1
|
Park B, Oh S, Jo S, Kang D, Lim J, Jung Y, Lee H, Jun SC. Determination of the molecular assembly of actin and actin-binding proteins using photoluminescence. Colloids Surf B Biointerfaces 2018; 169:462-469. [DOI: 10.1016/j.colsurfb.2018.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/26/2018] [Accepted: 05/19/2018] [Indexed: 11/27/2022]
|
2
|
Sears EJ, Gillis TE. A functional comparison of cardiac troponin C from representatives of three vertebrate taxa: Linking phylogeny and protein function. Comp Biochem Physiol B Biochem Mol Biol 2016; 202:8-15. [PMID: 27453566 DOI: 10.1016/j.cbpb.2016.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 11/25/2022]
Abstract
The Ca2+ affinity of cardiac troponin C (cTnC) from rainbow trout is significantly greater than that of cTnC from mammalian species. This high affinity is thought to enable cardiac function in trout at low physiological temperatures and is due to residues Asn2, Ile28, Gln29, and Asp30 (Gillis et al., 2005, Physiol Genomics, 22, 1-7). Interestingly, the cTnC of the African clawed frog Xenopus laevis (frog cTnC) contains Gln29 and Asp30 but the residues at positions 2 and 28 are those found in all mammalian cTnC isoforms (Asp2 and Val28). The purpose of this study was to determine the Ca2+ affinity of frog cTnC, and to determine how these three protein orthologs influence the function of complete troponin complexes. Measurements of Ca2+ affinity and the rate of Ca2+ dissociation from the cTnC isoforms and cTn complexes were made by monitoring the fluorescence of anilinonapthalenesulfote iodoacetamide (IAANS) engineered into the cTnC isoforms to report changes in protein conformation. The results demonstrate that the Ca2+ affinity of frog cTnC is greater than that of trout cTnC and human cTnC. We also found that replacing human cTnC with frog cTnC in a mammalian cTn complex increased the Ca2+ affinity of the complex by 5-fold, which is also greater than complexes containing trout cTnC. Together these results suggest that frog cTnC has the potential to increase the Ca2+ sensitivity of force generation by the mammalian heart.
Collapse
Affiliation(s)
- Elizabeth J Sears
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; Cardiovasclar Research Center, University of Guelph, Canada
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; Cardiovasclar Research Center, University of Guelph, Canada.
| |
Collapse
|
3
|
Bhargav SP, Vahokoski J, Kumpula EP, Kursula I. Crystallization and preliminary structural characterization of the two actin isoforms of the malaria parasite. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1171-6. [PMID: 24100575 PMCID: PMC3792683 DOI: 10.1107/s174430911302441x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 09/02/2013] [Indexed: 11/10/2022]
Abstract
Malaria is a devastating disease caused by apicomplexan parasites of the genus Plasmodium that use a divergent actin-powered molecular motor for motility and invasion. Plasmodium actin differs from canonical actins in sequence, structure and function. Here, the purification, crystallization and secondary-structure analysis of the two Plasmodium actin isoforms are presented. The recombinant parasite actins were folded and could be purified to homogeneity. Plasmodium actins I and II were crystallized in complex with the gelsolin G1 domain; the crystals diffracted to resolutions of 1.19 and 2.2 Å and belonged to space groups P2₁2₁2₁ and P2₁, respectively, each with one complex in the asymmetric unit.
Collapse
Affiliation(s)
| | - Juha Vahokoski
- Department of Biochemistry, University of Oulu, PO Box 3000, 90014 Oulu, Finland
| | - Esa-Pekka Kumpula
- Department of Biochemistry, University of Oulu, PO Box 3000, 90014 Oulu, Finland
- Centre for Structural Systems Biology (CSSB), Helmholtz Centre for Infection Research and German Electron Synchrotron (DESY), Building 25b, Notkestrasse 85, 22607 Hamburg, Germany
| | - Inari Kursula
- Department of Biochemistry, University of Oulu, PO Box 3000, 90014 Oulu, Finland
- Centre for Structural Systems Biology (CSSB), Helmholtz Centre for Infection Research and German Electron Synchrotron (DESY), Building 25b, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
4
|
Kardos R, Nevalainen E, Nyitrai M, Hild G. The effect of ADF/cofilin and profilin on the dynamics of monomeric actin. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2010-9. [PMID: 23845993 DOI: 10.1016/j.bbapap.2013.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 05/22/2013] [Accepted: 06/13/2013] [Indexed: 11/19/2022]
Abstract
The main goal of the work was to uncover the dynamical changes in actin induced by the binding of cofilin and profilin. The change in the structure and flexibility of the small domain and its function in the thermodynamic stability of the actin monomer were examined with fluorescence spectroscopy and differential scanning calorimetry (DSC). The structure around the C-terminus of actin is slightly affected by the presence of cofilin and profilin. Temperature dependent fluorescence resonance energy transfer measurements indicated that both actin binding proteins decreased the flexibility of the protein matrix between the subdomains 1 and 2. Time resolved anisotropy decay measurements supported the idea that cofilin and profilin changed similarly the dynamics around the fluorescently labeled Cys-374 and Lys-61 residues in subdomains 1 and 2, respectively. DSC experiments indicated that the thermodynamic stability of actin increased by cofilin and decreased in the presence of profilin. Based on the information obtained it is possible to conclude that while the small domain of actin acts uniformly in the presence of cofilin and profilin the overall stability of actin changes differently in the presence of the studied actin binding proteins. The results support the idea that the small domain of actin behaves as a rigid unit during the opening and closing of the nucleotide binding pocket in the presence of profilin and cofilin as well. The structural arrangement of the nucleotide binding cleft mainly influences the global stability of actin while the dynamics of the different segments can change autonomously.
Collapse
Affiliation(s)
- Roland Kardos
- University of Pécs, Medical School, Department of Biophysics, Szigeti str. 12, Pécs H-7624, Hungary; Szentágothai Research Center, Ifjúság str. 34, Pécs H-7624, Hungary
| | | | | | | |
Collapse
|
5
|
Subdomain location of mutations in cardiac actin correlate with type of functional change. PLoS One 2012; 7:e36821. [PMID: 22590617 PMCID: PMC3348139 DOI: 10.1371/journal.pone.0036821] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 04/15/2012] [Indexed: 11/19/2022] Open
Abstract
Determining the molecular mechanisms that lead to the development of heart failure will help us gain better insight into the most costly health problem in the Western world. To understand the roles that the actin protein plays in the development of heart failure, we have taken a systematic approach toward characterizing human cardiac actin mutants that have been associated with either hypertrophic or dilated cardiomyopathy. Seven known cardiac actin mutants were expressed in a baculovirus system, and their intrinsic properties were studied. In general, the changes to the properties of the actin proteins themselves were subtle. The R312H variant exhibited reduced stability, with a Tm of 53.6°C compared to 56.8°C for WT actin, accompanied with increased polymerization critical concentration and Pi release rate, and a marked increase in nucleotide release rates. Substitution of methionine for leucine at amino acid 305 showed no impact on the stability, nucleotide release rates, or DNase-I inhibition ability of the actin monomer; however, during polymerization, a 2-fold increase in Pi release was observed. Increases to both the Tm and DNase-I inhibition activity suggested interactions between E99K actin molecules under monomer-promoting conditions. Y166C actin had a higher critical concentration resulting in a lower Pi release rate due to reduced filament-forming potential. The locations of mutations on the ACTC protein correlated with the molecular effects; in general, mutations in subdomain 3 affected the stability of the ACTC protein or affect the polymerization of actin filaments, while mutations in subdomains 1 and 4 more likely affect protein-protein interactions.
Collapse
|
6
|
Perieteanu AA, Visschedyk DD, Merrill AR, Dawson JF. ADP-ribosylation of cross-linked actin generates barbed-end polymerization-deficient F-actin oligomers. Biochemistry 2010; 49:8944-54. [PMID: 20795716 DOI: 10.1021/bi1008062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Actin filament subunit interfaces are required for the proper interaction between filamentous actin (F-actin) and actin binding proteins (ABPs). The production of small F-actin complexes mimicking such interfaces would be a significant advance toward understanding the atomic interactions between F-actin and its many binding partners. We produced actin lateral dimers and trimers derived from F-actin and rendered polymerization-deficient by ADP-ribosylation of Arg-177. The degree of modification resulted in a moderate reduction in thermal stability. Calculated hydrodynamic radii were comparable to theoretical values derived from recent models of F-actin. Filament capping capabilities were retained and yielded pointed-end dissociation constants similar those of wild-type actin, suggesting native or near-native interfaces on the oligomers. Changes in DNase I binding affinity under low and high ionic strength suggested a high degree of conformational flexibility in the dimer and trimer. Polymer nucleation activity was lost upon ADP-ribosylation and rescued upon enzyme-mediated deADP-ribosylation, or upon binding to gelsolin, suggesting that interactions with actin binding proteins can overcome the inhibiting activities of ADP-ribosylation. The combined strategy of chemical cross-linking and ADP-ribosylation provides a minimalistic and reversible approach to engineering polymerization-deficient F-actin oligomers that are able to act as F-actin binding protein scaffolds.
Collapse
|
7
|
Pivovarova AV, Khaitlina SY, Levitsky DI. Specific cleavage of the DNase-I binding loop dramatically decreases the thermal stability of actin. FEBS J 2010; 277:3812-22. [PMID: 20718862 DOI: 10.1111/j.1742-4658.2010.07782.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Differential scanning calorimetry was used to investigate the thermal unfolding of actin specifically cleaved within the DNaseI-binding loop between residues Met47-Gly48 or Gly42-Val43 by two bacterial proteases, subtilisin or ECP32/grimelysin (ECP), respectively. The results obtained show that both cleavages strongly decreased the thermal stability of monomeric actin with either ATP or ADP as a bound nucleotide. An even more pronounced difference in the thermal stability between the cleaved and intact actin was observed when both actins were polymerized into filaments. Similar to intact F-actin, both cleaved F-actins were significantly stabilized by phalloidin and aluminum fluoride; however, in all cases, the thermal stability of the cleaved F-actins was much lower than that of intact F-actin, and the stability of ECP-cleaved F-actin was lower than that of subtilisin-cleaved F-actin. These results confirm that the DNaseI-binding loop is involved in the stabilization of the actin structure, both in monomers and in the filament subunits, and suggest that the thermal stability of actin depends, at least partially, on the conformation of the nucleotide-binding cleft. Moreover, an additional destabilization of the unstable cleaved actin upon ATP/ADP replacement provides experimental evidence for the highly dynamic actin structure that cannot be simply open or closed, but rather should be considered as being able to adopt multiple conformations.
Collapse
|
8
|
|
9
|
Pengelly K, Loncar A, Perieteanu AA, Dawson JF. Cysteine engineering of actin self-assembly interfaces. Biochem Cell Biol 2009; 87:663-75. [DOI: 10.1139/o09-012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Holmes model of filamentous actin (F-actin) and recent structural studies suggest specific atomic interactions between F-actin subunits. We tested these interactions through a cysteine-engineering approach with the goal of inhibiting filament formation by introducing chemical groups at sites important for polymerization. We substituted surface amino acids on the actin molecule with cysteine residues and tested the effect of producing these actin mutant proteins in a yeast expression system. The intrinsic folding and polymerization characteristics of the cysteine-engineered actin proteins were measured. The effect of chemical modification of the introduced cysteine residues on the polymerization of the actin mutant proteins was also examined. Modification of cysteine residues with large hydrophobic reagents resulted in polymerization inhibition. We examined the finding that the D288C actin protein does not polymerize under oxidizing conditions and forms protein aggregates when magnesium and EGTA are present. Chemical crosslinking experiments revealed the presence of a lower dimer when only D288C actin was present. When both D288C and A204C actin were present, crosslinking experiments support the proximity of Asp288 on the barbed end of one subunit to Ala204 on the pointed end of a neighboring subunit in the Holmes model of F-actin.
Collapse
Affiliation(s)
- Kate Pengelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ana Loncar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alex A. Perieteanu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - John F. Dawson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|