blindern, 0316 Oslo, Norway
| | - Per Eugen Kristiansen
- Department of Biosciences, University of Oslo, Post box 1041 Blindern, 0316 Oslo, Norway
| | - Yiannis N Kaznessis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
13
|
Ishibashi N, Shigeri Y, Sonomoto K, Zendo T, Koga S. Molecular characterization of the genes involved in the secretion and immunity of lactococcin Q, a two-peptide bacteriocin produced by Lactococcus lactis QU 4. Microbiology (Reading) 2015; 161:2069-78. [DOI: 10.1099/mic.0.000157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Pal G, Srivastava S. In vitro activity of a recombinant ABC transporter protein in the processing of plantaricin E pre-peptide. Arch Microbiol 2015; 197:843-9. [PMID: 26018217 DOI: 10.1007/s00203-015-1120-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 05/16/2015] [Accepted: 05/19/2015] [Indexed: 11/27/2022]
Abstract
Most bacteriocins of lactic acid bacteria (LAB) are initially synthesized as pre-peptides with an N-terminal extension (leader peptides). Generally, the precursor peptides containing a double-glycine-type leader are processed by a dedicated ATP-binding cassette (ABC) transporter. The ABC transporter and an accessory protein lead to the cleavage of inactive pre-peptide with the concomitant export of the mature peptide across the cytoplasmic membrane. Plantaricins E, F, J, and K belong to class IIb 2-peptide bacteriocins and are synthesized as pre-peptides containing N-terminal G-G leader peptide. In this study, the heterologous expression, purification, and characterization of PlnE pre-peptide, ABC transporter (PlnG), and accessory protein (PlnH) from Lactobacillus plantarum LR/14 in Escherichia coli BL21 (DE3) strain were reported. An in vitro assay was conducted with the inactive PlnE pre-peptide, which after cleavage by the addition of ABC transporter protein exhibited antimicrobial activity against some LAB species. The activity of cleaved pre-peptide was comparable to the activity of mature peptide. Accessory protein was also heterologously expressed and purified; however, no effect on processing activity was detected by the addition of the accessory protein, which suggests that accessory protein is not involved in cleavage, but it might help in the transport of mature plantaricins across the membrane.
Collapse
Affiliation(s)
- Gargi Pal
- Department of Genetics, University of Delhi South Campus, New Delhi, 110021, India
| | | |
Collapse
|
15
|
Carlier L, Joanne P, Khemtémourian L, Lacombe C, Nicolas P, El Amri C, Lequin O. Investigating the role of GXXXG motifs in helical folding and self-association of plasticins, Gly/Leu-rich antimicrobial peptides. Biophys Chem 2015; 196:40-52. [DOI: 10.1016/j.bpc.2014.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/16/2014] [Accepted: 09/19/2014] [Indexed: 12/24/2022]
|
16
|
Kjos M, Oppegård C, Diep DB, Nes IF, Veening JW, Nissen-Meyer J, Kristensen T. Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesis. Mol Microbiol 2014; 92:1177-87. [PMID: 24779486 DOI: 10.1111/mmi.12632] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2014] [Indexed: 11/30/2022]
Abstract
Most bacterially produced antimicrobial peptides (bacteriocins) are thought to kill target cells by a receptor-mediated mechanism. However, for most bacteriocins the receptor is unknown. For instance, no target receptor has been identified for the two-peptide bacteriocins (class IIb), whose activity requires the combined action of two individual peptides. To identify the receptor for the class IIb bacteriocin lactococcin G, which targets strains of Lactococcus lactis, we generated 12 lactococcin G-resistant mutants and performed whole-genome sequencing to identify mutations causing the resistant phenotype. Remarkably, all had a mutation in or near the gene uppP (bacA), encoding an undecaprenyl pyrophosphate phosphatase; a membrane protein involved in peptidoglycan synthesis. Nine mutants had stop codons or frameshifts in the uppP gene, two had point mutations in putative regulatory regions and one caused an amino acid substitution in UppP. To verify the receptor function of UppP, it was shown that growth of non-sensitive Streptococcus pneumoniae could be inhibited by lactococcin G when L. lactis uppP was expressed in this bacterium. Furthermore, we show that the related class IIb bacteriocin enterocin 1071 also uses UppP as receptor. The approach used here should be broadly applicable to identify receptors for other bacteriocins as well.
Collapse
Affiliation(s)
- Morten Kjos
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway; Molecular Genetics Group, Groningen Biomolecular Sciences and Biotechnology Institute, Centre for Synthetic Biology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
A putative transmembrane leucine zipper of agrobacterium VirB10 is essential for t-pilus biogenesis but not type IV secretion. J Bacteriol 2013; 195:3022-34. [PMID: 23625845 DOI: 10.1128/jb.00287-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Agrobacterium tumefaciens VirB/VirD4 type IV secretion system is composed of a translocation channel and an extracellular T pilus. Bitopic VirB10, the VirB7 lipoprotein, and VirB9 interact to form a cell envelope-spanning structural scaffold termed the "core complex" that is required for the assembly of both structures. The related pKM101-encoded core complex is composed of 14 copies each of these VirB homologs, and the transmembrane (TM) α helices of VirB10-like TraF form a 55-Å-diameter ring at the inner membrane. Here, we report that the VirB10 TM helix possesses two types of putative dimerization motifs, a GxxxA (GA4) motif and two leucine (Leu1, Leu2) zippers. Mutations in the Leu1 motif disrupted T-pilus biogenesis, but these or other mutations in the GA4 or Leu2 motif did not abolish substrate transfer. Replacement of the VirB10 TM domain with a nondimerizing poly-Leu/Ala TM domain sequence also blocked pilus production but not substrate transfer or formation of immunoprecipitable complexes with the core subunits VirB7 and VirB9 and the substrate receptor VirD4. The VirB10 TM helix formed weak homodimers in Escherichia coli, as determined with the TOXCAT assay, whereas replacement of the VirB10 TM helix with the strongly dimerizing TM helix from glycophorin A blocked T-pilus biogenesis in A. tumefaciens. Our findings support a model in which VirB10's TM helix contributes to the assembly or activity of the translocation channel as a weakly self-interacting membrane anchor but establishes a heteromeric TM-TM helix interaction via its Leu1 motif that is critical for T-pilus biogenesis.
Collapse
|
18
|
Kjos M, Borrero J, Opsata M, Birri DJ, Holo H, Cintas LM, Snipen L, Hernández PE, Nes IF, Diep DB. Target recognition, resistance, immunity and genome mining of class II bacteriocins from Gram-positive bacteria. Microbiology (Reading) 2011; 157:3256-3267. [DOI: 10.1099/mic.0.052571-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Due to their very potent antimicrobial activity against diverse food-spoiling bacteria and pathogens and their favourable biochemical properties, peptide bacteriocins from Gram-positive bacteria have long been considered promising for applications in food preservation or medical treatment. To take advantage of bacteriocins in different applications, it is crucial to have detailed knowledge on the molecular mechanisms by which these peptides recognize and kill target cells, how producer cells protect themselves from their own bacteriocin (self-immunity) and how target cells may develop resistance. In this review we discuss some important recent progress in these areas for the non-lantibiotic (class II) bacteriocins. We also discuss some examples of how the current wealth of genome sequences provides an invaluable source in the search for novel class II bacteriocins.
Collapse
Affiliation(s)
- Morten Kjos
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Juan Borrero
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Mona Opsata
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Dagim J. Birri
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Helge Holo
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Luis M. Cintas
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Lars Snipen
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Pablo E. Hernández
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Ingolf F. Nes
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Dzung B. Diep
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
19
|
Ospina A, Lagunas-Martínez A, Pardo J, Carrodeguas JA. Protein oligomerization mediated by the transmembrane carboxyl terminal domain of Bcl-XL. FEBS Lett 2011; 585:2935-42. [PMID: 21856303 PMCID: PMC7164028 DOI: 10.1016/j.febslet.2011.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/28/2011] [Accepted: 08/09/2011] [Indexed: 12/22/2022]
Abstract
Bcl-XL is a pro-survival member of the Bcl-2 family that can be found in the outer mitochondrial membrane and in soluble cytosolic homodimers. Bcl-XL can bind pro-apoptotic members of this family preventing them from activating the execution phase of apoptosis. Bcl-XL has been shown to homodimerize in different ways, although most binding and structural assays have been carried out in the absence of its carboxyl terminal transmembrane domain. We show here that this domain can by itself direct protein oligomerization, which could be related to its previously reported role in mitochondrial morphology alterations and apoptosis inhibition. Structured summary of protein interactions Vamp2 physically interacts with Vamp2 by blue native page (View interaction) Vamp2 physically interacts with Vamp2 by cross-linking study (View interaction) Bcl-Xl physically interacts with Bcl-Xl by blue native page (View interaction) Bcl-Xl physically interacts with Bcl-Xl by cross-linking study (View interaction)
Collapse
Affiliation(s)
- Angélica Ospina
- Institute for Biocomputation and Physics of Complex Systems, Edificio I+D, University of Zaragoza, Zaragoza, Spain
| | | | | | | |
Collapse
|
20
|
Soliman W, Wang L, Bhattacharjee S, Kaur K. Structure-activity relationships of an antimicrobial peptide plantaricin s from two-peptide class IIb bacteriocins. J Med Chem 2011; 54:2399-408. [PMID: 21388140 DOI: 10.1021/jm101540e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Class IIb bacteriocins are ribosomally synthesized antimicrobial peptides comprising two different peptides synergistically acting in equal amounts for optimal potency. In this study, we demonstrate for the first time potent (nanomolar) antimicrobial activity of a representative class IIb bacteriocin, plantaricin S (Pls), against four pathogenic gram-positive bacteria, including Listeria monocytogenes. The structure-activity relationships for Pls were studied using activity assays, circular dichroism (CD), and molecular dynamics (MD) simulations. The two Pls peptides and five Pls derived fragments were synthesized. The CD spectra of the Pls and selected fragments revealed helical conformations in aqueous 2,2,2-trifluoroethanol. The MD simulations showed that when the two Pls peptides are in antiparallel orientation, the helical regions interact and align, mediated by strong attraction between conserved GxxxG/AxxxA motifs. The results strongly correlate with the antimicrobial activity suggesting that helix-helix alignment of the two Pls peptides and interaction between the conserved motifs are crucial for interaction with the target cell membrane.
Collapse
Affiliation(s)
- Wael Soliman
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, T6G 2N8, Canada
| | | | | | | |
Collapse
|
21
|
Insights into the functionality of the putative residues involved in enterocin AS-48 maturation. Appl Environ Microbiol 2010; 76:7268-76. [PMID: 20833793 DOI: 10.1128/aem.01154-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AS-48 is a 70-residue, α-helical, cationic bacteriocin produced by Enterococcus faecalis and is very singular in its circular structure and its broad antibacterial spectrum. The AS-48 preprotein consists of an N-terminal signal peptide (SP) (35 residues) followed by a proprotein moiety that undergoes posttranslational modifications to yield the mature and active circular protein. For the study of the specificity of the region of AS-48 that is responsible for maturation, three single mutants have been generated by site-directed mutagenesis in the as-48A structural gene. The substitutions were made just in the residues that are thought to constitute a recognition site for the SP cleavage enzyme (His-1, Met1) and in those involved in circularization (Met1, Trp70). Each derivative was expressed in the enterococcal JH2-2 strain containing the necessary native biosynthetic machinery for enterocin production. The importance of these derivatives in AS-48 processing has been evaluated on the basis of the production and structural characterization of the corresponding derivatives. Notably, only two of them (Trp70Ala and Met1Ala derivatives) could be purified in different forms and amounts and are characterized for their bactericidal activity and secondary structure. We could not detect any production of AS-48 in JH2-2(pAM401-81(His-1Ile)) by using the conventional chromatographic techniques, despite the high efficiency of the culture conditions applied to produce this enterocin. Our results underline the different important roles of the mutated residues in (i) the elimination of the SP, (ii) the production levels and antibacterial activity of the mature proteins, and (iii) protein circularization. Moreover, our findings suggest that His-1 is critically involved in cleavage site recognition, its substitution being responsible for the blockage of processing, thereby hampering the production of the specific protein in the cellular culture supernatant.
Collapse
|
22
|
Zendo T, Yoneyama F, Sonomoto K. Lactococcal membrane-permeabilizing antimicrobial peptides. Appl Microbiol Biotechnol 2010; 88:1-9. [PMID: 20645082 DOI: 10.1007/s00253-010-2764-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/02/2010] [Accepted: 07/04/2010] [Indexed: 11/26/2022]
Abstract
A number of lactococcal antimicrobial peptides, bacteriocins have been discovered and characterized. Since Lactococcus spp. are generally regarded as safe bacteria, their bacteriocins are expected for various application uses. Most of lactococcal bacteriocins exert antimicrobial activity via membrane permeabilization. The most studied and prominent bacteriocin, nisin A is characterized in the high activity and has been utilized as food preservatives for more than half a century. Recently, other lactococcal bacteriocins such as lacticin Q were found to have distinguished features for further applications as the next generation to nisin.
Collapse
Affiliation(s)
- Takeshi Zendo
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | |
Collapse
|
23
|
Synthesis of trypsin-resistant variants of the Listeria-active bacteriocin salivaricin P. Appl Environ Microbiol 2010; 76:5356-62. [PMID: 20581174 DOI: 10.1128/aem.00523-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two-component salivaricin P-like bacteriocins have demonstrated potential as antimicrobials capable of controlling infections in the gastrointestinal tract (GIT). The anti-Listeria activity of salivaricin P is optimal when the individual peptides Sln1 and Sln2 are added in succession at a 1:1 ratio. However, as degradation by digestive proteases may compromise the functionality of these peptides within the GIT, we investigated the potential to create salivaricin variants with enhanced resistance to the intestinal protease trypsin. A total of 11 variants of the salivaricin P components, in which conservative modifications at the trypsin-specific cleavage sites were explored in order to protect the peptides from trypsin degradation while maintaining their potent antimicrobial activity, were generated. Analysis of these variants revealed that eight were resistant to trypsin digestion while retaining antimicrobial activity. Combining the complementary trypsin-resistant variants Sln1-5 and Sln2-3 resulted in a MIC(50) of 300 nM against Listeria monocytogenes, a 3.75-fold reduction in activity compared to the level for wild-type salivaricin P. This study demonstrates the potential of engineering bacteriocin variants which are resistant to specific protease action but which retain significant antimicrobial activity.
Collapse
|
24
|
Oppegård C, Rogne P, Kristiansen PE, Nissen-Meyer J. Structure analysis of the two-peptide bacteriocin lactococcin G by introducing d-amino acid residues. Microbiology (Reading) 2010; 156:1883-1889. [DOI: 10.1099/mic.0.038430-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The importance of 3D structuring in the N- and C-terminal ends of the two peptides (39-mer LcnG-α and 35-mer LcnG-β) that constitute the two-peptide bacteriocin lactococcin G was analysed by replacing residues in the end regions with the corresponding d-isomeric residues. When assayed for antibacterial activity in combination with the complementary wild-type peptide, LcnG-α with four d-residues in its C-terminal region and LcnG-β with four d-residues in either its N- or its C-terminal region were relatively active (two- to 20-fold reduction in activity). 3D structuring of the C-terminal region in LcnG-α and the C- and N-terminal regions in LcnG-β is thus not particularly critical for retaining antibacterial activity, indicating that the 3D structure of these regions is not vital for interpeptide interactions or for interactions between the peptides and cellular components. The 3D structure of the N-terminal region in LcnG-α may be more important, as LcnG-α with four N-terminal d-residues was the least active of these four peptides (10- to 100-fold reduction in activity). The results are consistent with a proposed structural model of lactococcin G in which LcnG-α and -β form a transmembrane parallel helix–helix structure involving approximately 20 residues in each peptide, starting near the N terminus of LcnG-α and at about residue 13 in LcnG-β. Upon expressing the lactococcin G immunity protein, sensitive target cells became resistant to all of these d-residue-containing peptides. The end regions of the two lactococcin G peptides are consequently not involved in essential structure-dependent interactions with the immunity protein. The relatively high activity of most of the d-residue-containing peptides suggests that bacteriocins with increased resistance to exopeptidases may be generated by replacing their N- and C-terminal residues with d-residues.
Collapse
Affiliation(s)
- Camilla Oppegård
- Department of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, 0316 Oslo, Norway
| | - Per Rogne
- Department of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, 0316 Oslo, Norway
| | - Per Eugen Kristiansen
- Department of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, 0316 Oslo, Norway
| | - Jon Nissen-Meyer
- Department of Molecular Biosciences, University of Oslo, PO Box 1041 Blindern, 0316 Oslo, Norway
| |
Collapse
|
25
|
Pollack JD, Pan X, Pearl DK. Concentration of specific amino acids at the catalytic/active centers of highly-conserved "housekeeping" enzymes of central metabolism in archaea, bacteria and Eukaryota: is there a widely conserved chemical signal of prebiotic assembly? ORIGINS LIFE EVOL B 2010; 40:273-302. [PMID: 20069373 DOI: 10.1007/s11084-009-9188-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 11/04/2009] [Indexed: 10/20/2022]
Abstract
In alignments of 1969 protein sequences the amino acid glycine and others were found concentrated at most-conserved sites within approximately 15 A of catalytic/active centers (C/AC) of highly conserved kinases, dehydrogenases or lyases of Archaea, Bacteria and Eukaryota. Lysine and glutamic acid were concentrated at least-conserved sites furthest from their C/ACs. Logistic-regression analyses corroborated the "movement" of glycine towards and lysine away from their C/ACs: the odds of a glycine occupying a site were decreased by 19%, while the odds for a lysine were increased by 53%, for every 10 A moving away from the C/AC. Average conservation of MSA consensus sites was highest surrounding the C/AC and directly decreased in transition toward model's peripheries. Findings held with statistical confidence using sequences restricted to individual Domains or enzyme classes or to both. Our data describe variability in the rate of mutation and likelihoods for phylogenetic trees based on protein sequence data and endorse the extension of substitution models by incorporating data on conservation and distance to C/ACs rather than only using cumulative levels. The data support the view that in the most-conserved environment immediately surrounding the C/AC of taxonomically distant and highly conserved essential enzymes of central metabolism there are amino acids whose identity and degree of occupancy is similar to a proposed amino acid set and frequency associated with prebiotic evolution.
Collapse
Affiliation(s)
- J Dennis Pollack
- Department of Molecular Virology, Immunology and Medical Genetics, The College of Medicine, The Ohio State University, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
26
|
The lactococcin G immunity protein recognizes specific regions in both peptides constituting the two-peptide bacteriocin lactococcin G. Appl Environ Microbiol 2009; 76:1267-73. [PMID: 20038710 DOI: 10.1128/aem.02600-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcin G and enterocin 1071 are two homologous two-peptide bacteriocins. Expression vectors containing the gene encoding the putative lactococcin G immunity protein (lagC) or the gene encoding the enterocin 1071 immunity protein (entI) were constructed and introduced into strains sensitive to one or both of the bacteriocins. Strains that were sensitive to lactococcin G became immune to lactococcin G when expressing the putative lactococcin G immunity protein, indicating that the lagC gene in fact encodes a protein involved in lactococcin G immunity. To determine which peptide or parts of the peptide(s) of each bacteriocin that are recognized by the cognate immunity protein, combinations of wild-type peptides and hybrid peptides from the two bacteriocins were assayed against strains expressing either of the two immunity proteins. The lactococcin G immunity protein rendered the enterococcus strain but not the lactococcus strains resistant to enterocin 1071, indicating that the functionality of the immunity protein depends on a cellular component. Moreover, regions important for recognition by the immunity protein were identified in both peptides (Lcn-alpha and Lcn-beta) constituting lactococcin G. These regions include the N-terminal end of Lcn-alpha (residues 1 to 13) and the C-terminal part of Lcn-beta (residues 14 to 24). According to a previously proposed structural model of lactococcin G, these regions will be positioned adjacent to each other in the transmembrane helix-helix structure, and the model thus accommodates the present results.
Collapse
|
27
|
Nissen-Meyer J, Oppegård C, Rogne P, Haugen HS, Kristiansen PE. Structure and Mode-of-Action of the Two-Peptide (Class-IIb) Bacteriocins. Probiotics Antimicrob Proteins 2009; 2:52-60. [PMID: 20383320 PMCID: PMC2850506 DOI: 10.1007/s12602-009-9021-z] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
This review focuses on the structure and mode-of-action of the two-peptide (class-IIb) bacteriocins that consist of two different peptides whose genes are next to each other in the same operon. Optimal antibacterial activity requires the presence of both peptides in about equal amounts. The two peptides are synthesized as preforms that contain a 15–30 residue double-glycine-type N-terminal leader sequence that is cleaved off at the C-terminal side of two glycine residues by a dedicated ABC-transporter that concomitantly transfers the bacteriocin peptides across cell membranes. Two-peptide bacteriocins render the membrane of sensitive bacteria permeable to a selected group of ions, indicating that the bacteriocins form or induce the formation of pores that display specificity with respect to the transport of molecules. Based on structure–function studies, it has been proposed that the two peptides of two-peptide bacteriocins form a membrane-penetrating helix–helix structure involving helix–helix-interacting GxxxG-motifs that are present in all characterized two-peptide bacteriocins. It has also been suggested that the membrane-penetrating helix–helix structure interacts with an integrated membrane protein, thereby triggering a conformational alteration in the protein, which in turn causes membrane-leakage. This proposed mode-of-action is similar to the mode-of-action of the pediocin-like (class-IIa) bacteriocins and lactococcin A (a class-IId bacteriocin), which bind to a membrane-embedded part of the mannose phosphotransferase permease in a manner that causes membrane-leakage and cell death.
Collapse
Affiliation(s)
- Jon Nissen-Meyer
- Department of Molecular Biosciences, University of Oslo, Blindern, Post box 1041, 0316 Oslo, Norway
| | | | | | | | | |
Collapse
|
28
|
Rogne P, Haugen C, Fimland G, Nissen-Meyer J, Kristiansen PE. Three-dimensional structure of the two-peptide bacteriocin plantaricin JK. Peptides 2009; 30:1613-21. [PMID: 19538999 DOI: 10.1016/j.peptides.2009.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/05/2009] [Accepted: 06/05/2009] [Indexed: 11/28/2022]
Abstract
The three-dimensional structures of the two peptides, PlnJ and PlnK, that constitutes the two-peptide bacteriocin plantaricin JK have been solved in water/TFE and water/DPC-micellar solutions using nuclear magnetic resonance (NMR) spectroscopy. PlnJ, a 25 residue peptide, has an N-terminal amphiphilic alpha-helix between Trp-3 and Tyr-15. The 32 residues long PlnK forms a central amphiphilic alpha-helix between Gly-9 and Leu-24. Measurements of the effect on anti-microbial activity of single glycine replacements in PlnJ and PlnK show that Gly-13 and Gly-17 in both peptides are very sensitive, giving more than a 100-fold reduction in activity when large residues replace glycine. In variants where other glycine residues, Gly-20 in PlnJ and Gly-7, Gly-9, Gly-24 and Gly-25 in PlnK, were replaced, the activity was reduced less than 10-fold. It is proposed that the detrimental effect on activity when exchanging Gly-13 and Gly-17 in PlnJ and PlnK is a result of reduced ability of the two peptides to interact through the GxxxG-motifs constituting Gly-13 and Gly-17.
Collapse
Affiliation(s)
- Per Rogne
- Department of Molecular Biosciences, University of Oslo, Blindern, Oslo, Norway.
| | | | | | | | | |
Collapse
|
29
|
Diep DB, Straume D, Kjos M, Torres C, Nes IF. An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides 2009; 30:1562-74. [PMID: 19465075 DOI: 10.1016/j.peptides.2009.05.014] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/13/2009] [Accepted: 05/13/2009] [Indexed: 12/29/2022]
Abstract
The pln locus responsible for bacteriocin biosynthesis in Lactobacillus plantarum C11 was first unraveled about 15 years ago and since then different strains of L. plantarum (NC8, WCFS1, J23 and J51) have been found to harbor mosaic pln loci in their genomes. Each locus is of 18-19kb and contains 22-25 genes organized into 5-6 operons. Together these strains produce four different class IIb two-peptide bacteriocins, plantaricins EF, JK, NC8 and J51 and a pheromone peptide plantaricin A with antimicrobial activity. Their production has been found to be regulated through a quorum-sensing based network consisting of a secreted peptide pheromone, a membrane-located sensor and one or two transcription regulators. The individual loci each contain a set of semi-conserved regulated promoters with subtle differences necessary for the regulators to regulate their promoter activity individually with respect to timing and strength. These subtle differences in the promoters are highly conserved across the different pln loci, in a functionally related manner. In this review we will discuss various aspects of these bacteriocin loci with special focus on their mosaic genetic composition, gene regulation and mode of action. We also present a novel pln locus containing a transposon of the MULE superfamily, a mobile element which has not been described in L. plantarum before.
Collapse
Affiliation(s)
- Dzung B Diep
- Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science, N-1432 As, Norway.
| | | | | | | | | |
Collapse
|