1
|
Lee E, McLeod MJ, Redzic JS, Marcolin B, Thorne RE, Agarwal P, Eisenmesser EZ. Identifying structural and dynamic changes during the Biliverdin Reductase B catalytic cycle. Front Mol Biosci 2023; 10:1244587. [PMID: 37645217 PMCID: PMC10461185 DOI: 10.3389/fmolb.2023.1244587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Biliverdin Reductase B (BLVRB) is an NADPH-dependent reductase that catalyzes the reduction of multiple substrates and is therefore considered a critical cellular redox regulator. In this study, we sought to address whether both structural and dynamics changes occur between different intermediates of the catalytic cycle and whether these were relegated to just the active site or the entirety of the enzyme. Through X-ray crystallography, we determined the apo BLVRB structure for the first time, revealing subtle global changes compared to the holo structure and identifying the loss of a critical hydrogen bond that "clamps" the R78-loop over the coenzyme. Amide and Cα chemical shift perturbations were used to identify environmental and secondary structural changes between intermediates, with more distant global changes observed upon coenzyme binding compared to substrate interactions. NMR relaxation rate measurements provided insights into the dynamic behavior of BLVRB during the catalytic cycle. Specifically, the inherently dynamic R78-loop that becomes ordered upon coenzyme binding persists through the catalytic cycle while similar regions experience dynamic exchange. However, the dynamic exchange processes were found to differ through the catalytic cycle with several groups of residues exhibiting similar dynamic responses. Finally, both local and distal structural and dynamic changes occur within BLVRB that are dependent solely on the oxidative state of the coenzyme. Thus, through a comprehensive analysis here, this study revealed structural and dynamic alterations in BLVRB through its catalytic cycle that are not simply relegated to the active site, but instead, are allosterically coupled throughout the enzyme.
Collapse
Affiliation(s)
- Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Matthew J. McLeod
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, United States
| | - Jasmina S. Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Barbara Marcolin
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Robert E. Thorne
- Laboratory of Atomic and Solid-State Physics, Cornell University, Ithaca, NY, United States
| | - Pratul Agarwal
- Department of Physiological Sciences and High Performance Computing Center, Oklahoma State University, Stillwater, OK, United States
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, Aurora, CO, United States
| |
Collapse
|
2
|
Cetin E, Guclu TF, Kantarcioglu I, Gaszek IK, Toprak E, Atilgan AR, Dedeoglu B, Atilgan C. Kinetic Barrier to Enzyme Inhibition Is Manipulated by Dynamical Local Interactions in E. coli DHFR. J Chem Inf Model 2023; 63:4839-4849. [PMID: 37491825 PMCID: PMC10428214 DOI: 10.1021/acs.jcim.3c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 07/27/2023]
Abstract
Dihydrofolate reductase (DHFR) is an important drug target and a highly studied model protein for understanding enzyme dynamics. DHFR's crucial role in folate synthesis renders it an ideal candidate to understand protein function and protein evolution mechanisms. In this study, to understand how a newly proposed DHFR inhibitor, 4'-deoxy methyl trimethoprim (4'-DTMP), alters evolutionary trajectories, we studied interactions that lead to its superior performance over that of trimethoprim (TMP). To elucidate the inhibition mechanism of 4'-DTMP, we first confirmed, both computationally and experimentally, that the relative binding free energy cost for the mutation of TMP and 4'-DTMP is the same, pointing the origin of the characteristic differences to be kinetic rather than thermodynamic. We then employed an interaction-based analysis by focusing first on the active site and then on the whole enzyme. We confirmed that the polar modification in 4'-DTMP induces additional local interactions with the enzyme, particularly, the M20 loop. These changes are propagated to the whole enzyme as shifts in the hydrogen bond networks. To shed light on the allosteric interactions, we support our analysis with network-based community analysis and show that segmentation of the loop domain of inhibitor-bound DHFR must be avoided by a successful inhibitor.
Collapse
Affiliation(s)
- Ebru Cetin
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla 34956, Istanbul, Turkey
| | - Tandac F. Guclu
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla 34956, Istanbul, Turkey
| | - Isik Kantarcioglu
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla 34956, Istanbul, Turkey
- Department
of Pharmacology, University of Texas Southwestern
Medical Center, Dallas 75390, Texas, United States
| | - Ilona K. Gaszek
- Department
of Pharmacology, University of Texas Southwestern
Medical Center, Dallas 75390, Texas, United States
| | - Erdal Toprak
- Department
of Pharmacology, University of Texas Southwestern
Medical Center, Dallas 75390, Texas, United States
| | - Ali Rana Atilgan
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla 34956, Istanbul, Turkey
| | - Burcu Dedeoglu
- Department
of Chemistry, Gebze Technical University, Gebze 41400, Kocaeli, Turkey
| | - Canan Atilgan
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla 34956, Istanbul, Turkey
| |
Collapse
|
3
|
Observation of conformational changes that underlie the catalytic cycle of Xrn2. Nat Chem Biol 2022; 18:1152-1160. [PMID: 36008487 PMCID: PMC9512700 DOI: 10.1038/s41589-022-01111-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/07/2022] [Indexed: 12/19/2022]
Abstract
Nuclear magnetic resonance (NMR) methods that quantitatively probe motions on molecular and atomic levels have propelled the understanding of biomolecular processes for which static structures cannot provide a satisfactory description. In this work, we studied the structure and dynamics of the essential 100-kDa eukaryotic 5′→3′ exoribonuclease Xrn2. A combination of complementary fluorine and methyl-TROSY NMR spectroscopy reveals that the apo enzyme is highly dynamic around the catalytic center. These observed dynamics are in agreement with a transition of the enzyme from the ground state into a catalytically competent state. We show that the conformational equilibrium in Xrn2 shifts substantially toward the active state in the presence of substrate and magnesium. Finally, our data reveal that the dynamics in Xrn2 correlate with the RNA degradation rate, as a mutation that attenuates motions also affects catalytic activity. In that light, our results stress the importance of studies that go beyond static structural information. ![]()
Using methyl group and fluorine NMR spectroscopic methods, Overbeck et al revealed that the dynamics of the eukaryotic 5′→3′ exoribonuclease Xrn2 in the region around the active site are correlated with its catalytic activity.
Collapse
|
4
|
Singh A, Fenwick RB, Dyson HJ, Wright PE. Role of Active Site Loop Dynamics in Mediating Ligand Release from E. coli Dihydrofolate Reductase. Biochemistry 2021; 60:2663-2671. [PMID: 34428034 DOI: 10.1021/acs.biochem.1c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conformational fluctuations from ground-state to sparsely populated but functionally important excited states play a key role in enzyme catalysis. For Escherichia coli dihydrofolate reductase (DHFR), the release of the product tetrahydrofolate (THF) and oxidized cofactor NADP+ occurs through exchange between closed and occluded conformations of the Met20 loop. A "dynamic knockout" mutant of E. coli DHFR, where the E. coli sequence in the Met20 loop is replaced by the human sequence (N23PP/S148A), models human DHFR and is incapable of accessing the occluded conformation. 1H and 15N CPMG relaxation dispersion analysis for the ternary product complex of the mutant enzyme with NADP+ and the product analogue 5,10-dideazatetrahydrofolate (ddTHF) (E:ddTHF:NADP+) reveals the mechanism by which NADP+ is released when the Met20 loop cannot undergo the closed-to-occluded conformational transition. Two excited states were observed: one related to a faster, relatively high-amplitude conformational fluctuation in areas near the active site, associated with the shuttling of the nicotinamide ring of the cofactor out of the active site, and the other to a slower process where ddTHF undergoes small-amplitude motions within the binding site that are consistent with disorder observed in a room-temperature X-ray crystal structure of the N23PP/S148A mutant protein. These motions likely arise due to steric conflict of the pterin ring of ddTHF with the ribose-nicotinamide moiety of NADP+ in the closed active site. These studies demonstrate that site-specific kinetic information from relaxation dispersion experiments can provide intimate details of the changes in catalytic mechanism that result from small changes in local amino acid sequence.
Collapse
Affiliation(s)
- Amrinder Singh
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - R Bryn Fenwick
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
5
|
Goldstein M, Goodey NM. Distal Regions Regulate Dihydrofolate Reductase-Ligand Interactions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2253:185-219. [PMID: 33315225 DOI: 10.1007/978-1-0716-1154-8_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein motions play a fundamental role in enzyme catalysis and ligand binding. The relationship between protein motion and function has been extensively investigated in the model enzyme dihydrofolate reductase (DHFR). DHFR is an essential enzyme that catalyzes the reduction of dihydrofolate to tetrahydrofolate. Numerous experimental and computational methods have been used to probe the motions of DHFR through the catalytic cycle and to investigate the effect of distal mutations on DHFR motions and ligand binding. These experimental investigations have pushed forward the study of protein motions and their role in protein-ligand interactions. The introduction of mutations distal to the active site has been shown to have profound effects on ligand binding, hydride transfer rates and catalytic efficacy and these changes are captured by enzyme kinetics measurements. Distal mutations have been shown to exert their effects through a network of correlated amino acids and these effects have been investigated by NMR, protein dynamics, and analysis of coupled amino acids. The experimental methods and the findings that are reviewed here have broad implications for our understanding of enzyme mechanisms, ligand binding and for the future design and discovery of enzyme inhibitors.
Collapse
Affiliation(s)
- Melanie Goldstein
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, USA
| | - Nina M Goodey
- Department of Chemistry and Biochemistry, Montclair State University, Montclair, NJ, USA.
| |
Collapse
|
6
|
Fenwick RB, Oyen D, van den Bedem H, Dyson HJ, Wright PE. Modeling of Hidden Structures Using Sparse Chemical Shift Data from NMR Relaxation Dispersion. Biophys J 2020; 120:296-305. [PMID: 33301748 DOI: 10.1016/j.bpj.2020.11.2267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 12/24/2022] Open
Abstract
NMR relaxation dispersion measurements report on conformational changes occurring on the μs-ms timescale. Chemical shift information derived from relaxation dispersion can be used to generate structural models of weakly populated alternative conformational states. Current methods to obtain such models rely on determining the signs of chemical shift changes between the conformational states, which are difficult to obtain in many situations. Here, we use a "sample and select" method to generate relevant structural models of alternative conformations of the C-terminal-associated region of Escherichia coli dihydrofolate reductase (DHFR), using only unsigned chemical shift changes for backbone amides and carbonyls (1H, 15N, and 13C'). We find that CS-Rosetta sampling with unsigned chemical shift changes generates a diversity of structures that are sufficient to characterize a minor conformational state of the C-terminal region of DHFR. The excited state differs from the ground state by a change in secondary structure, consistent with previous predictions from chemical shift hypersurfaces and validated by the x-ray structure of a partially humanized mutant of E. coli DHFR (N23PP/G51PEKN). The results demonstrate that the combination of fragment modeling with sparse chemical shift data can determine the structure of an alternative conformation of DHFR sampled on the μs-ms timescale. Such methods will be useful for characterizing alternative states, which can potentially be used for in silico drug screening, as well as contributing to understanding the role of minor states in biology and molecular evolution.
Collapse
Affiliation(s)
- R Bryn Fenwick
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California.
| | - David Oyen
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - Henry van den Bedem
- SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California, and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
7
|
Mhashal AR, Romero-Rivera A, Mydy LS, Cristobal JR, Gulick AM, Richard JP, Kamerlin SCL. Modeling the Role of a Flexible Loop and Active Site Side Chains in Hydride Transfer Catalyzed by Glycerol-3-phosphate Dehydrogenase. ACS Catal 2020; 10:11253-11267. [PMID: 33042609 PMCID: PMC7536716 DOI: 10.1021/acscatal.0c02757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/31/2020] [Indexed: 11/30/2022]
Abstract
![]()
Glycerol-3-phosphate
dehydrogenase is a biomedically important
enzyme that plays a crucial role in lipid biosynthesis. It is activated
by a ligand-gated conformational change that is necessary for the
enzyme to reach a catalytically competent conformation capable of
efficient transition-state stabilization. While the human form (hlGPDH) has been the subject of extensive structural and
biochemical studies, corresponding computational studies to support
and extend experimental observations have been lacking. We perform
here detailed empirical valence bond and Hamiltonian replica exchange
molecular dynamics simulations of wild-type hlGPDH
and its variants, as well as providing a crystal structure of the
binary hlGPDH·NAD R269A variant where the enzyme
is present in the open conformation. We estimated the activation free
energies for the hydride transfer reaction in wild-type and substituted hlGPDH and investigated the effect of mutations on catalysis
from a detailed structural study. In particular, the K120A and R269A
variants increase both the volume and solvent exposure of the active
site, with concomitant loss of catalytic activity. In addition, the
R269 side chain interacts with both the Q295 side chain on the catalytic
loop, and the substrate phosphodianion. Our structural data and simulations
illustrate the critical role of this side chain in facilitating the
closure of hlGPDH into a catalytically competent
conformation, through modulating the flexibility of a key catalytic
loop (292-LNGQKL-297). This, in turn, rationalizes a tremendous 41,000
fold decrease experimentally in the turnover number, kcat, upon truncating this residue, as loop closure is
essential for both correct positioning of key catalytic residues in
the active site, as well as sequestering the active site from the
solvent. Taken together, our data highlight the importance of this
ligand-gated conformational change in catalysis, a feature that can
be exploited both for protein engineering and for the design of allosteric
inhibitors targeting this biomedically important enzyme.
Collapse
Affiliation(s)
- Anil R. Mhashal
- Department of Chemistry—BMC, Uppsala University, Box 576, Uppsala SE-751 23, Sweden
| | - Adrian Romero-Rivera
- Department of Chemistry—BMC, Uppsala University, Box 576, Uppsala SE-751 23, Sweden
| | - Lisa S. Mydy
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203-1121, United States
| | - Judith R. Cristobal
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Andrew M. Gulick
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203-1121, United States
| | - John P. Richard
- Department of Chemistry, University at Buffalo, SUNY, Buffalo, New York 14260-3000, United States
| | - Shina C. L. Kamerlin
- Department of Chemistry—BMC, Uppsala University, Box 576, Uppsala SE-751 23, Sweden
| |
Collapse
|
8
|
D'Amico RN, Murray AM, Boehr DD. Driving Protein Conformational Cycles in Physiology and Disease: "Frustrated" Amino Acid Interaction Networks Define Dynamic Energy Landscapes: Amino Acid Interaction Networks Change Progressively Along Alpha Tryptophan Synthase's Catalytic Cycle. Bioessays 2020; 42:e2000092. [PMID: 32720327 DOI: 10.1002/bies.202000092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/09/2020] [Indexed: 12/22/2022]
Abstract
A general framework by which dynamic interactions within a protein will promote the necessary series of structural changes, or "conformational cycle," required for function is proposed. It is suggested that the free-energy landscape of a protein is biased toward this conformational cycle. Fluctuations into higher energy, although thermally accessible, conformations drive the conformational cycle forward. The amino acid interaction network is defined as those intraprotein interactions that contribute most to the free-energy landscape. Some network connections are consistent in every structural state, while others periodically change their interaction strength according to the conformational cycle. It is reviewed here that structural transitions change these periodic network connections, which then predisposes the protein toward the next set of network changes, and hence the next structural change. These concepts are illustrated by recent work on tryptophan synthase. Disruption of these dynamic connections may lead to aberrant protein function and disease states.
Collapse
Affiliation(s)
- Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, 107 Chemistry Building, University Park, PA, 16802, USA
| | - Alec M Murray
- Department of Chemistry, The Pennsylvania State University, 107 Chemistry Building, University Park, PA, 16802, USA
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, 107 Chemistry Building, University Park, PA, 16802, USA
| |
Collapse
|
9
|
Tamer YT, Gaszek IK, Abdizadeh H, Batur TA, Reynolds KA, Atilgan AR, Atilgan C, Toprak E. High-Order Epistasis in Catalytic Power of Dihydrofolate Reductase Gives Rise to a Rugged Fitness Landscape in the Presence of Trimethoprim Selection. Mol Biol Evol 2019; 36:1533-1550. [PMID: 30982891 PMCID: PMC6573477 DOI: 10.1093/molbev/msz086] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Evolutionary fitness landscapes of several antibiotic target proteins have been comprehensively mapped showing strong high-order epistasis between mutations, but understanding these effects at the biochemical and structural levels remained open. Here, we carried out an extensive experimental and computational study to quantitatively understand the evolutionary dynamics of Escherichia coli dihydrofolate reductase (DHFR) enzyme in the presence of trimethoprim-induced selection. To facilitate this, we developed a new in vitro assay for rapidly characterizing DHFR steady-state kinetics. Biochemical and structural characterization of resistance-conferring mutations targeting a total of ten residues spanning the substrate binding pocket of DHFR revealed distinct changes in the catalytic efficiencies of mutated DHFR enzymes. Next, we measured biochemical parameters (Km, Ki, and kcat) for a mutant library carrying all possible combinations of six resistance-conferring DHFR mutations and quantified epistatic interactions between them. We found that the high-order epistasis in catalytic power of DHFR (kcat and Km) creates a rugged fitness landscape under trimethoprim selection. Taken together, our data provide a concrete illustration of how epistatic coupling at the level of biochemical parameters can give rise to complex fitness landscapes, and suggest new strategies for developing mutant specific inhibitors.
Collapse
Affiliation(s)
- Yusuf Talha Tamer
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ilona K Gaszek
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Haleh Abdizadeh
- Faculty of Science and Engineering, University of Groningen, Groningen, Netherlands
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | | | - Kimberly A Reynolds
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ali Rana Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Erdal Toprak
- Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
10
|
DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents. Molecules 2019; 24:molecules24061140. [PMID: 30909399 PMCID: PMC6471984 DOI: 10.3390/molecules24061140] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022] Open
Abstract
Dihydrofolate reductase inhibitors are an important class of drugs, as evidenced by their use as antibacterial, antimalarial, antifungal, and anticancer agents. Progress in understanding the biochemical basis of mechanisms responsible for enzyme selectivity and antiproliferative effects has renewed the interest in antifolates for cancer chemotherapy and prompted the medicinal chemistry community to develop novel and selective human DHFR inhibitors, thus leading to a new generation of DHFR inhibitors. This work summarizes the mechanism of action, chemical, and anticancer profile of the DHFR inhibitors discovered in the last six years. New strategies in DHFR drug discovery are also provided, in order to thoroughly delineate the current landscape for medicinal chemists interested in furthering this study in the anticancer field.
Collapse
|
11
|
Wu H, Post CB. Protein Conformational Transitions from All-Atom Adaptively Biased Path Optimization. J Chem Theory Comput 2018; 14:5372-5382. [PMID: 30222340 DOI: 10.1021/acs.jctc.8b00147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Simulation methods are valuable for elucidating protein conformational transitions between functionally diverse states given that transition pathways are difficult to capture experimentally. Nonetheless, specific computational algorithms are required because of the high free energy barriers between these different protein conformational states. Adaptively biased path optimization (ABPO) is an unrestrained, transition-path optimization method that works in a reduced-variable space to construct an adaptive biasing potential to aid convergence. ABPO was previously applied using a coarse-grained Go̅-model to study conformational activation of Lyn, a Src family tyrosine kinase. How effectively ABPO can be applied at the higher resolution of an all-atom model to explore protein conformational transitions is not yet known. Here, we report the all-atom conformational transition paths of three protein systems constructed using the ABPO methodology. Two systems, triose phosphate isomerase and dihydrofolate reductase, undergo local flipping of a short loop that promotes ligand binding. The third system, estrogen receptor α ligand binding domain, has a helix that adopts different conformations when the protein is bound to an agonist or an antagonist. For each protein, distance-based or torsion-angle reduced variables were identified from unbiased trajectories. ABPO was computed in this reduced variable space to obtain the transition path between the two states. The all-atom ABPO is shown to successfully converge an optimal transition path for each of the three systems.
Collapse
Affiliation(s)
- Heng Wu
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Center for Cancer Research , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Center for Cancer Research , Purdue University , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
12
|
Maklashina E, Rajagukguk S, Iverson TM, Cecchini G. The unassembled flavoprotein subunits of human and bacterial complex II have impaired catalytic activity and generate only minor amounts of ROS. J Biol Chem 2018; 293:7754-7765. [PMID: 29610278 PMCID: PMC5961047 DOI: 10.1074/jbc.ra118.001977] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/28/2018] [Indexed: 01/28/2023] Open
Abstract
Complex II (SdhABCD) is a membrane-bound component of mitochondrial and bacterial electron transport chains, as well as of the TCA cycle. In this capacity, it catalyzes the reversible oxidation of succinate. SdhABCD contains the SDHA protein harboring a covalently bound FAD redox center and the iron-sulfur protein SDHB, containing three distinct iron-sulfur centers. When assembly of this complex is compromised, the flavoprotein SDHA may accumulate in the mitochondrial matrix or bacterial cytoplasm. Whether the unassembled SDHA has any catalytic activity, for example in succinate oxidation, fumarate reduction, reactive oxygen species (ROS) generation, or other off-pathway reactions, is not known. Therefore, here we investigated whether unassembled Escherichia coli SdhA flavoprotein, its homolog fumarate reductase (FrdA), and the human SDHA protein have succinate oxidase or fumarate reductase activity and can produce ROS. Using recombinant expression in E. coli, we found that the free flavoproteins from these divergent biological sources have inherently low catalytic activity and generate little ROS. These results suggest that the iron-sulfur protein SDHB in complex II is necessary for robust catalytic activity. Our findings are consistent with those reported for single-subunit flavoprotein homologs that are not associated with iron-sulfur or heme partner proteins.
Collapse
Affiliation(s)
- Elena Maklashina
- From the Molecular Biology Division, San Francisco Veterans Affairs Health Care System, San Francisco, California 94121, ,the Department of Biochemistry & Biophysics, University of California, San Francisco, California 94158, and
| | - Sany Rajagukguk
- From the Molecular Biology Division, San Francisco Veterans Affairs Health Care System, San Francisco, California 94121
| | - T. M. Iverson
- the Departments of Pharmacology and ,Biochemistry, ,the Center for Structural Biology, and ,the Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37232
| | - Gary Cecchini
- From the Molecular Biology Division, San Francisco Veterans Affairs Health Care System, San Francisco, California 94121, ,the Department of Biochemistry & Biophysics, University of California, San Francisco, California 94158, and , Recipient of Senior Research Career Scientist Award IK6BX004215 from the Department of Veterans Affairs. To whom correspondence should be addressed:
Molecular Biology Division (151-S), San Francisco Veterans Affairs Healthcare System, 4150 Clement St., San Francisco, CA 94121. Tel.:
415-221-4810, Ext. 24416; E-mail:
| |
Collapse
|
13
|
Boehr DD, D'Amico RN, O'Rourke KF. Engineered control of enzyme structural dynamics and function. Protein Sci 2018; 27:825-838. [PMID: 29380452 DOI: 10.1002/pro.3379] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Abstract
Enzymes undergo a range of internal motions from local, active site fluctuations to large-scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post-translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus-responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
14
|
Arshad S, Pillai RR, Zainuri DA, Khalib NC, Razak IA, Armaković S, Armaković SJ. Synthesis, crystal structure analysis, molecular docking studies and density functional theory predictions of the local reactive properties and degradation properties of a novel halochalcone. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Hughes RL, Johnson LA, Behiry EM, Loveridge EJ, Allemann RK. A Rapid Analysis of Variations in Conformational Behavior during Dihydrofolate Reductase Catalysis. Biochemistry 2017; 56:2126-2133. [PMID: 28368101 DOI: 10.1021/acs.biochem.7b00045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protein flexibility is central to enzyme catalysis, yet it remains challenging both to predict conformational behavior on the basis of analysis of amino acid sequence and protein structure and to provide the necessary breadth of experimental support to any such predictions. Here a generic and rapid procedure for identifying conformational changes during dihydrofolate reductase (DHFR) catalysis is described. Using DHFR from Escherichia coli (EcDHFR), selective side-chain 13C labeling of methionine and tryptophan residues is shown to be sufficient to detect the closed-to-occluded conformational transition that follows the chemical step in the catalytic cycle, with clear chemical shift perturbations found for both methionine methyl and tryptophan indole groups. In contrast, no such perturbations are seen for the DHFR from the psychrophile Moritella profunda, where the equivalent conformational change is absent. Like EcDHFR, Salmonella enterica DHFR shows experimental evidence of a large-scale conformational change following hydride transfer that relies on conservation of a key hydrogen bonding interaction between the M20 and GH loops, directly comparable to the closed-to-occluded conformational change observed in EcDHFR. For the hyperthermophile Thermotoga maritima, no chemical shift perturbations were observed, suggesting that no major conformational change occurs during the catalytic cycle. In spite of their conserved tertiary structures, DHFRs display variations in conformational sampling that occurs concurrently with catalysis.
Collapse
Affiliation(s)
- Robert L Hughes
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Luke A Johnson
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Enas M Behiry
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - E Joel Loveridge
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Rudolf K Allemann
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
16
|
Oyen D, Fenwick RB, Stanfield RL, Dyson HJ, Wright PE. Cofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway. J Am Chem Soc 2015; 137:9459-68. [PMID: 26147643 PMCID: PMC4521799 DOI: 10.1021/jacs.5b05707] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Indexed: 11/29/2022]
Abstract
The enzyme dihydrofolate reductase (DHFR, E) from Escherichia coli is a paradigm for the role of protein dynamics in enzyme catalysis. Previous studies have shown that the enzyme progresses through the kinetic cycle by modulating the dynamic conformational landscape in the presence of substrate dihydrofolate (DHF), product tetrahydrofolate (THF), and cofactor (NADPH or NADP(+)). This study focuses on the quantitative description of the relationship between protein fluctuations and product release, the rate-limiting step of DHFR catalysis. NMR relaxation dispersion measurements of millisecond time scale motions for the E:THF:NADP(+) and E:THF:NADPH complexes of wild-type and the Leu28Phe (L28F) point mutant reveal conformational exchange between an occluded ground state and a low population of a closed state. The backbone structures of the occluded ground states of the wild-type and mutant proteins are very similar, but the rates of exchange with the closed excited states are very different. Integrated analysis of relaxation dispersion data and THF dissociation rates measured by stopped-flow spectroscopy shows that product release can occur by two pathways. The intrinsic pathway consists of spontaneous product dissociation and occurs for all THF-bound complexes of DHFR. The allosteric pathway features cofactor-assisted product release from the closed excited state and is utilized only in the E:THF:NADPH complexes. The L28F mutation alters the partitioning between the pathways and results in increased flux through the intrinsic pathway relative to the wild-type enzyme. This repartitioning could represent a general mechanism to explain changes in product release rates in other E. coli DHFR mutants.
Collapse
Affiliation(s)
- David Oyen
- Department of Integrative
Structural and Computational Biology and Skaggs Institute for Chemical
Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - R. Bryn Fenwick
- Department of Integrative
Structural and Computational Biology and Skaggs Institute for Chemical
Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Robyn L. Stanfield
- Department of Integrative
Structural and Computational Biology and Skaggs Institute for Chemical
Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - H. Jane Dyson
- Department of Integrative
Structural and Computational Biology and Skaggs Institute for Chemical
Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter E. Wright
- Department of Integrative
Structural and Computational Biology and Skaggs Institute for Chemical
Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
17
|
Abstract
![]()
Biological activities of enzymes, including
regulation or coordination of mechanistic stages preceding or following
the chemical step, may depend upon kinetic or equilibrium changes
in protein conformations. Exchange of more open or flexible conformational
states with more closed or constrained states can influence inhibition,
allosteric regulation, substrate recognition, formation of the Michaelis
complex, side reactions, and product release. NMR spectroscopy has
long been applied to the study of conformational dynamic processes
in enzymes because these phenomena can be characterized over multiple
time scales with atomic site resolution. Laboratory-frame spin-relaxation
measurements, sensitive to reorientational motions on picosecond–nanosecond
time scales, and rotating-frame relaxation-dispersion measurements,
sensitive to chemical exchange processes on microsecond–millisecond
time scales, provide information on both conformational distributions
and kinetics. This Account reviews NMR spin relaxation studies of
the enzymes ribonuclease HI from mesophilic (Escherichia coli) and thermophilic (Thermus thermophilus) bacteria, E. coli AlkB, and Saccharomyces cerevisiae triosephosphate isomerase to illustrate the contributions of conformational
flexibility and dynamics to diverse steps in enzyme mechanism. Spin relaxation measurements and molecular dynamics (MD) simulations
of the bacterial ribonuclease H enzymes show that the handle region,
one of three loop regions that interact with substrates, interconverts
between two conformations. Comparison of these conformations with
the structure of the complex between Homo sapiens ribonuclease H and a DNA:RNA substrate suggests that the more closed
state is inhibitory to binding. The large population of the closed
conformation in T. thermophilus ribonuclease H contributes
to the increased Michaelis constant compared with the E. coli enzyme. NMR spin relaxation and fluorescence spectroscopy have characterized
a conformational transition in AlkB between an open state, in which
the side chains of methionine residues in the active site are disordered,
and a closed state, in which these residues are ordered. The open
state is highly populated in the AlkB/Zn(II) complex, and the closed
state is highly populated in the AlkB/Zn(II)/2OG/substrate complex,
in which 2OG is the 2-oxoglutarate cosubstrate and the substrate is
a methylated DNA oligonucleotide. The equilibrium is shifted to approximately
equal populations of the two conformations in the AlkB/Zn(II)/2OG
complex. The conformational shift induced by 2OG ensures that 2OG
binds to AlkB/Zn(II) prior to the substrate. In addition, the opening
rate of the closed conformation limits premature release of substrate,
preventing generation of toxic side products by reaction with water.
Closure of active site loop 6 in triosephosphate isomerase is critical
for forming the Michaelis complex, but reopening of the loop after
the reaction is (partially) rate limiting. NMR spin relaxation and
MD simulations of triosephosphate isomerase in complex with glycerol
3-phosphate demonstrate that closure of loop 6 is a highly correlated
rigid-body motion. The MD simulations also indicate that motions of
Gly173 in the most flexible region of loop 6 contribute to opening
of the active site loop for product release. Considered together,
these three enzyme systems illustrate the power of NMR spin relaxation
investigations in providing global insights into the role of conformational
dynamic processes in the mechanisms of enzymes from initial activation
to final product release.
Collapse
Affiliation(s)
- Arthur G. Palmer
- Department of Biochemistry and
Molecular Biophysics, Columbia University, 701 West 168th Street, New York, New York 10032, United States
| |
Collapse
|
18
|
Bhabha G, Biel JT, Fraser JS. Keep on moving: discovering and perturbing the conformational dynamics of enzymes. Acc Chem Res 2015; 48:423-30. [PMID: 25539415 PMCID: PMC4334266 DOI: 10.1021/ar5003158] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CONSPECTUS: Because living organisms are in constant motion, the word "dynamics" can hold many meanings to biologists. Here we focus specifically on the conformational changes that occur in proteins and how studying these protein dynamics may provide insights into enzymatic catalysis. Advances in integrating techniques such as X-ray crystallography, nuclear magnetic resonance, and electron cryomicroscopy (cryo EM) allow us to model the dominant structures and exchange rates for many proteins and protein complexes. For proteins amenable to atomic resolution techniques, the major questions shift from simply describing the motions to discovering their role in function. Concurrently, there is an increasing need for using perturbations to test predictive models of dynamics-function relationships. Examples are the catalytic cycles of dihydrofolate reductase (DHFR) and cyclophilin A (CypA). In DHFR, mutations that alter the ability of the active site to sample productive higher energy states on the millisecond time scale reduce the rate of hydride transfer significantly. Recently identified rescue mutations restore function, but the mechanism by which they do so remains unclear. The exact role of any changes in the dynamics remains an open question. For CypA, a network of side chains that exchange between two conformations is critical for catalysis. Mutations that lock the network in one state also reduce catalytic activity. A further understanding of enzyme dynamics of well-studied enzymes such as dihydrofolate reductase and cyclophilin A will lead to improvement in ability to modulate the functions of computationally designed enzymes and large macromolecular machines. In designed enzymes, directed evolution experiments increase catalytic rates. Detailed X-ray studies suggest that these mutations likely limit the conformational space explored by residues in the active site. For proteins where atomic resolution information is currently inaccessible, other techniques such as cryo-EM and high-resolution single molecule microscopy continue to advance. Understanding the conformational dynamics of larger systems such as protein machines will likely become more accessible and provide new opportunities to rationally modulate protein function.
Collapse
Affiliation(s)
- Gira Bhabha
- Department
of Cellular and Molecular Pharmacology and the Howard Hughes Medical
Institute, University of California, San Francisco, California 94158, United States
| | - Justin T. Biel
- Biophysics Graduate Group, University of California, San Francisco, California 94158, United States
| | - James S. Fraser
- Department of Bioengineering and Therapeutic
Science and California Institute for Quantitative Biology, University of California, San Francisco, California 94158, United States
| |
Collapse
|
19
|
Abstract
Myriad biological processes proceed through states that defy characterization by conventional atomic-resolution structural biological methods. The invisibility of these 'dark' states can arise from their transient nature, low equilibrium population, large molecular weight, and/or heterogeneity. Although they are invisible, these dark states underlie a range of processes, acting as encounter complexes between proteins and as intermediates in protein folding and aggregation. New methods have made these states accessible to high-resolution analysis by nuclear magnetic resonance (NMR) spectroscopy, as long as the dark state is in dynamic equilibrium with an NMR-visible species. These methods - paramagnetic NMR, relaxation dispersion, saturation transfer, lifetime line broadening, and hydrogen exchange - allow the exploration of otherwise invisible states in exchange with a visible species over a range of timescales, each taking advantage of some unique property of the dark state to amplify its effect on a particular NMR observable. In this review, we introduce these methods and explore two specific techniques - paramagnetic relaxation enhancement and dark state exchange saturation transfer - in greater detail.
Collapse
Affiliation(s)
- Nicholas J. Anthis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - G. Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
20
|
Tuttle LM, Dyson HJ, Wright PE. Side chain conformational averaging in human dihydrofolate reductase. Biochemistry 2014; 53:1134-45. [PMID: 24498949 PMCID: PMC3985697 DOI: 10.1021/bi4015314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The three-dimensional structures
of the dihydrofolate reductase
enzymes from Escherichia coli (ecDHFR or ecE) and Homo sapiens (hDHFR or hE) are very similar, despite a rather
low level of sequence identity. Whereas the active site loops of ecDHFR
undergo major conformational rearrangements during progression through
the reaction cycle, hDHFR remains fixed in a closed loop conformation
in all of its catalytic intermediates. To elucidate the structural
and dynamic differences between the human and E. coli enzymes, we conducted a comprehensive analysis of side chain flexibility
and dynamics in complexes of hDHFR that represent intermediates in
the major catalytic cycle. Nuclear magnetic resonance relaxation dispersion
experiments show that, in marked contrast to the functionally important
motions that feature prominently in the catalytic intermediates of
ecDHFR, millisecond time scale fluctuations cannot be detected for
hDHFR side chains. Ligand flux in hDHFR is thought to be mediated
by conformational changes between a hinge-open state when the substrate/product-binding
pocket is vacant and a hinge-closed state when this pocket is occupied.
Comparison of X-ray structures of hinge-open and hinge-closed states
shows that helix αF changes position by sliding between the
two states. Analysis of χ1 rotamer populations derived
from measurements of 3JCγCO and 3JCγN couplings
indicates that many of the side chains that contact helix αF
exhibit rotamer averaging that may facilitate the conformational change.
The χ1 rotamer adopted by the Phe31 side chain depends
upon whether the active site contains the substrate or product. In
the holoenzyme (the binary complex of hDHFR with reduced nicotinamide
adenine dinucleotide phosphate), a combination of hinge opening and
a change in the Phe31 χ1 rotamer opens the active
site to facilitate entry of the substrate. Overall, the data suggest
that, unlike ecDHFR, hDHFR requires minimal backbone conformational
rearrangement as it proceeds through its enzymatic cycle, but that
ligand flux is brokered by more subtle conformational changes that
depend on the side chain motions of critical residues.
Collapse
Affiliation(s)
- Lisa M Tuttle
- Department of Integrative Structural and Computational Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | |
Collapse
|
21
|
Solvent environments significantly affect the enzymatic function of Escherichia coli dihydrofolate reductase: comparison of wild-type protein and active-site mutant D27E. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2782-94. [PMID: 24140567 DOI: 10.1016/j.bbapap.2013.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/17/2013] [Accepted: 09/30/2013] [Indexed: 11/23/2022]
Abstract
To investigate the contribution of solvent environments to the enzymatic function of Escherichia coli dihydrofolate reductase (DHFR), the salt-, pH-, and pressure-dependence of the enzymatic function of the wild-type protein were compared with those of the active-site mutant D27E in relation to their structure and stability. The salt concentration-dependence of enzymatic activity indicated that inorganic cations bound to and inhibited the activity of wild-type DHFR at neutral pH. The BaCl2 concentration-dependence of the (1)H-(15)N HSQC spectra of the wild-type DHFR-folate binary complex showed that the cation-binding site was located adjacent to the Met20 loop. The insensitivity of the D27E mutant to univalent cations, the decreased optimal pH for its enzymatic activity, and the increased Km and Kd values for its substrate dihydrofolate suggested that the substrate-binding cleft of the mutant was slightly opened to expose the active-site side chain to the solvent. The marginally increased fluorescence intensity and decreased volume change due to unfolding of the mutant also supported this structural change or the modified cavity and hydration. Surprisingly, the enzymatic activity of the mutant increased with pressurization up to 250MPa together with negative activation volumes of -4.0 or -4.8mL/mol, depending on the solvent system, while that of the wild-type was decreased and had positive activation volumes of 6.1 or 7.7mL/mol. These results clearly indicate that the insertion of a single methylene at the active site could substantially change the enzymatic reaction mechanism of DHFR, and solvent environments play important roles in the function of this enzyme.
Collapse
|
22
|
NMR spectroscopy on domain dynamics in biomacromolecules. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:58-117. [DOI: 10.1016/j.pbiomolbio.2013.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
|
23
|
Boehr DD, Schnell JR, McElheny D, Bae SH, Duggan BM, Benkovic SJ, Dyson HJ, Wright PE. A distal mutation perturbs dynamic amino acid networks in dihydrofolate reductase. Biochemistry 2013; 52:4605-19. [PMID: 23758161 DOI: 10.1021/bi400563c] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Correlated networks of amino acids have been proposed to play a fundamental role in allostery and enzyme catalysis. These networks of amino acids can be traced from surface-exposed residues all the way into the active site, and disruption of these networks can decrease enzyme activity. Substitution of the distal Gly121 residue in Escherichia coli dihydrofolate reductase results in an up to 200-fold decrease in the hydride transfer rate despite the fact that the residue is located 15 Å from the active-site center. In this study, nuclear magnetic resonance relaxation experiments are used to demonstrate that dynamics on the picosecond to nanosecond and microsecond to millisecond time scales are changed significantly in the G121V mutant of dihydrofolate reductase. In particular, picosecond to nanosecond time scale dynamics are decreased in the FG loop (containing the mutated residue at position 121) and the neighboring active-site loop (the Met20 loop) in the mutant compared to those of the wild-type enzyme, suggesting that these loops are dynamically coupled. Changes in methyl order parameters reveal a pathway by which dynamic perturbations can be propagated more than 25 Å across the protein from the site of mutation. All of the enzyme complexes, including the model Michaelis complex with folate and nicotinamide adenine dinucleotide phosphate bound, assume an occluded ground-state conformation, and we do not observe sampling of a higher-energy closed conformation by (15)N R2 relaxation dispersion experiments. This is highly significant, because it is only in the closed conformation that the cofactor and substrate reactive centers are positioned for reaction. The mutation also impairs microsecond to millisecond time scale fluctuations that have been implicated in the release of product from the wild-type enzyme. Our results are consistent with an important role for Gly121 in controlling protein dynamics critical for enzyme function and further validate the dynamic energy landscape hypothesis of enzyme catalysis.
Collapse
Affiliation(s)
- David D Boehr
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jason R Schnell
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Dan McElheny
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sung-Hun Bae
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Brendan M Duggan
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stephen J Benkovic
- The Pennsylvania State University, Department of Chemistry, 414 Wartik Laboratory, University Park, PA 16802, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
24
|
Abstract
Quantum tunneling and protein dynamics have emerged as important components of enzyme function. This review focuses on soybean lipoxygenase-1, to illustrate how the properties of enzymatic C-H bond activation link protein motions to the fundamental bond making-breaking processes.
Collapse
Affiliation(s)
- Judith P. Klinman
- Department of Chemistry, Department of Molecular and Cell Biology, and California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720-3220, United States
| |
Collapse
|
25
|
Abstract
The relationship between protein dynamics and function is a subject of considerable contemporary interest. Although protein motions are frequently observed during ligand binding and release steps, the contribution of protein motions to the catalysis of bond making/breaking processes is more difficult to probe and verify. Here, we show how the quantum mechanical hydrogen tunneling associated with enzymatic C-H bond cleavage provides a unique window into the necessity of protein dynamics for achieving optimal catalysis. Experimental findings support a hierarchy of thermodynamically equilibrated motions that control the H-donor and -acceptor distance and active-site electrostatics, creating an ensemble of conformations suitable for H-tunneling. A possible extension of this view to methyl transfer and other catalyzed reactions is also presented. The impact of understanding these dynamics on the conceptual framework for enzyme activity, inhibitor/drug design, and biomimetic catalyst design is likely to be substantial.
Collapse
Affiliation(s)
- Judith P. Klinman
- Department of Chemistry, Department of Molecular and Cell Biology, and the California Institute for Quantitative Sciences, University of California, Berkeley, California 94720;
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294;
| |
Collapse
|
26
|
Arora K, Brooks CL. Multiple intermediates, diverse conformations, and cooperative conformational changes underlie the catalytic hydride transfer reaction of dihydrofolate reductase. Top Curr Chem (Cham) 2013; 337:165-87. [PMID: 23420416 PMCID: PMC4394636 DOI: 10.1007/128_2012_408] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It has become increasingly clear that protein motions play an essential role in enzyme catalysis. However, exactly how these motions are related to an enzyme's chemical step is still intensely debated. This chapter examines the possible role of protein motions that display a hierarchy of timescales in enzyme catalysis. The linkage between protein motions and catalysis is investigated in the context of a model enzyme, E. coli dihydrofolate reductase (DHFR), that catalyzes the hydride transfer reaction in the conversion of dihydrofolate to tetrahydrofolate. The results of extensive computer simulations probing the protein motions that are manifest during different steps along the turnover cycle of DHFR are summarized. Evidence is presented that the protein motions modulate the catalytic efficacy of DHFR by generating a conformational ensemble conducive to the hydride transfer. The alteration of the equilibrium conformational ensemble rather than any protein dynamical effects is found to be sufficient to explain the rate-diminishing effects of mutation on the kinetics of the enzyme. These data support the view that the protein motions facilitate catalysis by establishing reaction competent conformations of the enzyme, but they do not directly couple to the chemical reaction itself. These findings have broad implications for our understanding of enzyme mechanisms and the design of novel protein catalysts.
Collapse
Affiliation(s)
- Karunesh Arora
- Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, MI 48109
| | - Charles L. Brooks
- Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
27
|
Desai BJ, Wood M, Fedorov AA, Fedorov EV, Goryanova B, Amyes TL, Richard JP, Almo SC, Gerlt JA. Conformational changes in orotidine 5'-monophosphate decarboxylase: a structure-based explanation for how the 5'-phosphate group activates the enzyme. Biochemistry 2012; 51:8665-78. [PMID: 23030629 PMCID: PMC3549026 DOI: 10.1021/bi301188k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The binding of a ligand to orotidine 5'-monophosphate decarboxylase (OMPDC) is accompanied by a conformational change from an open, inactive conformation (E(o)) to a closed, active conformation (E(c)). As the substrate traverses the reaction coordinate to form the stabilized vinyl carbanion/carbene intermediate, interactions that destabilize the carboxylate group of the substrate and stabilize the intermediate (in the E(c)·S(‡) complex) are enforced. Focusing on the OMPDC from Methanothermobacter thermautotrophicus, we find the "remote" 5'-phosphate group of the substrate activates the enzyme 2.4 × 10(8)-fold; the activation is equivalently described by an intrinsic binding energy (IBE) of 11.4 kcal/mol. We studied residues in the activation that (1) directly contact the 5'-phosphate group, (2) participate in a hydrophobic cluster near the base of the active site loop that sequesters the bound substrate from the solvent, and (3) form hydrogen bonding interactions across the interface between the "mobile" and "fixed" half-barrel domains of the (β/α)(8)-barrel structure. Our data support a model in which the IBE provided by the 5'-phosphate group is used to allow interactions both near the N-terminus of the active site loop and across the domain interface that stabilize both the E(c)·S and E(c)·S(‡) complexes relative to the E(o)·S complex. The conclusion that the IBE of the 5'-phosphate group provides stabilization to both the E(c)·S and E(c)·S(‡) complexes, not just the E(c)·S(‡) complex, is central to understanding the structural origins of enzymatic catalysis as well as the requirements for the de novo design of enzymes that catalyze novel reactions.
Collapse
Affiliation(s)
- Bijoy J. Desai
- Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL
| | - McKay Wood
- Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Alexander A. Fedorov
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Elena V. Fedorov
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Tina L. Amyes
- Department of Chemistry, University at Buffalo, Buffalo, NY 14260
| | - John P. Richard
- Department of Chemistry, University at Buffalo, Buffalo, NY 14260
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - John A. Gerlt
- Departments of Biochemistry and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL,To whom correspondence should be addressed: J.A.G.: Institute for Genomic Biology, University of Illinois, 1206 West Gregory Drive, Urbana, IL 61801. Phone: (217) 244-7414. Fax: (217) 333-0508.
| |
Collapse
|
28
|
Micheletti C. Comparing proteins by their internal dynamics: exploring structure-function relationships beyond static structural alignments. Phys Life Rev 2012. [PMID: 23199577 DOI: 10.1016/j.plrev.2012.10.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The growing interest for comparing protein internal dynamics owes much to the realisation that protein function can be accompanied or assisted by structural fluctuations and conformational changes. Analogously to the case of functional structural elements, those aspects of protein flexibility and dynamics that are functionally oriented should be subject to evolutionary conservation. Accordingly, dynamics-based protein comparisons or alignments could be used to detect protein relationships that are more elusive to sequence and structural alignments. Here we provide an account of the progress that has been made in recent years towards developing and applying general methods for comparing proteins in terms of their internal dynamics and advance the understanding of the structure-function relationship.
Collapse
Affiliation(s)
- Cristian Micheletti
- Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, Trieste, Italy.
| |
Collapse
|
29
|
Weikl TR, Boehr DD. Conformational selection and induced changes along the catalytic cycle of Escherichia coli
dihydrofolate reductase. Proteins 2012; 80:2369-83. [DOI: 10.1002/prot.24123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/02/2012] [Accepted: 05/09/2012] [Indexed: 01/21/2023]
|
30
|
Lee Y, Mick J, Furdui C, Beamer LJ. A coevolutionary residue network at the site of a functionally important conformational change in a phosphohexomutase enzyme family. PLoS One 2012; 7:e38114. [PMID: 22685552 PMCID: PMC3369874 DOI: 10.1371/journal.pone.0038114] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/01/2012] [Indexed: 11/26/2022] Open
Abstract
Coevolution analyses identify residues that co-vary with each other during evolution, revealing sequence relationships unobservable from traditional multiple sequence alignments. Here we describe a coevolutionary analysis of phosphomannomutase/phosphoglucomutase (PMM/PGM), a widespread and diverse enzyme family involved in carbohydrate biosynthesis. Mutual information and graph theory were utilized to identify a network of highly connected residues with high significance. An examination of the most tightly connected regions of the coevolutionary network reveals that most of the involved residues are localized near an interdomain interface of this enzyme, known to be the site of a functionally important conformational change. The roles of four interface residues found in this network were examined via site-directed mutagenesis and kinetic characterization. For three of these residues, mutation to alanine reduces enzyme specificity to ∼10% or less of wild-type, while the other has ∼45% activity of wild-type enzyme. An additional mutant of an interface residue that is not densely connected in the coevolutionary network was also characterized, and shows no change in activity relative to wild-type enzyme. The results of these studies are interpreted in the context of structural and functional data on PMM/PGM. Together, they demonstrate that a network of coevolving residues links the highly conserved active site with the interdomain conformational change necessary for the multi-step catalytic reaction. This work adds to our understanding of the functional roles of coevolving residue networks, and has implications for the definition of catalytically important residues.
Collapse
Affiliation(s)
- Yingying Lee
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Jacob Mick
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Cristina Furdui
- Department of Internal Medicine, Wake Forest University Health Sciences Winston-Salem, North Carolina, United States of America
| | - Lesa J. Beamer
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
31
|
Nagel ZD, Meadows CW, Dong M, Bahnson BJ, Klinman JP. Active site hydrophobic residues impact hydrogen tunneling differently in a thermophilic alcohol dehydrogenase at optimal versus nonoptimal temperatures. Biochemistry 2012; 51:4147-56. [PMID: 22568562 DOI: 10.1021/bi3001352] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A growing body of data suggests that protein motion plays an important role in enzyme catalysis. Two highly conserved hydrophobic active site residues in the cofactor-binding pocket of ht-ADH (Leu176 and V260) have been mutated to a series of hydrophobic side chains of smaller size, as well as one deletion mutant, L176Δ. Mutations decrease k(cat) and increase K(M)(NAD(+)). Most of the observed decreases in effects on k(cat) at pH 7.0 are due to an upward shift in the optimal pH for catalysis; a simple electrostatic model is invoked that relates the change in pK(a) to the distance between the positively charged nicotinamide ring and bound substrate. Structural modeling of the L176Δ and V260A variants indicates the development of a cavity behind the nicotinamide ring without any significant perturbation of the secondary structure of the enzyme relative to that of the wild type. Primary kinetic isotope effects (KIEs) are modestly increased for all mutants. Above the dynamical transition at 30 °C for ht-ADH [Kohen, A., et al. (1999) Nature 399, 496], the temperature dependence of the KIE is seen to increase with a decrease in side chain volume at positions 176 and 260. Additionally, the relative trends in the temperature dependence of the KIE above and below 30 °C appear to be reversed for the cofactor-binding pocket mutants in relation to wild-type protein. The aggregate results are interpreted in the context of a full tunneling model of enzymatic hydride transfer that incorporates both protein conformational sampling (preorganization) and active site optimization of tunneling (reorganization). The reduced temperature dependence of the KIE in the mutants below 30 °C indicates that at low temperatures, the enzyme adopts conformations refractory to donor-acceptor distance sampling.
Collapse
Affiliation(s)
- Zachary D Nagel
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
32
|
Boehr DD. Promiscuity in protein-RNA interactions: conformational ensembles facilitate molecular recognition in the spliceosome: conformational diversity in U2AF⁶⁵ facilitates binding to diverse RNA sequences. Bioessays 2011; 34:174-80. [PMID: 22144099 DOI: 10.1002/bies.201100152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Here I discuss findings that suggest a universal mechanism for proteins (and RNA) to recognize and interact with various binding partners by selectively binding to different conformations that pre-exist in the free protein's conformational ensemble. The tandem RNA recognition motif domains of splicing factor U2AF⁶⁵ fluctuate in solution between a predominately closed conformation in which the RNA binding site of one of the domains is blocked, and a lowly populated open conformation in which both RNA binding pockets are accessible. RNA binding to U2AF⁶⁵ may thus occur through the weakly populated open conformation, and the binding interaction stabilizes the open conformation. The conformational diversity observed in U2AF⁶⁵ might also facilitate binding to diverse RNA sequences as found in the polypyrimidine tracts that help define 3' splice sites. Similar binding pathways in other systems have important consequences in biological regulation, molecular evolution, and information storage.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, 240 Chemistry Building, University Park, PA, USA.
| |
Collapse
|
33
|
Strambini GB, Gonnelli M. Influence of Denaturants on Native-State Structural Fluctuations in Azurin Probed by Molecular Size-Dependent Quenching of Trp Phosphorescence. J Phys Chem B 2011; 115:13755-64. [DOI: 10.1021/jp208397m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Margherita Gonnelli
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, 56124 Pisa, Italy
| |
Collapse
|
34
|
Clore GM. Exploring sparsely populated states of macromolecules by diamagnetic and paramagnetic NMR relaxation. Protein Sci 2011; 20:229-46. [PMID: 21280116 DOI: 10.1002/pro.576] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sparsely populated states of macromolecules, characterized by short lifetimes and high free-energies relative to the predominant ground state, often play a key role in many biological, chemical, and biophysical processes. In this review, we briefly summarize various new developments in NMR spectroscopy that permit these heretofore invisible, sparsely populated states to be detected, characterized, and in some instances visualized. Relaxation dispersion spectroscopy yields detailed kinetic information on processes involving species characterized by distinct chemical shifts with lifetimes in the ∼50 μs-10 ms range and populations as low as 0.5%. In the fast exchange regime (time scale less than ∼250-500 μs), the footprint of sparsely populated states can be observed on paramagnetic relaxation enhancement profiles measured on the resonances of the major species, thereby yielding structural information that is directly related to paramagnetic center-nuclei distances from which it is possible, under suitable circumstances, to compute a structure or ensemble of structures for the minor species. Finally, differential transverse relaxation measurements can be used to detect lifetime broadening effects that directly reflect the unidirectional rates for the conversion of NMR-visible into high-molecular weight NMR-invisible species. Examples of these various approaches are presented.
Collapse
Affiliation(s)
- G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA.
| |
Collapse
|
35
|
Kahra D, Kovermann M, Löw C, Hirschfeld V, Haupt C, Balbach J, Hübner CG. Conformational plasticity and dynamics in the generic protein folding catalyst SlyD unraveled by single-molecule FRET. J Mol Biol 2011; 411:781-90. [PMID: 21596048 DOI: 10.1016/j.jmb.2011.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 11/15/2022]
Abstract
The relation between conformational dynamics and chemistry in enzyme catalysis recently has received increasing attention. While, in the past, the mechanochemical coupling was mainly attributed to molecular motors, nowadays, it seems that this linkage is far more general. Single-molecule fluorescence methods are perfectly suited to directly evidence conformational flexibility and dynamics. By labeling the enzyme SlyD, a member of peptidyl-prolyl cis-trans isomerases of the FK506 binding protein type with an inserted chaperone domain, with donor and acceptor fluorophores for single-molecule fluorescence resonance energy transfer, we directly monitor conformational flexibility and conformational dynamics between the chaperone domain and the FK506 binding protein domain. We find a broad distribution of distances between the labels with two main maxima, which we attribute to an open conformation and to a closed conformation of the enzyme. Correlation analysis demonstrates that the conformations exchange on a rate in the 100 Hz range. With the aid from Monte Carlo simulations, we show that there must be conformational flexibility beyond the two main conformational states. Interestingly, neither the conformational distribution nor the dynamics is significantly altered upon binding of substrates or other known binding partners. Based on these experimental findings, we propose a model where the conformational dynamics is used to search the conformation enabling the chemical step, which also explains the remarkable substrate promiscuity connected with a high efficiency of this class of peptidyl-prolyl cis-trans isomerases.
Collapse
Affiliation(s)
- Dana Kahra
- Institut für Physik, Universität zu Lübeck, Ratzeburger Allee 160, D-23564 Lübeck, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Loveridge EJ, Allemann RK. Effect of pH on hydride transfer by Escherichia coli dihydrofolate reductase. Chembiochem 2011; 12:1258-62. [PMID: 21506230 DOI: 10.1002/cbic.201000794] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Indexed: 11/07/2022]
Abstract
The kinetic isotope effect (KIE) on hydride transfer in the reaction catalysed by dihydrofolate reductase from Escherichia coli (EcDHFR) is known to be temperature dependent at pH 7, but essentially independent of temperature at elevated pH. Here, we show that the transition from the temperature-dependent regime to the temperature-independent regime occurs sharply between pH 7.5 and 8. The activation energy for hydride transfer is independent of pH. The mechanism leading to the change in behaviour of the KIEs is not clear, but probably involves a conformational change in the enzyme brought about by deprotonation of a key residue (or residues) at high pH. The KIE on hydride transfer at low pH suggests that the rate constant for the reaction is not limited by a conformational change to the enzyme under these conditions. The effect of pH on the temperature dependence of the rate constants and KIEs for hydride transfer catalysed by EcDHFR suggests that enzyme motions and conformational changes do not directly influence the chemistry, but that the reaction conditions affect the conformational ensemble of the enzyme prior to reaction and control the reaction though this route.
Collapse
Affiliation(s)
- E Joel Loveridge
- School of Chemistry, Cardiff University, Park Place, Cardiff, UK
| | | |
Collapse
|
37
|
Grubbs J, Rahmanian S, DeLuca A, Padmashali C, Jackson M, Duff MR, Howell EE. Thermodynamics and solvent effects on substrate and cofactor binding in Escherichia coli chromosomal dihydrofolate reductase. Biochemistry 2011; 50:3673-85. [PMID: 21462996 DOI: 10.1021/bi2002373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Chromosomal dihydrofolate reductase from Escherichia coli catalyzes the reduction of dihydrofolate to tetrahydrofolate using NADPH as a cofactor. The thermodynamics of ligand binding were examined using an isothermal titration calorimetry approach. Using buffers with different heats of ionization, zero to a small, fractional proton release was observed for dihydrofolate binding, while a proton was released upon NADP(+) binding. The role of water in binding was additionally monitored using a number of different osmolytes. Binding of NADP(+) is accompanied by the net release of ∼5-24 water molecules, with a dependence on the identity of the osmolyte. In contrast, binding of dihydrofolate is weakened in the presence of osmolytes, consistent with "water uptake". Different effects are observed depending on the identity of the osmolyte. The net uptake of water upon dihydrofolate binding was previously observed in the nonhomologous R67-encoded dihydrofolate reductase (dfrB or type II enzyme) [Chopra, S., et al. (2008) J. Biol. Chem. 283, 4690-4698]. As R67 dihydrofolate reductase possesses a nonhomologous sequence and forms a tetrameric structure with a single active site pore, the observation of weaker DHF binding in the presence of osmolytes in both enzymes implicates cosolvent effects on free dihydrofolate. Consistent with this analysis, stopped flow experiments find betaine mostly affects DHF binding via changes in k(on), while betaine mostly affects NADPH binding via changes in k(off). Finally, nonadditive enthalpy terms when binary and ternary cofactor binding events are compared suggest the presence of long-lived conformational transitions that are not included in a simple thermodynamic cycle.
Collapse
Affiliation(s)
- Jordan Grubbs
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Tan YW, Yang H. Seeing the forest for the trees: fluorescence studies of single enzymes in the context of ensemble experiments. Phys Chem Chem Phys 2010; 13:1709-21. [PMID: 21183988 DOI: 10.1039/c0cp02412k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Enzymes are remarkable molecular machines that make many difficult biochemical reactions possible under mild biological conditions with incredible precision and efficiency. Our understanding of the working principles of enzymes, however, has not reached the level where one can readily deduce the mechanism and the catalytic rates from an enzyme's structure. Resolving the dynamics that relate the three-dimensional structure of an enzyme to its function has been identified as a key issue. While still challenging to implement, single-molecule techniques have emerged as one of the most useful methods for studying enzymes. We review enzymes studied using single-molecule fluorescent methods but placing them in the context of results from other complementary experimental work done on bulk samples. This review primarily covers three enzyme systems--flavoenzymes, dehydrofolate reductase, and adenylate kinase--with additional enzymes mentioned where appropriate. When the single-molecule experiments are discussed together with other methods aiming at the same scientific question, the weakness, strength, and unique contributions become clear.
Collapse
Affiliation(s)
- Yan-Wen Tan
- Department of Physics, Fudan University, No. 220, Handan Rd., Shanghai 200433, China.
| | | |
Collapse
|
39
|
Nagel ZD, Klinman JP. Update 1 of: Tunneling and dynamics in enzymatic hydride transfer. Chem Rev 2010; 110:PR41-67. [PMID: 21141912 PMCID: PMC4067601 DOI: 10.1021/cr1001035] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Zachary D. Nagel
- Departments of Chemistry and of Molecular and Cell Biology and the
California Institute for Quantitative Biosciences, University of California,
Berkeley, California 94720
| | - Judith P. Klinman
- Departments of Chemistry and of Molecular and Cell Biology and the
California Institute for Quantitative Biosciences, University of California,
Berkeley, California 94720
| |
Collapse
|
40
|
Stratton MM, Cutler TA, Ha JH, Loh SN. Probing local structural fluctuations in myoglobin by size-dependent thiol-disulfide exchange. Protein Sci 2010; 19:1587-94. [PMID: 20572017 DOI: 10.1002/pro.440] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
All proteins undergo local structural fluctuations (LSFs) or breathing motions. These motions are likely to be important for function but are poorly understood. LSFs were initially defined by amide hydrogen exchange (HX) experiments as opening events, which expose a small number of backbone amides to (1)H/(2)H exchange, but whose exchange rates are independent of denaturant concentration. Here, we use size-dependent thiol-disulfide exchange (SX) to characterize LSFs in single cysteine-containing variants of myoglobin (Mb). SX complements HX by providing information on motions that disrupt side chain packing interactions. Most importantly, probe reagents of different sizes and chemical properties can be used to characterize the size of structural opening events and the properties of the open state. We use thiosulfonate reagents (126-274 Da) to survey access to Cys residues, which are buried at specific helical packing interfaces in Mb. In each case, the free energy of opening increases linearly with the radius of gyration of the probe reagent. The slope and the intercept are interpreted to yield information on the size of the opening events that expose the buried thiol groups. The slope parameter varies by over 10-fold among Cys positions tested, suggesting that the sizes of breathing motions vary substantially throughout the protein. Our results provide insight to the longstanding question: how rigid or flexible are proteins in their native states?
Collapse
Affiliation(s)
- Margaret M Stratton
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, New York 13210, USA
| | | | | | | |
Collapse
|
41
|
Wang Z, Kohen A. Thymidylate synthase catalyzed H-transfers: two chapters in one tale. J Am Chem Soc 2010; 132:9820-5. [PMID: 20575541 DOI: 10.1021/ja103010b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Examination of the nature of different bond activations along the same catalytic path is of general interest in chemistry and biology. In this report, we compare the physical nature of two sequential H-transfers in the same enzymatic reaction. Thymidylate synthase (TSase) catalyzes a complex reaction that involves many chemical transformations including two different C-H bond cleavages, a rate-limiting C-H-C hydride transfer and a non-rate-limiting C-H-O proton transfer. Although the large kinetic complexity imposes difficulties in studying the proton transfer catalyzed by TSase, we are able to experimentally extract the intrinsic kinetic isotope effects (KIEs) on both steps. In contrast with the hydride transfer, the intrinsic KIEs of the proton transfer are temperature dependent. The results are interpreted within the framework of the Marcus-like model. This interpretation suggests that TSase optimizes the donor-acceptor geometries for the slower and overall rate-limiting hydride transfer but not for the faster proton transfer.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
42
|
Arora K, Brooks Iii CL. Functionally important conformations of the Met20 loop in dihydrofolate reductase are populated by rapid thermal fluctuations. J Am Chem Soc 2010; 131:5642-7. [PMID: 19323547 DOI: 10.1021/ja9000135] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Conformational changes in enzymes are well recognized to play an important role in the organization of the reactive groups for efficient catalysis. This study reveals atomic and energetic details of the conformational change process that precedes the catalytic reaction of the enzyme dihydrofolate reductase. The computed free energy profile provides insights into the ligand binding mechanism and a quantitative estimate of barrier heights separating different conformational states along the pathway. Studies show that the ternary complex comprised of NADPH cofactor and substrate dihydrofolate undergoes transitions between a closed state and an occluded state via an intermediate "open" conformation. During these transitions the largest conformational change occurs in the Met20 loop of DHFR and is accompanied by the motion of the cofactor into and out of the binding pocket. When the cofactor is out of the binding pocket, the enzyme frequently samples open and occluded conformations with a small (approximately 5 k(B)T) free energy barrier between the two states. However, when the cofactor is in the binding pocket, the closed conformation is thermodynamically most favored. The determination of a profile characterizing the position-dependent diffusion of the Met20 loop allowed us to apply reaction rate theory and deduce the kinetics of loop motions based on the computed free energy landscape.
Collapse
Affiliation(s)
- Karunesh Arora
- Department of Chemistry and Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
43
|
Temperature dependence of protein motions in a thermophilic dihydrofolate reductase and its relationship to catalytic efficiency. Proc Natl Acad Sci U S A 2010; 107:10074-9. [PMID: 20534574 DOI: 10.1073/pnas.1003678107] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report hydrogen deuterium exchange by mass spectrometry (HDX-MS) as a function of temperature in a thermophilic dihydrofolate reductase from Bacillus stearothermophilus (Bs-DHFR). Protein stability, probed with circular dichroism, established an accessible temperature range of 10 degrees C to 55 degrees C for the interrogation of HDX-MS. Although both the rate and extent of HDX are sensitive to temperature, the majority of peptides showed rapid kinetics of exchange, allowing us to focus on plateau values for the maximal extent of exchange at each temperature. Arrhenius plots of the ratio of hydrogens exchanged at 5 h normalized to the number of exchangeable hydrogens vs. 1/T provides an estimate for the apparent enthalpic change of local unfolding, DeltaH degrees (unf(avg)). Most regions in the enzyme show DeltaH degrees (unf(avg)) < or = 2.0 kcal/mol, close to the value of kT; by contrast, significantly elevated values for DeltaH degrees (unf(avg)) are observed in regions within the core of protein that contain the cofactor and substrate-binding sites. Our technique introduces a new strategy for probing the temperature dependence of local protein unfolding within native proteins. These findings are discussed in the context of the demonstrated role for nuclear tunneling in hydride transfer from NADPH to dihydrofolate, and relate the observed enthalpic changes to two classes of motion, preorganization and reorganization, that have been proposed to control the efficiency of hydrogenic wave function overlap. Our findings suggest that the enthalpic contribution to the heavy atom environmental reorganizations controlling the hydrogenic wave function overlap will be dominated by regions of the protein proximal to the bound cofactor and substrate.
Collapse
|
44
|
Mauldin RV, Lee AL. Nuclear magnetic resonance study of the role of M42 in the solution dynamics of Escherichia coli dihydrofolate reductase. Biochemistry 2010; 49:1606-15. [PMID: 20073522 DOI: 10.1021/bi901798g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is widely recognized that key positions throughout a protein's structure contribute unequally to function. In light of recent studies that suggest protein dynamics are required for function, a number of these residues may serve to promote motions required for ligand binding and catalysis. In this nuclear magnetic resonance (NMR) study, the conformational dynamics of the dihydrofolate reductase (DHFR) mutant M42W, in the presence of methotrexate and NADPH, are characterized and compared to those of the wild-type enzyme. M42 is distal to the active site, yet the M42W substitution regulates catalysis and ligand affinity and is therefore analogous to an allosteric modulator of DHFR function. To gain understanding of how this mutation regulates activity, we employ a "pandynamic" strategy by measuring conformational fluctuations of backbone amide and side-chain methyl groups on multiple time scales. Changes in pico- to nanosecond dynamics indicate that the mutational effects are propagated throughout a network of interacting residues within DHFR, consistent with a role for M42 as a dynamic communication hub. On the micro- to millisecond time scale, mutation increases the rate of switching in the catalytic core. Mutation also introduces switching in the adenosine binding subdomain that occurs at a higher frequency than in the catalytic core and which correlates with the rate of product release for M42W-DHFR. Finally, a structurally inferred analysis of side-chain dynamics suggests that the M42W mutation dampens motional contributions from nonlocal sources. These data show that the M42W mutation alters the dynamics of DHFR and are consistent with theoretical analysis that suggests this mutation disrupts motion that promotes catalysis.
Collapse
Affiliation(s)
- Randall V Mauldin
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7568, USA
| | | |
Collapse
|
45
|
Intrinsic domain and loop dynamics commensurate with catalytic turnover in an induced-fit enzyme. Structure 2010; 17:1356-67. [PMID: 19836335 DOI: 10.1016/j.str.2009.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2009] [Revised: 08/14/2009] [Accepted: 08/15/2009] [Indexed: 11/24/2022]
Abstract
Arginine kinase catalyzes reversible phosphoryl transfer between ATP and arginine, buffering cellular ATP concentrations. Structures of substrate-free and -bound enzyme have highlighted a range of conformational changes thought to occur during the catalytic cycle. Here, NMR is used to characterize the intrinsic backbone dynamics over multiple timescales. Relaxation dispersion indicates rigid-body motion of the N-terminal domain and flexible dynamics in the I182-G209 loop, both at millisecond rates commensurate with k(cat), implying that either might be rate limiting upon catalysis. Lipari-Szabo analysis indicates backbone flexibility on the nanosecond timescale in the V308-V322 loop, while the rest of the enzyme is more rigid in this timescale. Thus, intrinsic dynamics are most prominent in regions that have been independently implicated in conformational changes. Substrate-free enzyme may sample an ensemble of different conformations, of which a subset is selected upon substrate binding, with critical active site residues appropriately configured for binding and catalysis.
Collapse
|
46
|
Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands. Proc Natl Acad Sci U S A 2010; 107:1373-8. [PMID: 20080605 DOI: 10.1073/pnas.0914163107] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Enzyme catalysis can be described as progress over a multi-dimensional energy landscape where ensembles of interconverting conformational substates channel the enzyme through its catalytic cycle. We applied NMR relaxation dispersion to investigate the role of bound ligands in modulating the dynamics and energy landscape of Escherichia coli dihydrofolate reductase to obtain insights into the mechanism by which the enzyme efficiently samples functional conformations as it traverses its reaction pathway. Although the structural differences between the occluded substrate binary complexes and product ternary complexes are very small, there are substantial differences in protein dynamics. Backbone fluctuations on the micros-ms timescale in the cofactor binding cleft are similar for the substrate and product binary complexes, but fluctuations on this timescale in the active site loops are observed only for complexes with substrate or substrate analog and are not observed for the binary product complex. The dynamics in the substrate and product binary complexes are governed by quite different kinetic and thermodynamic parameters. Analogous dynamic differences in the E:THF:NADPH and E:THF:NADP(+) product ternary complexes are difficult to rationalize from ground-state structures. For both of these complexes, the nicotinamide ring resides outside the active site pocket in the ground state. However, they differ in the structure, energetics, and dynamics of accessible higher energy substates where the nicotinamide ring transiently occupies the active site. Overall, our results suggest that dynamics in dihydrofolate reductase are exquisitely "tuned" for every intermediate in the catalytic cycle; structural fluctuations efficiently channel the enzyme through functionally relevant conformational space.
Collapse
|
47
|
Boehr DD, Nussinov R, Wright PE. The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 2010; 5:789-96. [PMID: 19841628 DOI: 10.1038/nchembio.232] [Citation(s) in RCA: 1462] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular recognition is central to all biological processes. For the past 50 years, Koshland's 'induced fit' hypothesis has been the textbook explanation for molecular recognition events. However, recent experimental evidence supports an alternative mechanism. 'Conformational selection' postulates that all protein conformations pre-exist, and the ligand selects the most favored conformation. Following binding the ensemble undergoes a population shift, redistributing the conformational states. Both conformational selection and induced fit appear to play roles. Following binding by a primary conformational selection event, optimization of side chain and backbone interactions is likely to proceed by an induced fit mechanism. Conformational selection has been observed for protein-ligand, protein-protein, protein-DNA, protein-RNA and RNA-ligand interactions. These data support a new molecular recognition paradigm for processes as diverse as signaling, catalysis, gene regulation and protein aggregation in disease, which has the potential to significantly impact our views and strategies in drug design, biomolecular engineering and molecular evolution.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA.
| | | | | |
Collapse
|
48
|
Abstract
Molecular dynamics are essential for protein function. In some cases these dynamics involve the interconversion between ground state, highly populated conformers and less populated higher energy structures ('excited states') that play critical roles in biochemical processes. Here we describe recent advances in NMR spectroscopy methods that enable studies of these otherwise invisible excited states at an atomic level and that help elucidate their important relation to function. We discuss a range of examples from molecular recognition, ligand binding, enzyme catalysis and protein folding that illustrate the role that motion plays in 'funneling' conformers along preferred pathways that facilitate their biological function.
Collapse
Affiliation(s)
- Andrew J Baldwin
- Department of Molecular Genetics, The University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
49
|
Király P, Soós T, Varga S, Vakulya B, Tárkányi G. Self-association promoted conformational transition of (3R,4S,8R,9R)-9-[(3,5-bis(trifluoromethyl)phenyl))-thiourea](9-deoxy)-epi-cinchonine. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2010; 48:13-19. [PMID: 19862796 DOI: 10.1002/mrc.2531] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The conformational diversity of the (3R,4S,8R,9R)-9-[(3,5-bis(trifluoromethyl)phenyl))-thiourea](9-deoxy)-epi-cinchonine organocatalyst is discussed. Low-temperature NMR experiments confirmed a self-association process, which promotes the quinoline rotation between two intramolecularly hydrogen-bonded monomeric conformers of the catalyst. The balanced population of the coexisting monomeric and dimeric species allowed us to conduct a structural study of a rather complex conformational dynamics of the pure catalyst. The study is extended by a comparison with other members of the bifunctional amine-thiourea organocatalyst family. Changes in the molecular structure of the catalysts influence the interplay between intra- and intermolecular hydrogen bonding, and yield different extent of catalyst self-association. By assessing the conformation of the individual states, we established the thermodynamic model of a self-association promoted conformational transition.
Collapse
Affiliation(s)
- Péter Király
- Laboratory for NMR Spectroscopy, Institute of Structural Chemistry, Chemical Research Center of the Hungarian Academy of Sciences, Pusztaszeri út 59-67, H-1025 Budapest, Hungary
| | | | | | | | | |
Collapse
|
50
|
|