1
|
Hegazi E, Muir TW. The spread of chemical biology into chromatin. J Biol Chem 2024; 300:107776. [PMID: 39276931 PMCID: PMC11555340 DOI: 10.1016/j.jbc.2024.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024] Open
Abstract
Understanding the molecular mechanisms underlying chromatin regulation, the complexity of which seems to deepen with each passing year, requires a multidisciplinary approach. While many different tools have been brought to bear in this area, here we focus on those that have emerged from the field of chemical biology. We discuss methods that allow the generation of what is now commonly referred to as "designer chromatin," a term that was coined by the late C. David (Dave) Allis. Among Dave's many talents was a remarkable ability to "brand" a nascent area (or concept) such that it was immediately relatable to the broader field. This also had the entirely intentional effect of drawing more people into the area, something that as this brief review attempts to convey has certainly happened when it comes to getting chemists involved in chromatin research.
Collapse
Affiliation(s)
- Esmat Hegazi
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
2
|
Geens B, Goossens S, Li J, Van de Peer Y, Vanden Broeck J. Untangling the gordian knot: The intertwining interactions between developmental hormone signaling and epigenetic mechanisms in insects. Mol Cell Endocrinol 2024; 585:112178. [PMID: 38342134 DOI: 10.1016/j.mce.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Hormones control developmental and physiological processes, often by regulating the expression of multiple genes simultaneously or sequentially. Crosstalk between hormones and epigenetics is pivotal to dynamically coordinate this process. Hormonal signals can guide the addition and removal of epigenetic marks, steering gene expression. Conversely, DNA methylation, histone modifications and non-coding RNAs can modulate regional chromatin structure and accessibility and regulate the expression of numerous (hormone-related) genes. Here, we provide a review of the interplay between the classical insect hormones, ecdysteroids and juvenile hormones, and epigenetics. We summarize the mode-of-action and roles of these hormones in post-embryonic development, and provide a general overview of epigenetic mechanisms. We then highlight recent advances on the interactions between these hormonal pathways and epigenetics, and their involvement in development. Furthermore, we give an overview of several 'omics techniques employed in the field. Finally, we discuss which questions remain unanswered and possible avenues for future research.
Collapse
Affiliation(s)
- Bart Geens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Stijn Goossens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
3
|
Nickel GA, Diehl KL. Chemical Biology Approaches to Identify and Profile Interactors of Chromatin Modifications. ACS Chem Biol 2023; 18:1014-1026. [PMID: 35238546 PMCID: PMC9440160 DOI: 10.1021/acschembio.1c00794] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In eukaryotes, DNA is packaged with histone proteins in a complex known as chromatin. Both the DNA and histone components of chromatin can be chemically modified in a wide variety of ways, resulting in a complex landscape often referred to as the "epigenetic code". These modifications are recognized by effector proteins that remodel chromatin and modulate transcription, translation, and repair of the underlying DNA. In this Review, we examine the development of methods for characterizing proteins that interact with these histone and DNA modifications. "Mark first" approaches utilize chemical, peptide, nucleosome, or oligonucleotide probes to discover interactors of a specific modification. "Reader first" approaches employ arrays of peptides, nucleosomes, or oligonucleotides to profile the binding preferences of interactors. These complementary strategies have greatly enhanced our understanding of how chromatin modifications effect changes in genomic regulation, bringing us ever closer to deciphering this complex language.
Collapse
Affiliation(s)
- Garrison A. Nickel
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, United States
| | - Katharine L. Diehl
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
4
|
Elucidation of binding preferences of YEATS domains to site-specific acetylated nucleosome core particles. J Biol Chem 2022; 298:102164. [PMID: 35732209 PMCID: PMC9293779 DOI: 10.1016/j.jbc.2022.102164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/02/2023] Open
Abstract
Acetylated lysine residues (Kac) in histones are recognized by epigenetic reader proteins, such as Yaf9, ENL, AF9, Taf14, and Sas5 (YEATS) domain-containing proteins. Human YEATS domains bind to the acetylated N-terminal tail of histone H3; however, their Kac-binding preferences at the level of the nucleosome are unknown. Through genetic code reprogramming, here, we established a nucleosome core particle (NCP) array containing histones that were acetylated at specific residues and used it to compare the Kac-binding preferences of human YEATS domains. We found that AF9-YEATS showed basal binding to the unmodified NCP and that it bound stronger to the NCP containing a single acetylation at one of K4, K9, K14, or K27 of H3, or to histone H4 multi-acetylated between K5 and K16. Crystal structures of AF9-YEATS in complex with an H4 peptide diacetylated either at K5/K8 or K8/K12 revealed that the aromatic cage of the YEATS domain recognized the acetylated K8 residue. Interestingly, E57 and D103 of AF9, both located outside of the aromatic cage, were shown to interact with acetylated K5 and K12 of H4, respectively, consistent with the increase in AF9-YEATS binding to the H4K8-acetylated NCP upon additional acetylation at K5 or K12. Finally, we show that a mutation of E57 to alanine in AF9-YEATS reduced the binding affinity for H4 multiacetylated NCPs containing H4K5ac. Our data suggest that the Kac-binding affinity of AF9-YEATS increases additively with the number of Kac in the histone tail.
Collapse
|
5
|
Combinations of histone post-translational modifications. Biochem J 2021; 478:511-532. [DOI: 10.1042/bcj20200170] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/20/2022]
Abstract
Histones are essential proteins that package the eukaryotic genome into its physiological state of nucleosomes, chromatin, and chromosomes. Post-translational modifications (PTMs) of histones are crucial to both the dynamic and persistent regulation of the genome. Histone PTMs store and convey complex signals about the state of the genome. This is often achieved by multiple variable PTM sites, occupied or unoccupied, on the same histone molecule or nucleosome functioning in concert. These mechanisms are supported by the structures of ‘readers’ that transduce the signal from the presence or absence of PTMs in specific cellular contexts. We provide background on PTMs and their complexes, review the known combinatorial function of PTMs, and assess the value and limitations of common approaches to measure combinatorial PTMs. This review serves as both a reference and a path forward to investigate combinatorial PTM functions, discover new synergies, and gather additional evidence supporting that combinations of histone PTMs are the central currency of chromatin-mediated regulation of the genome.
Collapse
|
6
|
Application of modified histone peptide arrays in chromatin research. Arch Biochem Biophys 2019; 661:31-38. [DOI: 10.1016/j.abb.2018.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/15/2023]
|
7
|
Faughn JD, Dean WL, Schaner Tooley CE. The N-terminal methyltransferase homologs NRMT1 and NRMT2 exhibit novel regulation of activity through heterotrimer formation. Protein Sci 2018; 27:1585-1599. [PMID: 30151928 DOI: 10.1002/pro.3456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022]
Abstract
Protein, DNA, and RNA methyltransferases have an ever-expanding list of novel substrates and catalytic activities. Even within families and between homologs, it is becoming clear the intricacies of methyltransferase specificity and regulation are far more diverse than originally thought. In addition to specific substrates and distinct methylation levels, methyltransferase activity can be altered by complex formation with close homologs. We work with the N-terminal methyltransferase homologs NRMT1 and NRMT2. NRMT1 is a ubiquitously expressed distributive trimethylase. NRMT2 is a monomethylase expressed at low levels in a tissue-specific manner. They are both nuclear methyltransferases with overlapping consensus sequences but have distinct enzymatic activities and tissue expression patterns. Co-expression with NRMT2 increases the trimethylation rate of NRMT1, and here we aim to understand how this occurs. We use analytical ultracentrifugation to show that while NRMT1 primarily exists as a dimer and NRMT2 as a monomer, when co-expressed they form a heterotrimer. We use co-immunoprecipitation and molecular modeling to demonstrate in vivo binding and map areas of interaction. While overexpression of NRMT2 increases the half-life of NRMT1, the converse is not true, indicating that NRMT2 may be increasing NRMT1 activity by stabilizing the enzyme. Accordingly, the catalytic activity of NRMT2 is not needed to increase NRMT1 activity or increase its affinity for less preferred substrates. Monomethylation can also not rescue phenotypes seen with loss of trimethylation. Taken together, these data support a model where NRMT2 expression activates NRMT1 activity, not through priming, but by increasing its stability and substrate affinity.
Collapse
Affiliation(s)
- Jon D Faughn
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - William L Dean
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, 14203
| |
Collapse
|
8
|
Shields KM, Tooley JG, Petkowski JJ, Wilkey DW, Garbett NC, Merchant ML, Cheng A, Schaner Tooley CE. Select human cancer mutants of NRMT1 alter its catalytic activity and decrease N-terminal trimethylation. Protein Sci 2017; 26:1639-1652. [PMID: 28556566 DOI: 10.1002/pro.3202] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/05/2017] [Accepted: 05/15/2017] [Indexed: 01/01/2023]
Abstract
A subset of B-cell lymphoma patients have dominant mutations in the histone H3 lysine 27 (H3K27) methyltransferase EZH2, which change it from a monomethylase to a trimethylase. These mutations occur in aromatic resides surrounding the active site and increase growth and alter transcription. We study the N-terminal trimethylase NRMT1 and the N-terminal monomethylase NRMT2. They are 50% identical, but differ in key aromatic residues in their active site. Given how these residues affect EZH2 activity, we tested whether they are responsible for the distinct catalytic activities of NRMT1/2. Additionally, NRMT1 acts as a tumor suppressor in breast cancer cells. Its loss promotes oncogenic phenotypes but sensitizes cells to DNA damage. Mutations of NRMT1 naturally occur in human cancers, and we tested a select group for altered activity. While directed mutation of the aromatic residues had minimal catalytic effect, NRMT1 mutants N209I (endometrial cancer) and P211S (lung cancer) displayed decreased trimethylase and increased monomethylase/dimethylase activity. Both mutations are located in the peptide-binding channel and indicate a second structural region impacting enzyme specificity. The NRMT1 mutants demonstrated a slower rate of trimethylation and a requirement for higher substrate concentration. Expression of the mutants in wild type NRMT backgrounds showed no change in N-terminal methylation levels or growth rates, demonstrating they are not acting as dominant negatives. Expression of the mutants in cells lacking endogenous NRMT1 resulted in minimal accumulation of N-terminal trimethylation, indicating homozygosity could help drive oncogenesis or serve as a marker for sensitivity to DNA damaging chemotherapeutics or γ-irradiation.
Collapse
Affiliation(s)
- Kaitlyn M Shields
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - John G Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, 14214
| | - Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - Daniel W Wilkey
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Nichola C Garbett
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Michael L Merchant
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Alan Cheng
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, 14214
| |
Collapse
|
9
|
Su Z, Wang F, Lee JH, Stephens KE, Papazyan R, Voronina E, Krautkramer KA, Raman A, Thorpe JJ, Boersma MD, Kuznetsov VI, Miller MD, Taverna SD, Phillips GN, Denu JM. Reader domain specificity and lysine demethylase-4 family function. Nat Commun 2016; 7:13387. [PMID: 27841353 PMCID: PMC5114558 DOI: 10.1038/ncomms13387] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022] Open
Abstract
The KDM4 histone demethylases are conserved epigenetic regulators linked to development, spermatogenesis and tumorigenesis. However, how the KDM4 family targets specific chromatin regions is largely unknown. Here, an extensive histone peptide microarray analysis uncovers trimethyl-lysine histone-binding preferences among the closely related KDM4 double tudor domains (DTDs). KDM4A/B DTDs bind strongly to H3K23me3, a poorly understood histone modification recently shown to be enriched in meiotic chromatin of ciliates and nematodes. The 2.28 Å co-crystal structure of KDM4A-DTD in complex with H3K23me3 peptide reveals key intermolecular interactions for H3K23me3 recognition. Furthermore, analysis of the 2.56 Å KDM4B-DTD crystal structure pinpoints the underlying residues required for exclusive H3K23me3 specificity, an interaction supported by in vivo co-localization of KDM4B and H3K23me3 at heterochromatin in mammalian meiotic and newly postmeiotic spermatocytes. In vitro demethylation assays suggest H3K23me3 binding by KDM4B stimulates H3K36 demethylation. Together, these results provide a possible mechanism whereby H3K23me3-binding by KDM4B directs localized H3K36 demethylation during meiosis and spermatogenesis.
Collapse
Affiliation(s)
- Zhangli Su
- Wisconsin Institute for Discovery, Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, 330 North Orchard Street, Madison, Wisconsin 53715, USA
| | - Fengbin Wang
- Biosciences at Rice, Rice University, Houston, Texas 77005, USA
| | - Jin-Hee Lee
- Wisconsin Institute for Discovery, Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, 330 North Orchard Street, Madison, Wisconsin 53715, USA
| | - Kimberly E. Stephens
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Romeo Papazyan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, Montana 59812, USA
| | - Kimberly A. Krautkramer
- Wisconsin Institute for Discovery, Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, 330 North Orchard Street, Madison, Wisconsin 53715, USA
| | - Ana Raman
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Jeremy J. Thorpe
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Melissa D. Boersma
- Wisconsin Institute for Discovery, Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, 330 North Orchard Street, Madison, Wisconsin 53715, USA
| | - Vyacheslav I. Kuznetsov
- Wisconsin Institute for Discovery, Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, 330 North Orchard Street, Madison, Wisconsin 53715, USA
| | | | - Sean D. Taverna
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Center for Epigenetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - George N. Phillips
- Biosciences at Rice, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
| | - John M. Denu
- Wisconsin Institute for Discovery, Morgridge Institute for Research, University of Wisconsin–Madison, Madison, Wisconsin 53715, USA
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin–Madison, 330 North Orchard Street, Madison, Wisconsin 53715, USA
| |
Collapse
|
10
|
Affiliation(s)
- Manuel M. Müller
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| | - Tom W. Muir
- Department of Chemistry, Princeton University,
Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
11
|
Holt M, Muir T. Application of the protein semisynthesis strategy to the generation of modified chromatin. Annu Rev Biochem 2015; 84:265-90. [PMID: 25784050 DOI: 10.1146/annurev-biochem-060614-034429] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Histone proteins are subject to a host of posttranslational modifications (PTMs) that modulate chromatin structure and function. Such control is achieved by the direct alteration of the intrinsic physical properties of the chromatin fiber or by regulating the recruitment and activity of a host of trans-acting nuclear factors. The sheer number of histone PTMs presents a formidable barrier to understanding the molecular mechanisms at the heart of epigenetic regulation of eukaryotic genomes. One aspect of this multifarious problem, namely how to access homogeneously modified chromatin for biochemical studies, is well suited to the sensibilities of the organic chemist. Indeed, recent years have witnessed a critical role for synthetic protein chemistry methods in generating the raw materials needed for studying how histone PTMs regulate chromatin biochemistry. This review focuses on what is arguably the most powerful, and widely employed, of these chemical strategies, namely histone semisynthesis via the chemical ligation of peptide fragments.
Collapse
Affiliation(s)
- Matthew Holt
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544; ,
| | | |
Collapse
|
12
|
Abstract
Scientists have long considered genetics to be the key mechanism that alters gene expression because of exposure to the environment and toxic substances (toxicants). Recently, epigenetic mechanisms have emerged as an alternative explanation for alterations in gene expression resulting from such exposure. The fact that certain toxic substances that contribute to tumor development do not induce mutations probably results from underlying epigenetic mechanisms. The field of toxicoepigenomics emerged from the combination of epigenetics and classical toxicology. High-throughput technologies now enable evaluation of altered epigenomic profiling in response to toxins and environmental pollutants. Furthermore, differences in the epigenomic backgrounds of individuals may explain why, although whole populations are exposed to toxicants, only a few people in a population develop cancer. Metals in the environment and toxic substances not only alter DNA methylation patterns and histone modifications but also affect enzymes involved in posttranslational modifications of proteins and epigenetic regulation, and thereby contribute to carcinogenesis. This article describes different toxic substances and environmental pollutants that alter epigenetic profiling and discusses how this information can be used in screening populations at high risk of developing cancer. Research opportunities and challengers in the field also are discussed.
Collapse
Affiliation(s)
- Mukesh Verma
- Methods and Technologies Branch, Epidemiology and Genomics Research Program, Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health (NIH), 9609 Medical Center Drive, Room 4E102, Rockville, MD, 20850, USA,
| |
Collapse
|
13
|
Gurard-Levin ZA, Almouzni G. Histone modifications and a choice of variant: a language that helps the genome express itself. F1000PRIME REPORTS 2014; 6:76. [PMID: 25343033 PMCID: PMC4166940 DOI: 10.12703/p6-76] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covalent post-translational modifications on histones impact chromatin structure and function. Their misfunction, along with perturbations or mutations in genes that regulate their dynamic status, has been observed in several diseases. Thus, targeting histone modifications represents attractive opportunities for therapeutic intervention and biomarker discovery. The best approach to address this challenge is to paint a comprehensive picture integrating the growing number of modifications on individual residues and their combinatorial association, the corresponding modifying enzymes, and effector proteins that bind modifications. Furthermore, how they are imposed in a distinct manner during the cell cycle and on specific histone variants are important dimensions to consider. Firstly, this report highlights innovative technologies used to characterize histone modifications, and the corresponding enzymes and effector proteins. Secondly, we examine the recent progress made in understanding the dynamics and maintenance of histone modifications on distinct variants. We also discuss their roles as potential carriers of epigenetic information. Finally, we provide examples of initiatives to exploit histone modifications in cancer management, with the potential for new therapeutic opportunities.
Collapse
Affiliation(s)
- Zachary A. Gurard-Levin
- Institut Curie, Centre de RechercheParis, F-75248France
- CNRS, UMR3664Paris, F-75248France
- Équipe Labellisée Ligue contre le Cancer, UMR3664Paris, F-75248France
- UPMC, UMR3664Paris, F-75248France
- Sorbonne University, PSLParisFrance
| | - Geneviève Almouzni
- Institut Curie, Centre de RechercheParis, F-75248France
- CNRS, UMR3664Paris, F-75248France
- Équipe Labellisée Ligue contre le Cancer, UMR3664Paris, F-75248France
- UPMC, UMR3664Paris, F-75248France
- Sorbonne University, PSLParisFrance
| |
Collapse
|
14
|
Karch KR, Denizio JE, Black BE, Garcia BA. Identification and interrogation of combinatorial histone modifications. Front Genet 2013; 4:264. [PMID: 24391660 PMCID: PMC3868920 DOI: 10.3389/fgene.2013.00264] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/15/2013] [Indexed: 11/13/2022] Open
Abstract
Histone proteins are dynamically modified to mediate a variety of cellular processes including gene transcription, DNA damage repair, and apoptosis. Regulation of these processes occurs through the recruitment of non-histone proteins to chromatin by specific combinations of histone post-translational modifications (PTMs). Mass spectrometry has emerged as an essential tool to discover and quantify histone PTMs both within and between samples in an unbiased manner. Developments in mass spectrometry that allow for characterization of large histone peptides or intact protein has made it possible to determine which modifications occur simultaneously on a single histone polypeptide. A variety of techniques from biochemistry, biophysics, and chemical biology have been employed to determine the biological relevance of discovered combinatorial codes. This review first describes advancements in the field of mass spectrometry that have facilitated histone PTM analysis and then covers notable approaches to probe the biological relevance of these modifications in their nucleosomal context.
Collapse
Affiliation(s)
- Kelly R Karch
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Jamie E Denizio
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Ben E Black
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
15
|
Lothrop AP, Torres MP, Fuchs SM. Deciphering post-translational modification codes. FEBS Lett 2013; 587:1247-57. [PMID: 23402885 DOI: 10.1016/j.febslet.2013.01.047] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/20/2013] [Accepted: 01/23/2013] [Indexed: 12/30/2022]
Abstract
Post-translational modifications (PTMs) occur on nearly all proteins. Many domains within proteins are modified on multiple amino acid sidechains by diverse enzymes to create a myriad of possible protein species. How these combinations of PTMs lead to distinct biological outcomes is only beginning to be understood. This manuscript highlights several examples of combinatorial PTMs in proteins, and describes recent technological developments, which are driving our ability to understand how PTM patterns may "code" for biological outcomes.
Collapse
Affiliation(s)
- Adam P Lothrop
- Department of Biology, Tufts University, 200 Boston Ave. Suite 4700, Medford, MA 02155, USA
| | | | | |
Collapse
|
16
|
Hsiao KY, Mizzen CA. Histone H4 deacetylation facilitates 53BP1 DNA damage signaling and double-strand break repair. J Mol Cell Biol 2013; 5:157-65. [PMID: 23329852 DOI: 10.1093/jmcb/mjs066] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
53BP1 and other DNA damage response (DDR) proteins form foci at double-strand breaks (DSBs) which promote their repair by nonhomologous end joining (NHEJ). Focal accumulation of 53BP1 depends on the specific interaction of its tandem Tudor domain with dimethylated lysine 20 in histone H4 (H4K20me2). How 53BP1 foci dynamics are regulated is unclear since H4K20me2 is highly abundant, established largely in the absence of DNA damage, and uncertainty exists about the roles of candidate H4K20 methyltransferases in 53BP1 foci formation. Here, we show that 53BP1 foci assemble primarily on H4K20me2 established prior to DNA damage by the SETD8 and SUV420 methyltransferases rather than de novo H4K20 methylation mediated by MMSET/WHSC1. Moreover, we define a novel role for H4K16 acetylation in regulating 53BP1 foci dynamics. Concurrent acetylation at H4K16 antagonizes 53BP1 binding to extant H4K20me2 until DSBs elicit transient, localized H4 deacetylation that facilitates 53BP1 foci formation and NHEJ, and is associated with global repression of gene transcription. Our findings demonstrate that rapid induction of H4 deacetylation by DSBs affects multiple aspects of the DDR, and also suggest that antagonism of 53BP1 binding to H4K20me2 by H4K16 hyperacetylation may contribute to the efficacy of histone deacetylase inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Kuei-Yang Hsiao
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana, IL 61801, USA
| | | |
Collapse
|
17
|
Nikolov M, Fischle W. Systematic analysis of histone modification readout. ACTA ACUST UNITED AC 2013; 9:182-94. [DOI: 10.1039/c2mb25328c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Abstract
Epigenetics is a major field of biomedical research, and epigenetic drug discovery shows great promise for new drugs. The first epigenetic inhibitors are already approved for human treatment. Here, we review a number of case studies that cover different aspects of epigenetic drug discovery spanning from sequencing of epigenetic modifications, assays development over screening to medicinal chemistry, in vivo testing and clinical application.
Collapse
|
19
|
Tweedie-Cullen RY, Brunner AM, Grossmann J, Mohanna S, Sichau D, Nanni P, Panse C, Mansuy IM. Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain. PLoS One 2012; 7:e36980. [PMID: 22693562 PMCID: PMC3365036 DOI: 10.1371/journal.pone.0036980] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 04/11/2012] [Indexed: 01/15/2023] Open
Abstract
Post-translational modifications (PTMs) of proteins are biochemical processes required for cellular functions and signalling that occur in every sub-cellular compartment. Multiple protein PTMs exist, and are established by specific enzymes that can act in basal conditions and upon cellular activity. In the nucleus, histone proteins are subjected to numerous PTMs that together form a histone code that contributes to regulate transcriptional activity and gene expression. Despite their importance however, histone PTMs have remained poorly characterised in most tissues, in particular the brain where they are thought to be required for complex functions such as learning and memory formation. Here, we report the comprehensive identification of histone PTMs, of their combinatorial patterns, and of the rules that govern these patterns in the adult mouse brain. Based on liquid chromatography, electron transfer, and collision-induced dissociation mass spectrometry, we generated a dataset containing a total of 10,646 peptides from H1, H2A, H2B, H3, H4, and variants in the adult brain. 1475 of these peptides carried one or more PTMs, including 141 unique sites and a total of 58 novel sites not described before. We observed that these PTMs are not only classical modifications such as serine/threonine (Ser/Thr) phosphorylation, lysine (Lys) acetylation, and Lys/arginine (Arg) methylation, but also include several atypical modifications such as Ser/Thr acetylation, and Lys butyrylation, crotonylation, and propionylation. Using synthetic peptides, we validated the presence of these atypical novel PTMs in the mouse brain. The application of data-mining algorithms further revealed that histone PTMs occur in specific combinations with different ratios. Overall, the present data newly identify a specific histone code in the mouse brain and reveal its level of complexity, suggesting its potential relevance for higher-order brain functions.
Collapse
Affiliation(s)
- Ry Y. Tweedie-Cullen
- Medical Faculty, Brain Research Institute, University of Zürich and Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Andrea M. Brunner
- Medical Faculty, Brain Research Institute, University of Zürich and Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Jonas Grossmann
- Functional Genomics Centre Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Safa Mohanna
- Medical Faculty, Brain Research Institute, University of Zürich and Department of Biology, ETH Zürich, Zürich, Switzerland
| | - David Sichau
- Medical Faculty, Brain Research Institute, University of Zürich and Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Paolo Nanni
- Functional Genomics Centre Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Christian Panse
- Functional Genomics Centre Zürich, University of Zürich/ETH Zürich, Zürich, Switzerland
| | - Isabelle M. Mansuy
- Medical Faculty, Brain Research Institute, University of Zürich and Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
20
|
Abstract
Chromatin is extensively chemically modified and thereby acts as a dynamic signaling platform controlling gene function. Chromatin regulation is integral to cell differentiation, lineage commitment and organism development, whereas chromatin dysregulation can lead to age-related and neurodegenerative disorders as well as cancer. Investigating chromatin biology presents a unique challenge, as the issue spans many disciplines, including cell and systems biology, biochemistry and molecular biophysics. In recent years, the application of chemical biology methods for investigating chromatin processes has gained considerable traction. Indeed, chemical biologists now have at their disposal powerful chemical tools that allow chromatin biology to be scrutinized at the level of the cell all the way down to the single chromatin fiber. Here we present recent examples of how this rapidly expanding palette of chemical tools is being used to paint a detailed picture of chromatin function in organism development and disease.
Collapse
|
21
|
Dhall A, Chatterjee C. Chemical approaches to understand the language of histone modifications. ACS Chem Biol 2011; 6:987-99. [PMID: 21827195 DOI: 10.1021/cb200142c] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Genomic DNA in the eukaryotic cell nucleus is present in the form of chromatin. Histones are the principal protein component of chromatin, and their post-translational modifications play important roles in regulating the structure and function of chromatin and thereby in determining cell development and disease. An understanding of how histone modifications translate into downstream cellular events is important from both developmental and therapeutic perspectives. However, biochemical studies of histone modifications require access to quantities of homogenously modified histones that cannot be easily isolated from natural sources or generated by enzymatic methods. In the past decade, chemical synthesis has proven to be a powerful tool in translating the language of histone modifications by providing access to uniformly modified histones and by the development of stable analogues of thermodynamically labile modifications. This Review highlights the various synthetic and semisynthetic strategies that have enabled biochemical and biophysical characterization of site-specifically modified histones.
Collapse
Affiliation(s)
- Abhinav Dhall
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Champak Chatterjee
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
22
|
Chung CW, Witherington J. Progress in the discovery of small-molecule inhibitors of bromodomain--histone interactions. ACTA ACUST UNITED AC 2011; 16:1170-85. [PMID: 21956175 DOI: 10.1177/1087057111421372] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bromodomains are structurally conserved protein modules present in a large number of chromatin-associated proteins and in many nuclear histone acetyltransferases. The bromodomain functions as an acetyl-lysine binding domain and has been shown to be pivotal in regulating protein-protein interactions in chromatin-mediated cellular gene transcription, cell proliferation, and viral transcriptional activation. Structural analyses of these modules in complex with acetyl-lysine peptide ligands provide insights into the molecular basis for recognition and ligand selectivity within this epigenetic reader family. However, there are significant challenges in configuring assays to identify inhibitors of these proteins. This review focuses on the progress made in developing methods to identify peptidic and small-molecule ligands using biophysical label-free and biochemical approaches. The advantage of each technique and the results reported are summarized, highlighting the potential applicably to other reader domains and the caveats in translation from simple in vitro systems to a biological context.
Collapse
|
23
|
Mansfield RE, Musselman CA, Kwan AH, Oliver SS, Garske AL, Davrazou F, Denu JM, Kutateladze TG, Mackay JP. Plant homeodomain (PHD) fingers of CHD4 are histone H3-binding modules with preference for unmodified H3K4 and methylated H3K9. J Biol Chem 2011; 286:11779-91. [PMID: 21278251 DOI: 10.1074/jbc.m110.208207] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major challenge in chromatin biology is to understand the mechanisms by which chromatin is remodeled into active or inactive states as required during development and cell differentiation. One complex implicated in these processes is the nucleosome remodeling and histone deacetylase (NuRD) complex, which contains both histone deacetylase and nucleosome remodeling activities and has been implicated in the silencing of subsets of genes involved in various stages of cellular development. Chromodomain-helicase-DNA-binding protein 4 (CHD4) is a core component of the NuRD complex and contains a nucleosome remodeling ATPase domain along with two chromodomains and two plant homeodomain (PHD) fingers. We have previously demonstrated that the second PHD finger of CHD4 binds peptides corresponding to the N terminus of histone H3 methylated at Lys(9). Here, we determine the solution structure of PHD2 in complex with H3K9me3, revealing the molecular basis of histone recognition, including a cation-π recognition mechanism for methylated Lys(9). Additionally, we demonstrate that the first PHD finger also exhibits binding to the N terminus of H3, and we establish the histone-binding surface of this domain. This is the first instance where histone binding ability has been demonstrated for two separate PHD modules within the one protein. These findings suggest that CHD4 could bind to two H3 N-terminal tails on the same nucleosome or on two separate nucleosomes simultaneously, presenting exciting implications for the mechanism by which CHD4 and the NuRD complex could direct chromatin remodeling.
Collapse
Affiliation(s)
- Robyn E Mansfield
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Voigt P, Reinberg D. Histone tails: ideal motifs for probing epigenetics through chemical biology approaches. Chembiochem 2011; 12:236-52. [PMID: 21243712 PMCID: PMC3760146 DOI: 10.1002/cbic.201000493] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Indexed: 01/19/2023]
Abstract
Post-translational modifications (PTMs) on histone proteins have emerged as a central theme in the regulation of gene expression and other chromatin-associated processes. The discovery that certain protein domains can recognize acetylated and methylated lysine residues of histones has spurred efforts to uncover and characterize histone PTM-binding proteins. In this task, chromatin biology has strongly benefited from synthetic approaches stemming from chemical biology. Peptide-based techniques have been instrumental in identifying histone mark-binding proteins and analyzing their binding specificities. To explore how histone PTMs carry out their function in the context of chromatin, reconstituted systems based on recombinant histones carrying defined modifications are increasingly being used. They constitute promising tools to analyze mechanistic aspects of histone PTMs, including their role in transcription and their transmission in replication. In this review, we present strategies that have been used successfully to investigate the role of histone modifications, concepts that have emerged from their application, and their potential to contribute to current developments in the field.
Collapse
Affiliation(s)
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University School of Medicine, Department of Biochemistry, 522 First Avenue, New York, NY 10016, USA
| |
Collapse
|
25
|
Balakrishnan L, Milavetz B. Decoding the histone H4 lysine 20 methylation mark. Crit Rev Biochem Mol Biol 2011; 45:440-52. [PMID: 20735237 DOI: 10.3109/10409238.2010.504700] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The molecular biology of histone H4 lysine 20 (H4K20) methylation, like many other post-translational modifications of histones, has been the subject of intensive interest in recent years. While there is an emerging consensus linking H4K20me1, H4K20me2, and H4K20me3 to transcription, repair, and constitutive heterochromatin, respectively, the specific details of these associations and the biological mechanisms by which the methylated histones are introduced and function are now the subject of active investigation. Although a large number of methylases capable of methylating H4K20 have been identified and characterized; there is no known demethylase of H4K20, though the search is ongoing. Additionally, many recent studies have been directed at understanding the role of methylated H4K20 and other histone modifications associated with different biological processes in the context of a combinatorial histone code. It seems likely that continued study of the methylation of H4K20 will yield extremely valuable insights concerning the regulation of histone modifications before and during cell division and the impact of these modifications on subsequent gene expression.
Collapse
Affiliation(s)
- Lata Balakrishnan
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
26
|
Young NL, Dimaggio PA, Garcia BA. The significance, development and progress of high-throughput combinatorial histone code analysis. Cell Mol Life Sci 2010; 67:3983-4000. [PMID: 20683756 PMCID: PMC11115713 DOI: 10.1007/s00018-010-0475-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 07/05/2010] [Accepted: 07/20/2010] [Indexed: 01/18/2023]
Abstract
The physiological state of eukaryotic DNA is chromatin. Nucleosomes, which consist of DNA in complex with histones, are the fundamental unit of chromatin. The post-translational modifications (PTMs) of histones play a critical role in the control of gene transcription, epigenetics and other DNA-templated processes. It has been known for several years that these PTMs function in concert to allow for the storage and transduction of highly specific signals through combinations of modifications. This code, the combinatorial histone code, functions much like a bar code or combination lock providing the potential for massive information content. The capacity to directly measure these combinatorial histone codes has mostly been laborious and challenging, thus limiting efforts often to one or two samples. Recently, progress has been made in determining such information quickly, quantitatively and sensitively. Here we review both the historical and recent progress toward routine and rapid combinatorial histone code analysis.
Collapse
Affiliation(s)
- Nicolas L Young
- Department of Molecular Biology, Princeton University, 415 Schultz Laboratory, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
27
|
Chen X, Tan PH, Zhang Y, Pei D. On-bead screening of combinatorial libraries: reduction of nonspecific binding by decreasing surface ligand density. ACTA ACUST UNITED AC 2010; 11:604-11. [PMID: 19397369 DOI: 10.1021/cc9000168] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
On-bead screening of one-bead-one-compound (OBOC) libraries provides a powerful method for the rapid identification of active compounds against molecular or cellular targets. However, on-bead screening is susceptible to interference from nonspecific binding, which results in biased screening data and false positives. In this work, we have found that a major source of nonspecific binding is derived from the high ligand loading on the library beads, which permits a macromolecular target (e.g., a protein) to simultaneously interact with multiple ligands on the bead surface. To circumvent this problem, we have synthesized a phosphotyrosyl (pY)-containing peptide library on spatially segregated TentaGel microbeads, which feature a 10-fold reduced peptide loading on the bead surface but a normal peptide loading in the bead interior. The library was screened against a panel of 10 Src homology 2 (SH2) domains including those of Csk and Fyn kinases and adaptor protein SLAP, and the specific recognition motif(s) was successfully identified for each of the domains. In contrast, when the SH2 domains were screened against a control library that contained unaltered (high) ligand loading at the bead surface, six of them exhibited varying degrees of sequence biases, ranging from minor perturbation in the relative abundance of different sequences to the exclusive selection of false positive sequences that have no measurable affinity to the target protein. These results indicate that reduction of the ligand loading on the bead surface represents a simple, effective strategy to largely eliminate the interference from nonspecific binding, while preserving sufficient amounts of materials in the bead interior for compound identification. This finding should further expand the utility of OBOC libraries in biomedical research.
Collapse
Affiliation(s)
- Xianwen Chen
- Department of Chemistry and Ohio State Biochemistry Program, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
28
|
Tweedie-Cullen RY, Mansuy IM. Towards a better understanding of nuclear processes based on proteomics. Amino Acids 2010; 39:1117-30. [PMID: 20730591 DOI: 10.1007/s00726-010-0723-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 08/09/2010] [Indexed: 12/25/2022]
Abstract
The complex structural and functional organisation of the brain warrants the application of high-throughput approaches to study its functional alterations in physiological and pathological conditions. Such approaches have greatly benefited from advances in proteomics and genomics, and from their combination with computational modelling. They have been particularly instrumental for the analysis of processes such as the post-translational modification (PTM) of proteins, a critical biological process in the nervous system that remains not well studied. Protein PTMs are dynamic covalent marks that can be induced by activity and allow the maintenance of a trace of this activity. In the nucleus, they can modulate histone proteins and the components of the transcriptional machinery, and thereby contribute to regulating gene expression. PTMs do however need to be tightly controlled for proper chromatin functions. This review provides a synopsis of methods available to study PTMs and protein expression based on high-throughput mass spectrometry (MS), and covers basic concepts of traditional 'shot-gun'-based MS. It describes classical and emerging proteomic approaches such as multiple reaction monitoring and electron transfer dissociation, and their application to the analyses of nuclear processes in the brain.
Collapse
Affiliation(s)
- Ry Y Tweedie-Cullen
- Department of Biology of the ETH Zurich and Medical Faculty of the University Zurich, 8057, Zurich, Switzerland.
| | | |
Collapse
|
29
|
Survey of the year 2008: applications of isothermal titration calorimetry. J Mol Recognit 2010; 23:395-413. [DOI: 10.1002/jmr.1025] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
30
|
Combinatorial profiling of chromatin binding modules reveals multisite discrimination. Nat Chem Biol 2010; 6:283-90. [PMID: 20190764 PMCID: PMC2922993 DOI: 10.1038/nchembio.319] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 12/17/2009] [Indexed: 11/08/2022]
Abstract
Specific interactions between post-translational modifications (PTMs) and chromatin-binding proteins are central to the idea of a 'histone code'. Here, we used a 5,000-member, PTM-randomized, combinatorial peptide library based on the N terminus of histone H3 to interrogate the multisite specificity of six chromatin binding modules, which read the methylation status of Lys4. We found that Thr3 phosphorylation, Arg2 methylation and Thr6 phosphorylation are critical additional PTMs that modulate the ability to recognize and bind histone H3. Notably, phosphorylation of Thr6 yielded the most varied effect on protein binding, suggesting an important regulatory mechanism for readers of the H3 tail. Mass spectrometry and antibody-based evidence indicate that this previously uncharacterized modification exists on native H3, and NMR analysis of ING2 revealed the structural basis for discrimination. These investigations reveal a continuum of binding affinities in which multisite PTM recognition involves both switch- and rheostat-like properties, yielding graded effects that depend on the inherent 'reader' specificity.
Collapse
|
31
|
|
32
|
Abstract
Histones form the protein core around which genomic DNA is wrapped in eukaryotic chromatin. Numerous genetic studies have established that the structure and transcriptional state of chromatin are closely related to histone post-translational modifications. Further elucidation of the precise mechanistic roles for individual histone modifications requires the ability to isolate and study homogeneously modified histones. However, the highly heterogeneous nature of histone modifications in vivo poses a significant challenge for such studies. Chemical tools that have enabled biochemical and biophysical studies of site-specifically modified histones are the focus of this minireview.
Collapse
Affiliation(s)
- Champak Chatterjee
- Laboratory of Synthetic Protein Chemistry, The Rockefeller University, New York, New York 10065, USA
| | | |
Collapse
|
33
|
Binding of the CHD4 PHD2 finger to histone H3 is modulated by covalent modifications. Biochem J 2009; 423:179-87. [PMID: 19624289 DOI: 10.1042/bj20090870] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CHD4 (chromodomain helicase DNA-binding protein 4) ATPase is a major subunit of the repressive NuRD (nucleosome remodelling and deacetylase) complex, which is involved in transcriptional regulation and development. CHD4 contains two PHD (plant homeodomain) fingers of unknown function. Here we show that the second PHD finger (PHD2) of CHD4 recognizes the N-terminus of histone H3 and that this interaction is facilitated by acetylation or methylation of Lys9 (H3K9ac and H3K9me respectively) but is inhibited by methylation of Lys4 (H3K4me) or acetylation of Ala1 (H3A1ac). An 18 microM binding affinity toward unmodified H3 rises to 0.6 microM for H3K9ac and to 0.9 microM for H3K9me3, whereas it drops to 2.0 mM for H3K4me3, as measured by tryptophan fluorescence and NMR. A peptide library screen further shows that phosphorylation of Thr3, Thr6 or Ser10 abolishes this interaction. A model of the PHD2-H3 complex, generated using a combination of NMR, data-driven docking and mutagenesis data, reveals an elongated site on the PHD2 surface where the H3 peptide is bound. Together our findings suggest that the PHD2 finger plays a role in targeting of the CHD4/NuRD complex to chromatin.
Collapse
|