1
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
2
|
Guo C, Yao X, Wang K, Wang J, Wang Y. Comparison of HIV-1 Gag and NCp7 in their selectivity for package signal, affinity for stem-loop 3, and Zn 2+ content. Biochimie 2020; 179:135-145. [PMID: 32987107 DOI: 10.1016/j.biochi.2020.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag recognizes viral packaging signal (Psi) specifically via its nucleocapsid (NC) domain, resulting in the encapsidation of two copies of genomic RNA (gRNA) into the viral particle. The NCp7, which is cleaved from Gag during viral maturation, is a nucleic acid chaperone, coating and protecting the gRNA. In this study, an RT-qPCR-based approach was developed to quantitatively compare the Psi-selectivity of Gag and NCp7 in the presence of bacterial or 293T total RNAs. The binding affinity of Gag and NCp7 to the stem-loop (SL) 3 of Psi was also compared using surface plasmon resonance. We found that Gag selected more Psi-RNA than NCp7 from both E. coli BL21 (DE3) and in vitro binding reactions, and Gag bound to SL3-RNA with a higher affinity than NCp7. Moreover, Gag contained two Zn2+ whereas NCp7 contained one. The N-terminal zinc-finger motif of NCp7 lost most of its Zn2+-binding activity. Deletion of N-terminal amino acids 1-11 of NCp7 resulted in increased Psi-selectivity, SL3-affinity and Zn2+ content. These results indicated that Zn2+ coordination of Gag is critical for Psi-binding and selection. Removal of Zn2+ from the first zinc-finger motif during or after Gag cleavage to generate mature NCp7 might serve as a switch to regulate the functions of Gag NC domain and mature NCp7. Our study will be helpful to elucidate the important roles that Zn2+ plays in the viral life cycle, and may benefit further investigations of the function of HIV-1 Gag and NCp7.
Collapse
Affiliation(s)
- Chao Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Xiaohong Yao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Kangkang Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Jinzhong Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin, 300457, China.
| | - Ying Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin, 300457, China.
| |
Collapse
|
3
|
Li J, Zhang Y, Zhang H, Xuan X, Xie M, Xia S, Qu G, Guo H. Nucleoside-Based Ultrasensitive Fluorescent Probe for the Dual-Mode Imaging of Microviscosity in Living Cells. Anal Chem 2016; 88:5554-60. [DOI: 10.1021/acs.analchem.6b01395] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jianping Li
- Key Laboratory of Green Chemical
Media and Reactions, Ministry of Education, Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yanyan Zhang
- Key Laboratory of Green Chemical
Media and Reactions, Ministry of Education, Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Hua Zhang
- Key Laboratory of Green Chemical
Media and Reactions, Ministry of Education, Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiaopeng Xuan
- Key Laboratory of Green Chemical
Media and Reactions, Ministry of Education, Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Mingsheng Xie
- Key Laboratory of Green Chemical
Media and Reactions, Ministry of Education, Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shuang Xia
- Key Laboratory of Green Chemical
Media and Reactions, Ministry of Education, Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guirong Qu
- Key Laboratory of Green Chemical
Media and Reactions, Ministry of Education, Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Haiming Guo
- Key Laboratory of Green Chemical
Media and Reactions, Ministry of Education, Collaborative Innovation
Center of Henan Province for Green Manufacturing of Fine Chemicals,
School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Sun Y, Borbat PP, Grigoryants VM, Myers WK, Freed JH, Scholes CP. Pulse dipolar ESR of doubly labeled mini TAR DNA and its annealing to mini TAR RNA. Biophys J 2015; 108:893-902. [PMID: 25692594 DOI: 10.1016/j.bpj.2014.12.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/07/2014] [Accepted: 12/03/2014] [Indexed: 12/27/2022] Open
Abstract
Pulse dipolar electron-spin resonance in the form of double electron electron resonance was applied to strategically placed, site-specifically attached pairs of nitroxide spin labels to monitor changes in the mini TAR DNA stem-loop structure brought on by the HIV-1 nucleocapsid protein NCp7. The biophysical structural evidence was at Ångstrom-level resolution under solution conditions not amenable to crystallography or NMR. In the absence of complementary TAR RNA, double labels located in both the upper and the lower stem of mini TAR DNA showed in the presence of NCp7 a broadened distance distribution between the points of attachment, and there was evidence for several conformers. Next, when equimolar amounts of mini TAR DNA and complementary mini TAR RNA were present, NCp7 enhanced the annealing of their stem-loop structures to form duplex DNA-RNA. When duplex TAR DNA-TAR RNA formed, double labels initially located 27.5 Å apart at the 3'- and 5'-termini of the 27-base mini TAR DNA relocated to opposite ends of a 27 bp RNA-DNA duplex with 76.5 Å between labels, a distance which was consistent with the distance between the two labels in a thermally annealed 27-bp TAR DNA-TAR RNA duplex. Different sets of double labels initially located 26-27 Å apart in the mini TAR DNA upper stem, appropriately altered their interlabel distance to ~35 Å when a 27 bp TAR DNA-TAR RNA duplex formed, where the formation was caused either through NCp7-induced annealing or by thermal annealing. In summary, clear structural evidence was obtained for the fraying and destabilization brought on by NCp7 in its biochemical function as an annealing agent and for the detailed structural change from stem-loop to duplex RNA-DNA when complementary RNA was present.
Collapse
Affiliation(s)
- Yan Sun
- Department of Chemistry, University at Albany, State University of New York, Albany, New York
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca, New York
| | - Vladimir M Grigoryants
- Department of Chemistry, University at Albany, State University of New York, Albany, New York
| | - William K Myers
- Department of Chemistry, University at Albany, State University of New York, Albany, New York
| | - Jack H Freed
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca, New York
| | - Charles P Scholes
- Department of Chemistry, University at Albany, State University of New York, Albany, New York.
| |
Collapse
|
5
|
Ouyang W, Okaine S, McPike MP, Lin Y, Borer PN. Probing the RNA Binding Surface of the HIV-1 Nucleocapsid Protein by Site-Directed Mutagenesis. Biochemistry 2013; 52:3358-68. [DOI: 10.1021/bi400125z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Wei Ouyang
- Graduate
Program in Structural Biology, Biochemistry, and Biophysics and ‡Department of
Chemistry, Syracuse University, Syracuse, New York 13244-4100, United States
| | - Stephen Okaine
- Graduate
Program in Structural Biology, Biochemistry, and Biophysics and ‡Department of
Chemistry, Syracuse University, Syracuse, New York 13244-4100, United States
| | - Mark P. McPike
- Graduate
Program in Structural Biology, Biochemistry, and Biophysics and ‡Department of
Chemistry, Syracuse University, Syracuse, New York 13244-4100, United States
| | - Yong Lin
- Graduate
Program in Structural Biology, Biochemistry, and Biophysics and ‡Department of
Chemistry, Syracuse University, Syracuse, New York 13244-4100, United States
| | - Philip N. Borer
- Graduate
Program in Structural Biology, Biochemistry, and Biophysics and ‡Department of
Chemistry, Syracuse University, Syracuse, New York 13244-4100, United States
| |
Collapse
|
6
|
Sun Y, Zhang Z, Grigoryants VM, Myers WK, Liu F, Earle KA, Freed JH, Scholes CP. The internal dynamics of mini c TAR DNA probed by electron paramagnetic resonance of nitroxide spin-labels at the lower stem, the loop, and the bulge. Biochemistry 2012; 51:8530-41. [PMID: 23009298 DOI: 10.1021/bi301058q] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Electron paramagnetic resonance (EPR) at 236.6 and 9.5 GHz probed the tumbling of nitroxide spin probes in the lower stem, in the upper loop, and near the bulge of mini c TAR DNA. High-frequency 236.6 GHz EPR, not previously applied to spin-labeled oligonucleotides, was notably sensitive to fast, anisotropic, hindered local rotational motion of the spin probe, occurring approximately about the NO nitroxide axis. Labels attached to the 2'-aminocytidine sugar in the mini c TAR DNA showed such anisotropic motion, which was faster in the lower stem, a region previously thought to be partially melted. More flexible labels attached to phosphorothioates at the end of the lower stem tumbled isotropically in mini c TAR DNA, mini TAR RNA, and ψ(3) RNA, but at 5 °C, the motion became more anisotropic for the labeled RNAs, implying more order within the RNA lower stems. As observed by 9.5 GHz EPR, the slowing of nanosecond motions of large segments of the oligonucleotide was enhanced by increasing the ratio of the nucleocapsid protein NCp7 to mini c TAR DNA from 0 to 2. The slowing was most significant at labels in the loop and near the bulge. At a 4:1 ratio of NCp7 to mini c TAR DNA, all labels reported tumbling times of >5 ns, indicating a condensation of NCp7 and TAR DNA. At the 4:1 ratio, pulse dipolar EPR spectroscopy of bilabels attached near the 3' and 5' termini showed evidence of an NCp7-induced increase in the 3'-5' end-to-end distance distribution and a partially melted stem.
Collapse
Affiliation(s)
- Yan Sun
- Department of Chemistry, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bell NM, Kenyon JC, Balasubramanian S, Lever AML. Comparative structural effects of HIV-1 Gag and nucleocapsid proteins in binding to and unwinding of the viral RNA packaging signal. Biochemistry 2012; 51:3162-9. [PMID: 22448757 DOI: 10.1021/bi2017969] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The major RNA binding region of the HIV-1 Gag polyprotein is the nucleocapsid (NC) domain, which is responsible for the specific capture of the genomic RNA genome during viral assembly. The Gag polyprotein has other RNA chaperone functions, which are mirrored by the isolated NC protein after physiological cleavage from Gag. Gag, however, is suggested to have superior nucleic acid chaperone activity. Here we investigate the interaction of Gag and NC with the core RNA structure of the HIV-1 packaging signal (Ψ), using 2-aminopurine substitution to create a series of modified RNAs based on the Ψ helix loop structure. The effects of 2-aminopurine substitution on the physical and structural properties of the viral Ψ were characterized. The fluorescence properties of the 2-aminopurine substitutions showed features consistent with the native GNAR tetraloop. Dissociation constants (K(d)) of the two viral proteins, measured by fluorescence polarization (FP), were similar, and both NC and Gag affected the 2-aminopurine fluorescence of bases close to the loop binding region in a similar fashion. However, the influence of Gag on the fluorescence of the 2-aminopurine nucleotides at the base of the helix implied a much more potent helix destabilizing action on the RNA stem loop (SL) versus that seen with NC. This was further supported when the viral Ψ SL was tagged with a 5' fluorophore and 3' quencher. In the absence of any viral protein, minimal fluorescence was detected; addition of NC yielded a slight increase in fluorescence, while addition of the Gag protein yielded a large change in fluorescence, further suggesting that, compared to NC, the Gag protein has a greater propensity to affect RNA structure and that Ψ helix unwinding may be an intrinsic step in RNA encapsidation.
Collapse
Affiliation(s)
- Neil M Bell
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 OQQ, UK
| | | | | | | |
Collapse
|
8
|
Flexible nature and specific functions of the HIV-1 nucleocapsid protein. J Mol Biol 2011; 410:565-81. [PMID: 21762801 DOI: 10.1016/j.jmb.2011.03.037] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/14/2011] [Accepted: 03/17/2011] [Indexed: 01/04/2023]
Abstract
One salient feature of reverse transcription in retroviruses, notably in the human immunodeficiency virus type 1, is that it requires the homologous nucleocapsid (NC) protein acting as a chaperoning partner of the genomic RNA template and the reverse transcriptase, from the initiation to the completion of viral DNA synthesis. This short review on the NC protein of human immunodeficiency virus type 1 aims at briefly presenting the flexible nature of NC protein, how it interacts with nucleic acids via its invariant zinc fingers and flanking basic residues, and the possible mechanisms that account for its multiple functions in the early steps of virus replication, notably in the obligatory strand transfer reactions during viral DNA synthesis by the reverse transcriptase enzyme.
Collapse
|
9
|
Nguyen P, Qin PZ. RNA dynamics: perspectives from spin labels. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:62-72. [PMID: 21882345 DOI: 10.1002/wrna.104] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dynamics are important and indispensible physical attributes that play essential roles in RNA function. RNA dynamics are complex, spanning vast timescales, and encompassing a large number of physical modes. The technique of site-directed spin labeling (SDSL), which derives information on local structural and dynamic features of a macromolecule by monitoring a chemically stable nitroxide radical using electron paramagnetic resonance spectroscopy, has been applied to monitor intrinsic dynamics at defined structural states as well as to probe conformational transition dynamics of RNAs. The current state of SDSL studies of RNA dynamics is summarized here. Further development and application of SDSL promise to open up many more opportunities for probing RNA dynamics and connecting dynamics to structure and function.
Collapse
Affiliation(s)
- Phuong Nguyen
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
10
|
Ricci A, Marinello J, Bortolus M, Sánchez A, Grandas A, Pedroso E, Pommier Y, Capranico G, Maniero AL, Zagotto G. Electron paramagnetic resonance (EPR) study of spin-labeled camptothecin derivatives: a different look of the ternary complex. J Med Chem 2011; 54:1003-9. [PMID: 21254781 DOI: 10.1021/jm101232t] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Camptothecin (CPT) derivatives are clinically effective poisons of DNA topoisomerase I (Top1) able to form a ternary complex with the Top1-DNA complex. The aim of this investigation was to examine the dynamic aspects of the ternary complex formation by means of site-directed spin labeling electron paramagnetic resonance (SDSL-EPR). Two semisynthetic CPT derivatives bearing the paramagnetic moiety were synthesized, and their biological activity was tested. A 22-mer DNA oligonucleotide sequence with high affinity cleavage site for Top1 was also synthesized. EPR experiments were carried out on modified CPT in the presence of DNA, of Top1, or of both. In the last case, a slow motion component in the EPR signal appeared, indicating the formation of the ternary complex. Deconvolution of the EPR spectrum allowed to obtain the relative drug amounts in the complex. It was also possible to demonstrate that the residence time of CPT "trapped" in the ternary complex is longer than hundreds of microseconds.
Collapse
Affiliation(s)
- Antonio Ricci
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 30039 Padova, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Krstić I, Endeward B, Margraf D, Marko A, Prisner TF. Structure and dynamics of nucleic acids. Top Curr Chem (Cham) 2011; 321:159-98. [PMID: 22160388 DOI: 10.1007/128_2011_300] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this chapter we describe the application of CW and pulsed EPR methods for the investigation of structural and dynamical properties of RNA and DNA molecules and their interaction with small molecules and proteins. Special emphasis will be given to recent applications of dipolar spectroscopy on nucleic acids.
Collapse
Affiliation(s)
- Ivan Krstić
- Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
12
|
Zhang X, Lee SW, Zhao L, Xia T, Qin PZ. Conformational distributions at the N-peptide/boxB RNA interface studied using site-directed spin labeling. RNA (NEW YORK, N.Y.) 2010; 16:2474-2483. [PMID: 20980674 PMCID: PMC2995408 DOI: 10.1261/rna.2360610] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/11/2010] [Indexed: 05/30/2023]
Abstract
In bacteriophage λ, interactions between a 22-amino acid peptide (called the N-peptide) and a stem-loop RNA element (called boxB) play a critical role in transcription anti-termination. The N-peptide/boxB complex has been extensively studied, and serves as a paradigm for understanding mechanisms of protein/RNA recognition. Particularly, ultrafast spectroscopy techniques have been applied to monitor picosecond fluorescence decay behaviors of 2-aminopurines embedded at various positions of the boxB RNA. The studies have led to a model in which the bound N-peptide exists in dynamic equilibrium between two states, with peptide C-terminal fragment either stacking on (i.e., the stacked state) or peeling away from (i.e., the unstacked state) the RNA loop. The function of the N-peptide/boxB complex seems to correlate with the fraction of the stacked state. Here, the N-peptide/boxB system is studied using the site-directed spin labeling technique, in which X-band electron paramagnetic resonance spectroscopy is applied to monitor nanosecond rotational behaviors of stable nitroxide radicals covalently attached to different positions of the N-peptide. The data reveal that in the nanosecond regime the C-terminal fragment of bound N-peptide adopts multiple discrete conformations within the complex. The characteristics of these conformations are consistent with the proposed stacked and unstacked states, and their distributions vary upon mutations within the N-peptide. These results suggest that the dynamic two-state model remains valid in the nanosecond regime, and represents a unique mode of function in the N-peptide/boxB RNA complex. It also demonstrates a connection between picosecond and nanosecond dynamics in a biological complex.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744, USA
| | | | | | | | | |
Collapse
|
13
|
Mori M, Dietrich U, Manetti F, Botta M. Molecular dynamics and DFT study on HIV-1 nucleocapsid protein-7 in complex with viral genome. J Chem Inf Model 2010; 50:638-50. [PMID: 20201584 DOI: 10.1021/ci100070m] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The HIV-1 nucleocapsid protein-7 (NCp7) is a highly basic, small zinc-binding protein involved in both deoxyribonucleic (DNA) and ribonucleic (RNA) acids annealing and in viral particle maturation including genome encapsidation, with an additional chaperoning activity toward reverse transcriptase by promoting the two obligatory strand transfers during reverse transcription. Because of its interaction with highly conserved sequences of the HIV-1 genome, NCp7 is being considered a new potential drug target, resistant to mutation, for antiviral activity. The high flexibility of this protein has, however, limited the identification of structural determinants involved in the interaction with stranded sequences of DNA and RNA. Here, we provide a quantum mechanics (density functional theory) study of the zinc-binding motifs and a molecular dynamics simulation of the protein in complex with RNA and DNA, starting from available nuclear magnetic resonance (NMR) structures. Results show that the interaction between the NCp7 and the viral genome is probably based on electrostatic interactions due to a cluster of basic residues, which is reinforced by the exploitation of nonelectrostatic contacts that further stabilize the complexes. Moreover, a possible mechanism for DNA destabilization that involves amino acids T24 and R26 is also hypothesized. Finally, a network of hydrophobic and hydrogen-bond interactions for the stabilization of complexes with DNA and, especially, with RNA is described here for the first time. The complexes between NCp7 and both DNA and RNA, resulting from computer simulations, showed structural properties that are in agreement with most of the currently available molecular biology evidence and could be considered as reliable models (better than NMR structures currently available) for subsequent structure-based ligand design approaches.
Collapse
Affiliation(s)
- Mattia Mori
- Dipartimento Farmaco Chimico Tecnologico, Universita degli Studi di Siena, Via Alcide de Gasperi 2, I-53100 Siena, Italy
| | | | | | | |
Collapse
|
14
|
Athavale SS, Ouyang W, McPike MP, Hudson BS, Borer PN. Effects of the nature and concentration of salt on the interaction of the HIV-1 nucleocapsid protein with SL3 RNA. Biochemistry 2010; 49:3525-33. [PMID: 20359247 DOI: 10.1021/bi901279e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The mature nucleocapsid protein of HIV-1, NCp7, and the NC domains in gag precursors are attractive targets for anti-AIDS drug discovery. The stability of the 1:1 complex of NCp7 with a 20mer mimic of stem-loop 3 RNA (SL3, also called psi-RNA, in the packaging domain of genomic RNA) is strongly affected by changes in ionic strength. NC domains recognize and specifically package genomic HIV-1 RNA, while electrostatic attractions and high concentrations of protein and RNA drive NCp7 to completely coat the RNA in the mature virion. The specific interactions of NCp7 binding to loop bases of SL3 produce 1:1 complexes in solutions that have a NaCl concentration of >or=0.2 M, while the electrostatic interactions can dominate at <or=0.15 M NaCl, leading to complexes that have a mainly 1:2 RNA:protein ratio. Persistent, nonequilibrium mixtures of 1:1 and protein-excess complexes can exist at these lower salt concentrations, where the distribution of complexes depends on the order of addition of RNA and protein. Adding salt causes rapid rearrangement of metastable multiprotein complexes to a 1:1 ratio. The stability of complexes is also affected by the nature of the added salt, with 0.018 M MgCl(2) and added 0.200 M NaCl producing the same K(d) (21 +/- 2 nM); acetate ion stabilizes the 1:1 complex by a factor of more than 2 compared to the same concentration of chloride ion. Maintaining a salt concentration of 0.2 M NaCl or 18 mM MgCl(2) is sufficient for experiments to distinguish drug candidates that disrupt the specific SL3-NCp7 interactions in the 1:1 complex.
Collapse
Affiliation(s)
- Shreyas S Athavale
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, USA
| | | | | | | | | |
Collapse
|
15
|
Zhang X, Cekan P, Sigurdsson ST, Qin PZ. Studying RNA using site-directed spin-labeling and continuous-wave electron paramagnetic resonance spectroscopy. Methods Enzymol 2009; 469:303-28. [PMID: 20946796 DOI: 10.1016/s0076-6879(09)69015-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In site-directed spin-labeling (SDSL), a stable nitroxide radical is attached to a specific location within a macromolecule and electron paramagnetic resonance (EPR) spectroscopy is used to interrogate the local environment surrounding the nitroxide. The SDSL strategy enables probing site-specific structural and dynamic features of RNA in solution without being limited by the size of the molecule, thus serving as a unique tool in biophysical studies of RNA. This chapter describes the use of continuous-wave (cw)-EPR to study dynamic features of RNAs as well as to monitor interactions between them. Various approaches for attaching nitroxide spin labels to nucleic acids are described, followed by detailed descriptions of cw-EPR spectral acquisition and processing procedures. Specific examples are subsequently used to illustrate analysis of EPR spectra, showing how information regarding the parent RNA can be extracted.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | | | | | | |
Collapse
|