• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643723)   Today's Articles (469)   Subscriber (50640)
For: Xu L, Mu W, Ding Y, Luo Z, Han Q, Bi F, Wang Y, Song Q. Active site of Escherichia coli DNA photolyase: Asn378 is crucial both for stabilizing the neutral flavin radical cofactor and for DNA repair. Biochemistry 2008;47:8736-43. [PMID: 18652481 DOI: 10.1021/bi800391j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Number Cited by Other Article(s)
1
Hosokawa Y, Morita H, Nakamura M, Yamamoto J. A deazariboflavin chromophore kinetically stabilizes reduced FAD state in a bifunctional cryptochrome. Sci Rep 2023;13:16682. [PMID: 37794070 PMCID: PMC10551024 DOI: 10.1038/s41598-023-43930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]  Open
2
Wen B, Xu L, Tang Y, Jiang Z, Ge M, Liu L, Zhu G. A single amino acid residue tunes the stability of the fully reduced flavin cofactor and photorepair activity in photolyases. J Biol Chem 2022;298:102188. [PMID: 35753350 PMCID: PMC9356274 DOI: 10.1016/j.jbc.2022.102188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022]  Open
3
Chen S, Liu C, Zhou C, Wei Z, Li Y, Xiong L, Yan L, Lv J, Shen L, Xu L. Identification and characterization of a prokaryotic 6-4 photolyase from Synechococcus elongatus with a deazariboflavin antenna chromophore. Nucleic Acids Res 2022;50:5757-5771. [PMID: 35639925 PMCID: PMC9178010 DOI: 10.1093/nar/gkac416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/16/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]  Open
4
Gindt YM, Connolly G, Vonder Haar AL, Kikhwa M, Schelvis JPM. Investigation of the pH-dependence of the oxidation of FAD in VcCRY-1, a member of the cryptochrome-DASH family. Photochem Photobiol Sci 2021;20:831-841. [PMID: 34091863 DOI: 10.1007/s43630-021-00063-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022]
5
Holub D, Kubař T, Mast T, Elstner M, Gillet N. What accounts for the different functions in photolyases and cryptochromes: a computational study of proton transfers to FAD. Phys Chem Chem Phys 2019;21:11956-11966. [PMID: 31134233 DOI: 10.1039/c9cp00694j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
6
Xu L, Wen B, Shao W, Yao P, Zheng W, Zhou Z, Zhang Y, Zhu G. Impacts of Cys392, Asp393, and ATP on the FAD Binding, Photoreduction, and the Stability of the Radical State of Chlamydomonas reinhardtii Cryptochrome. Chembiochem 2019;20:940-948. [PMID: 30548754 DOI: 10.1002/cbic.201800660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Indexed: 12/16/2022]
7
Kavakli IH, Ozturk N, Gul S. DNA repair by photolyases. DNA Repair (Amst) 2019;115:1-19. [DOI: 10.1016/bs.apcsb.2018.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
8
Xu L, Wen B, Wang Y, Tian C, Wu M, Zhu G. Residues at a Single Site Differentiate Animal Cryptochromes from Cyclobutane Pyrimidine Dimer Photolyases by Affecting the Proteins' Preferences for Reduced FAD. Chembiochem 2017;18:1129-1137. [PMID: 28393477 DOI: 10.1002/cbic.201700145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 12/29/2022]
9
Wijaya IMM, Domratcheva T, Iwata T, Getzoff ED, Kandori H. Single Hydrogen Bond Donation from Flavin N5 to Proximal Asparagine Ensures FAD Reduction in DNA Photolyase. J Am Chem Soc 2016;138:4368-76. [PMID: 27002596 DOI: 10.1021/jacs.5b10533] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
10
The molecular origin of high DNA-repair efficiency by photolyase. Nat Commun 2015;6:7302. [PMID: 26065359 DOI: 10.1038/ncomms8302] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 04/24/2015] [Indexed: 11/08/2022]  Open
11
Paulus B, Bajzath C, Melin F, Heidinger L, Kromm V, Herkersdorf C, Benz U, Mann L, Stehle P, Hellwig P, Weber S, Schleicher E. Spectroscopic characterization of radicals and radical pairs in fruit fly cryptochrome - protonated and nonprotonated flavin radical-states. FEBS J 2015;282:3175-89. [PMID: 25879256 DOI: 10.1111/febs.13299] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/21/2015] [Accepted: 04/14/2015] [Indexed: 01/05/2023]
12
Khrenova MG, Nemukhin AV, Domratcheva T. Theoretical Characterization of the Flavin-Based Fluorescent Protein iLOV and its Q489K Mutant. J Phys Chem B 2015;119:5176-83. [DOI: 10.1021/acs.jpcb.5b01299] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
13
Xu L, Tian C, Lu X, Ling L, Lv J, Wu M, Zhu G. Photoreactivation of Escherichia coli is impaired at high growth temperatures. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015;147:37-46. [PMID: 25839748 DOI: 10.1016/j.jphotobiol.2015.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
14
Li C, Ma L, Mou S, Wang Y, Zheng Z, Liu F, Qi X, An M, Chen H, Miao J. Cyclobutane pyrimidine dimers photolyase from extremophilic microalga: remarkable UVB resistance and efficient DNA damage repair. Mutat Res 2015;773:37-42. [PMID: 25769185 DOI: 10.1016/j.mrfmmm.2014.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/13/2014] [Accepted: 07/18/2014] [Indexed: 10/24/2022]
15
Crystal structure of a prokaryotic (6-4) photolyase with an Fe-S cluster and a 6,7-dimethyl-8-ribityllumazine antenna chromophore. Proc Natl Acad Sci U S A 2013;110:7217-22. [PMID: 23589886 DOI: 10.1073/pnas.1302377110] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
16
Benjdia A. DNA photolyases and SP lyase: structure and mechanism of light-dependent and independent DNA lyases. Curr Opin Struct Biol 2012;22:711-20. [PMID: 23164663 DOI: 10.1016/j.sbi.2012.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/30/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
17
Burney S, Wenzel R, Kottke T, Roussel T, Hoang N, Bouly JP, Bittl R, Heberle J, Ahmad M. Single Amino Acid Substitution Reveals Latent Photolyase Activity inArabidopsiscry1. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
18
Burney S, Wenzel R, Kottke T, Roussel T, Hoang N, Bouly JP, Bittl R, Heberle J, Ahmad M. Single Amino Acid Substitution Reveals Latent Photolyase Activity inArabidopsiscry1. Angew Chem Int Ed Engl 2012;51:9356-60. [DOI: 10.1002/anie.201203476] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Indexed: 11/11/2022]
19
Hitomi K, Arvai AS, Yamamoto J, Hitomi C, Teranishi M, Hirouchi T, Yamamoto K, Iwai S, Tainer JA, Hidema J, Getzoff ED. Eukaryotic class II cyclobutane pyrimidine dimer photolyase structure reveals basis for improved ultraviolet tolerance in plants. J Biol Chem 2011;287:12060-9. [PMID: 22170053 DOI: 10.1074/jbc.m111.244020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]  Open
20
Kiontke S, Geisselbrecht Y, Pokorny R, Carell T, Batschauer A, Essen LO. Crystal structures of an archaeal class II DNA photolyase and its complex with UV-damaged duplex DNA. EMBO J 2011;30:4437-49. [PMID: 21892138 DOI: 10.1038/emboj.2011.313] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 08/02/2011] [Indexed: 01/29/2023]  Open
21
Damiani MJ, Nostedt JJ, O'Neill MA. Impact of the N5-proximal Asn on the thermodynamic and kinetic stability of the semiquinone radical in photolyase. J Biol Chem 2010;286:4382-91. [PMID: 21131361 DOI: 10.1074/jbc.m110.194696] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]  Open
22
Iwata T, Zhang Y, Hitomi K, Getzoff ED, Kandori H. Key dynamics of conserved asparagine in a cryptochrome/photolyase family protein by fourier transform infrared spectroscopy. Biochemistry 2010;49:8882-91. [PMID: 20828134 DOI: 10.1021/bi1009979] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
23
Xu L, Zhu G. The Roles of Several Residues of Escherichia coli DNA Photolyase in the Highly Efficient Photo-Repair of Cyclobutane Pyrimidine Dimers. J Nucleic Acids 2010;2010. [PMID: 20871655 PMCID: PMC2939405 DOI: 10.4061/2010/794782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2010] [Revised: 07/07/2010] [Accepted: 08/07/2010] [Indexed: 11/20/2022]  Open
24
Brettel K, Byrdin M. Reaction mechanisms of DNA photolyase. Curr Opin Struct Biol 2010;20:693-701. [PMID: 20705454 DOI: 10.1016/j.sbi.2010.07.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
25
Rich RL, Myszka DG. Grading the commercial optical biosensor literature-Class of 2008: 'The Mighty Binders'. J Mol Recognit 2010;23:1-64. [PMID: 20017116 DOI: 10.1002/jmr.1004] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
26
Damiani MJ, Yalloway GN, Lu J, McLeod NR, O'Neill MA. Kinetic stability of the flavin semiquinone in photolyase and cryptochrome-DASH. Biochemistry 2009;48:11399-411. [PMID: 19888752 DOI: 10.1021/bi901371s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
27
Functional motifs in the (6-4) photolyase crystal structure make a comparative framework for DNA repair photolyases and clock cryptochromes. Proc Natl Acad Sci U S A 2009;106:6962-7. [PMID: 19359474 DOI: 10.1073/pnas.0809180106] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
28
Balland V, Byrdin M, Eker APM, Ahmad M, Brettel K. What Makes the Difference between a Cryptochrome and DNA Photolyase? A Spectroelectrochemical Comparison of the Flavin Redox Transitions. J Am Chem Soc 2008;131:426-7. [DOI: 10.1021/ja806540j] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA