1
|
Jespersen M, Wagner T. Assimilatory sulfate reduction in the marine methanogen Methanothermococcus thermolithotrophicus. Nat Microbiol 2023:10.1038/s41564-023-01398-8. [PMID: 37277534 DOI: 10.1038/s41564-023-01398-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Methanothermococcus thermolithotrophicus is the only known methanogen that grows on sulfate as its sole sulfur source, uniquely uniting methanogenesis and sulfate reduction. Here we use physiological, biochemical and structural analyses to provide a snapshot of the complete sulfate reduction pathway of this methanogenic archaeon. We find that later steps in this pathway are catalysed by atypical enzymes. PAPS (3'-phosphoadenosine 5'-phosphosulfate) released by APS kinase is converted into sulfite and 3'-phosphoadenosine 5'-phosphate (PAP) by a PAPS reductase that is similar to the APS reductases of dissimilatory sulfate reduction. A non-canonical PAP phosphatase then hydrolyses PAP. Finally, the F420-dependent sulfite reductase converts sulfite to sulfide for cellular assimilation. While metagenomic and metatranscriptomic studies suggest that the sulfate reduction pathway is present in several methanogens, the sulfate assimilation pathway in M. thermolithotrophicus is distinct. We propose that this pathway was 'mix-and-matched' through the acquisition of assimilatory and dissimilatory enzymes from other microorganisms and then repurposed to fill a unique metabolic role.
Collapse
Affiliation(s)
- Marion Jespersen
- Microbial Metabolism Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Tristan Wagner
- Microbial Metabolism Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
2
|
Effect of itaconic acid production on Neurospora crassa in consolidated bioprocessing of cellulose. Microb Cell Fact 2023; 22:28. [PMID: 36774527 PMCID: PMC9922455 DOI: 10.1186/s12934-023-02034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/03/2023] [Indexed: 02/13/2023] Open
Abstract
A system for itaconic acid synthesis from cellulose by Neurospora crassa was established, resulting in the highest yield of itaconic acid was 354.08 + 35.99 mg/L. Meanwhile, cellulase activity increased significantly, without any strain modifications for improved cellulase production. Multi-omics analyses showed that itaconic acid synthesis reduced energy production, leading to decreases in trehalose, cell wall, fatty acids synthesis and downregulations in MAPK signaling pathway, cell cycle and meiosis. More importantly, the low-energy environment enhanced the energy-efficient cellobionic acid/gluconic acid pathway, and the cellulase composition also changed significantly, manifested as the up-regulation of LPMOs and the down-regulation of β-glucosidases. Enhancing LPMOs-cellobionic acid/gluconic acid system has the potential to reduce energy consumption of the consolidated bioprocessing. These findings offer an overview of resource allocations by N. crassa in response to itaconic acid synthesis and highlight a series of intriguing connections between itaconic acid synthesis and cellulase synthesis in consolidated bioprocessing.
Collapse
|
3
|
Feliciano P, Carroll KS, Drennan CL. Crystal Structure of the [4Fe-4S] Cluster-Containing Adenosine-5'-phosphosulfate Reductase from Mycobacterium tuberculosis. ACS OMEGA 2021; 6:13756-13765. [PMID: 34095667 PMCID: PMC8173546 DOI: 10.1021/acsomega.1c01043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Tuberculosis (TB) is the deadliest infectious disease in the world. In Mycobacterium tuberculosis, the first committed step in sulfate assimilation is the reductive cleavage of adenosine-5'-phosphosulfate (APS) to form adenosine-5'-phosphate (AMP) and sulfite by the enzyme APS reductase (APSR). The vital role of APSR in the production of essential reduced-sulfur-containing metabolites and the absence of a homologue enzyme in humans makes APSR a potential target for therapeutic interventions. Here, we present the crystal structure of the [4Fe-4S] cluster-containing APSR from M. tuberculosis (MtbAPSR) and compare it to previously determined structures of sulfonucleotide reductases. We further present MtbAPSR structures with substrate APS and product AMP bound in the active site. Our structures at a 3.1 Å resolution show high structural similarity to other sulfonucleotide reductases and reveal that APS and AMP have similar binding modes. These studies provide structural data for structure-based drug design aimed to combat TB.
Collapse
Affiliation(s)
- Patricia
R. Feliciano
- Howard
Hughes Medical Institute, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Kate S. Carroll
- Department
of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Catherine L. Drennan
- Howard
Hughes Medical Institute, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
4
|
Parreira VDSC, Santos LGC, Rodrigues ML, Passetti F. ExVe: The knowledge base of orthologous proteins identified in fungal extracellular vesicles. Comput Struct Biotechnol J 2021; 19:2286-2296. [PMID: 33995920 PMCID: PMC8102145 DOI: 10.1016/j.csbj.2021.04.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are double-membrane particles associated with intercellular communication. Since the discovery of EV production in the fungus Cryptococcus neoformans, the importance of EV release in its physiology and pathogenicity has been investigated. To date, few studies have investigated the proteomic content of EVs from multiple fungal species. Our main objective was to use an orthology approach to compare proteins identified by EV shotgun proteomics in 8 pathogenic and 1 nonpathogenic species. Using protein information from the UniProt and FungiDB databases, we integrated data for 11,433 hits in fungal EVs with an orthology perspective, resulting in 3,834 different orthologous groups. OG6_100083 (Hsp70 Pfam domain) was the unique orthologous group that was identified for all fungal species. Proteins with this protein domain are associated with the stress response, survival and morphological changes in different fungal species. Although no pathogenic orthologous group was found, we identified 5 orthologous groups exclusive to S. cerevisiae. Using the criteria of at least 7 pathogenic fungi to define a cluster, we detected the 4 unique pathogenic orthologous groups. Taken together, our data suggest that Hsp70-related proteins might play a key role in fungal EVs, regardless of the pathogenic status. Using an orthology approach, we identified at least 4 protein domains that could be novel therapeutic targets against pathogenic fungi. Our results were compiled in the herein described ExVe database, which is publicly available at http://exve.icc.fiocruz.br.
Collapse
Affiliation(s)
| | | | - Marcio L Rodrigues
- Instituto Carlos Chagas, FIOCRUZ, Rua Prof. Algacyr Munhoz Mader, 3775, CEP 81350-010, Curitiba/PR, Brazil.,Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | - Fabio Passetti
- Instituto Carlos Chagas, FIOCRUZ, Rua Prof. Algacyr Munhoz Mader, 3775, CEP 81350-010, Curitiba/PR, Brazil
| |
Collapse
|
5
|
Jez JM. Structural biology of plant sulfur metabolism: from sulfate to glutathione. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4089-4103. [PMID: 30825314 DOI: 10.1093/jxb/erz094] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Sulfur is an essential element for all organisms. Plants must assimilate this nutrient from the environment and convert it into metabolically useful forms for the biosynthesis of a wide range of compounds, including cysteine and glutathione. This review summarizes structural biology studies on the enzymes involved in plant sulfur assimilation [ATP sulfurylase, adenosine-5'-phosphate (APS) reductase, and sulfite reductase], cysteine biosynthesis (serine acetyltransferase and O-acetylserine sulfhydrylase), and glutathione biosynthesis (glutamate-cysteine ligase and glutathione synthetase) pathways. Overall, X-ray crystal structures of enzymes in these core pathways provide molecular-level information on the chemical events that allow plants to incorporate sulfur into essential metabolites and revealed new biochemical regulatory mechanisms, such as structural rearrangements, protein-protein interactions, and thiol-based redox switches, for controlling different steps in these pathways.
Collapse
Affiliation(s)
- Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
6
|
Yu H, Susanti D, McGlynn SE, Skennerton CT, Chourey K, Iyer R, Scheller S, Tavormina PL, Hettich RL, Mukhopadhyay B, Orphan VJ. Comparative Genomics and Proteomic Analysis of Assimilatory Sulfate Reduction Pathways in Anaerobic Methanotrophic Archaea. Front Microbiol 2018; 9:2917. [PMID: 30559729 PMCID: PMC6286981 DOI: 10.3389/fmicb.2018.02917] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023] Open
Abstract
Sulfate is the predominant electron acceptor for anaerobic oxidation of methane (AOM) in marine sediments. This process is carried out by a syntrophic consortium of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria (SRB) through an energy conservation mechanism that is still poorly understood. It was previously hypothesized that ANME alone could couple methane oxidation to dissimilatory sulfate reduction, but a genetic and biochemical basis for this proposal has not been identified. Using comparative genomic and phylogenetic analyses, we found the genetic capacity in ANME and related methanogenic archaea for sulfate reduction, including sulfate adenylyltransferase, APS kinase, APS/PAPS reductase and two different sulfite reductases. Based on characterized homologs and the lack of associated energy conserving complexes, the sulfate reduction pathways in ANME are likely used for assimilation but not dissimilation of sulfate. Environmental metaproteomic analysis confirmed the expression of 6 proteins in the sulfate assimilation pathway of ANME. The highest expressed proteins related to sulfate assimilation were two sulfite reductases, namely assimilatory-type low-molecular-weight sulfite reductase (alSir) and a divergent group of coenzyme F420-dependent sulfite reductase (Group II Fsr). In methane seep sediment microcosm experiments, however, sulfite and zero-valent sulfur amendments were inhibitory to ANME-2a/2c while growth in their syntrophic SRB partner was not observed. Combined with our genomic and metaproteomic results, the passage of sulfur species by ANME as metabolic intermediates for their SRB partners is unlikely. Instead, our findings point to a possible niche for ANME to assimilate inorganic sulfur compounds more oxidized than sulfide in anoxic marine environments.
Collapse
Affiliation(s)
- Hang Yu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States.,Ronald and Maxine Linde Center for Global Environmental Science, California Institute of Technology, Pasadena, CA, United States
| | - Dwi Susanti
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States
| | - Shawn E McGlynn
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Connor T Skennerton
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Ramsunder Iyer
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Silvan Scheller
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Patricia L Tavormina
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Biswarup Mukhopadhyay
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, United States.,Biocomplexity Institute, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
7
|
Jakubowski H. Homocysteine Editing, Thioester Chemistry, Coenzyme A, and the Origin of Coded Peptide Synthesis †. Life (Basel) 2017; 7:life7010006. [PMID: 28208756 PMCID: PMC5370406 DOI: 10.3390/life7010006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/03/2017] [Indexed: 12/22/2022] Open
Abstract
Aminoacyl-tRNA synthetases (AARSs) have evolved “quality control” mechanisms which prevent tRNA aminoacylation with non-protein amino acids, such as homocysteine, homoserine, and ornithine, and thus their access to the Genetic Code. Of the ten AARSs that possess editing function, five edit homocysteine: Class I MetRS, ValRS, IleRS, LeuRS, and Class II LysRS. Studies of their editing function reveal that catalytic modules of these AARSs have a thiol-binding site that confers the ability to catalyze the aminoacylation of coenzyme A, pantetheine, and other thiols. Other AARSs also catalyze aminoacyl-thioester synthesis. Amino acid selectivity of AARSs in the aminoacyl thioesters formation reaction is relaxed, characteristic of primitive amino acid activation systems that may have originated in the Thioester World. With homocysteine and cysteine as thiol substrates, AARSs support peptide bond synthesis. Evolutionary origin of these activities is revealed by genomic comparisons, which show that AARSs are structurally related to proteins involved in coenzyme A/sulfur metabolism and non-coded peptide bond synthesis. These findings suggest that the extant AARSs descended from ancestral forms that were involved in non-coded Thioester-dependent peptide synthesis, functionally similar to the present-day non-ribosomal peptide synthetases.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA.
- Department of Biochemistry and Biotechnology, University of Life Sciences, Poznan 60-632, Poland.
| |
Collapse
|
8
|
Paritala H, Palde PB, Carroll KS. Functional Site Discovery in a Sulfur Metabolism Enzyme by Using Directed Evolution. Chembiochem 2016; 17:1873-1878. [PMID: 27411165 DOI: 10.1002/cbic.201600264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Indexed: 11/07/2022]
Abstract
In human pathogens, the sulfate assimilation pathway provides reduced sulfur for biosynthesis of essential metabolites, including cysteine and low-molecular-weight thiol compounds. Sulfonucleotide reductases (SRs) catalyze the first committed step of sulfate reduction. In this reaction, activated sulfate in the form of adenosine-5'-phosphosulfate (APS) or 3'-phosphoadenosine 5'-phosphosulfate (PAPS) is reduced to sulfite. Gene knockout, transcriptomic and proteomic data have established the importance of SRs in oxidative stress-inducible antimicrobial resistance mechanisms. In previous work, we focused on rational and high-throughput design of small-molecule inhibitors that target the active site of SRs. However, another critical goal is to discover functionally important regions in SRs beyond the traditional active site. As an alternative to conservation analysis, we used directed evolution to rapidly identify functional sites in PAPS reductase (PAPR). Four new regions were discovered that are essential to PAPR function and lie outside the substrate binding pocket. Our results highlight the use of directed evolution as a tool to rapidly discover functionally important sites in proteins.
Collapse
Affiliation(s)
- Hanumantharao Paritala
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, 2B2, Jupiter, FL, 33458, USA
| | - Prakash B Palde
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, 2B2, Jupiter, FL, 33458, USA
| | - Kate S Carroll
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, 2B2, Jupiter, FL, 33458, USA.
| |
Collapse
|
9
|
Jakubowski H. Aminoacyl-tRNA synthetases and the evolution of coded peptide synthesis: the Thioester World. FEBS Lett 2016; 590:469-81. [PMID: 26831912 DOI: 10.1002/1873-3468.12085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 11/10/2022]
Abstract
Coded peptide synthesis must have been preceded by a prebiotic stage, in which thioesters played key roles. Fossils of the Thioester World are found in extant aminoacyl-tRNA synthetases (AARSs). Indeed, studies of the editing function reveal that AARSs have a thiol-binding site in their catalytic modules. The thiol-binding site confers the ability to catalyze aminoacyl~coenzyme A thioester synthesis and peptide bond formation. Genomic comparisons show that AARSs are structurally related to proteins involved in sulfur and coenzyme A metabolisms and peptide bond synthesis. These findings point to the origin of the amino acid activation and peptide bond synthesis functions in the Thioester World and suggest that the present-day AARSs had originated from ancestral forms that were involved in noncoded thioester-dependent peptide synthesis.
Collapse
Affiliation(s)
- Hieronim Jakubowski
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers-New Jersey Medical School, International Center for Public Health, Newark, NJ, USA.,Institute of Bioorganic Chemistry, Poznań, Poland.,Department of Biochemistry and Biotechnology, University of Life Sciences, Poznań, Poland
| |
Collapse
|
10
|
Abstract
Cysteine residues in cytosolic proteins are maintained in their reduced state, but can undergo oxidation owing to posttranslational modification during redox signaling or under conditions of oxidative stress. In large part, the reduction of oxidized protein cysteines is mediated by a small 12-kDa thiol oxidoreductase, thioredoxin (Trx). Trx provides reducing equivalents for central metabolic enzymes and is implicated in redox regulation of a wide number of target proteins, including transcription factors. Despite its importance in cellular redox homeostasis, the precise mechanism by which Trx recognizes target proteins, especially in the absence of any apparent signature binding sequence or motif, remains unknown. Knowledge of the forces associated with the molecular recognition that governs Trx-protein interactions is fundamental to our understanding of target specificity. To gain insight into Trx-target recognition, we have thermodynamically characterized the noncovalent interactions between Trx and target proteins before S-S reduction using isothermal titration calorimetry (ITC). Our findings indicate that Trx recognizes the oxidized form of its target proteins with exquisite selectivity, compared with their reduced counterparts. Furthermore, we show that recognition is dependent on the conformational restriction inherent to oxidized targets. Significantly, the thermodynamic signatures for multiple Trx targets reveal favorable entropic contributions as the major recognition force dictating these protein-protein interactions. Taken together, our data afford significant new insight into the molecular forces responsible for Trx-target recognition and should aid the design of new strategies for thiol oxidoreductase inhibition.
Collapse
|
11
|
Stevenson CEM, Hughes RK, McManus MT, Lawson DM, Kopriva S. The X-ray crystal structure of APR-B, an atypical adenosine 5'-phosphosulfate reductase from Physcomitrella patens. FEBS Lett 2013; 587:3626-32. [PMID: 24100135 DOI: 10.1016/j.febslet.2013.09.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 01/18/2023]
Abstract
Sulfonucleotide reductases catalyse the first reductive step of sulfate assimilation. Their substrate specificities generally correlate with the requirement for a [Fe4S4] cluster, where adenosine 5'-phosphosulfate (APS) reductases possess a cluster and 3'-phosphoadenosine 5'-phosphosulfate reductases do not. The exception is the APR-B isoform of APS reductase from the moss Physcomitrella patens, which lacks a cluster. The crystal structure of APR-B, the first for a plant sulfonucleotide reductase, is consistent with a preference for APS. Structural conservation with bacterial APS reductase rules out a structural role for the cluster, but supports the contention that it enhances the activity of conventional APS reductases.
Collapse
Affiliation(s)
- Clare E M Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | | | | | |
Collapse
|
12
|
Bhave DP, Hong JA, Keller RL, Krebs C, Carroll KS. Iron-sulfur cluster engineering provides insight into the evolution of substrate specificity among sulfonucleotide reductases. ACS Chem Biol 2012; 7:306-15. [PMID: 22023093 PMCID: PMC3288176 DOI: 10.1021/cb200261n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Assimilatory sulfate reduction supplies prototrophic organisms with reduced sulfur that is required for the biosynthesis of all sulfur-containing metabolites, including cysteine and methionine. The reduction of sulfate requires its activation via an ATP-dependent activation to form adenosine-5'-phosphosulfate (APS). Depending on the species, APS can be reduced directly to sulfite by APS reductase (APR) or undergo a second phosphorylation to yield 3'-phosphoadenosine-5'-phosphosulfate (PAPS), the substrate for PAPS reductase (PAPR). These essential enzymes have no human homologue, rendering them attractive targets for the development of novel antibacterial drugs. APR and PAPR share sequence and structure homology as well as a common catalytic mechanism, but the enzymes are distinguished by two features, namely, the amino acid sequence of the phosphate-binding loop (P-loop) and an iron-sulfur cofactor in APRs. On the basis of the crystal structures of APR and PAPR, two P-loop residues are proposed to determine substrate specificity; however, this hypothesis has not been tested. In contrast to this prevailing view, we report here that the P-loop motif has a modest effect on substrate discrimination. Instead, by means of metalloprotein engineering, spectroscopic, and kinetic analyses, we demonstrate that the iron-sulfur cluster cofactor enhances APS reduction by nearly 1000-fold, thereby playing a pivotal role in substrate specificity and catalysis. These findings offer new insights into the evolution of this enzyme family and extend the known functions of protein-bound iron-sulfur clusters.
Collapse
Affiliation(s)
- Devayani P. Bhave
- Chemical Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, 48109-2216
| | - Jiyoung A. Hong
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109-2216
| | - Rebecca L. Keller
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Carsten Krebs
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Kate S. Carroll
- Chemical Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, 48109-2216
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109-2216
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458
| |
Collapse
|
13
|
Bhave DP, Han WG, Pazicni S, Penner-Hahn JE, Carroll KS, Noodleman L. Geometric and electrostatic study of the [4Fe-4S] cluster of adenosine-5'-phosphosulfate reductase from broken symmetry density functional calculations and extended X-ray absorption fine structure spectroscopy. Inorg Chem 2011; 50:6610-25. [PMID: 21678934 DOI: 10.1021/ic200446c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adenosine-5'-phosphosulfate reductase (APSR) is an iron-sulfur protein that catalyzes the reduction of adenosine-5'-phosphosulfate (APS) to sulfite. APSR coordinates to a [4Fe-4S] cluster via a conserved CC-X(~80)-CXXC motif, and the cluster is essential for catalysis. Despite extensive functional, structural, and spectroscopic studies, the exact role of the iron-sulfur cluster in APS reduction remains unknown. To gain an understanding into the role of the cluster, density functional theory (DFT) analysis and extended X-ray fine structure spectroscopy (EXAFS) have been performed to reveal insights into the coordination, geometry, and electrostatics of the [4Fe-4S] cluster. X-ray absorption near-edge structure (XANES) data confirms that the cluster is in the [4Fe-4S](2+) state in both native and substrate-bound APSR while EXAFS data recorded at ~0.1 Å resolution indicates that there is no significant change in the structure of the [4Fe-4S] cluster between the native and substrate-bound forms of the protein. On the other hand, DFT calculations provide an insight into the subtle differences between the geometry of the cluster in the native and APS-bound forms of APSR. A comparison between models with and without the tandem cysteine pair coordination of the cluster suggests a role for the unique coordination in facilitating a compact geometric structure and "fine-tuning" the electronic structure to prevent reduction of the cluster. Further, calculations using models in which residue Lys144 is mutated to Ala confirm the finding that Lys144 serves as a crucial link in the interactions involving the [4Fe-4S] cluster and APS.
Collapse
Affiliation(s)
- Devayani P Bhave
- Chemical Biology Graduate Program, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | | | | | | | | | |
Collapse
|
14
|
Hong JA, Carroll KS. Deciphering the role of histidine 252 in mycobacterial adenosine 5'-phosphosulfate (APS) reductase catalysis. J Biol Chem 2011; 286:28567-73. [PMID: 21673113 DOI: 10.1074/jbc.m111.238998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis adenosine 5'-phosphosulfate reductase (APR) catalyzes the first committed step in sulfate reduction for the biosynthesis of cysteine and is essential for survival in the latent phase of tuberculosis infection. The reaction catalyzed by APR involves the nucleophilic attack by conserved Cys-249 on adenosine 5'-phosphosulfate, resulting in a covalent S-sulfocysteine intermediate that is reduced in subsequent steps by thioredoxin to yield the sulfite product. Cys-249 resides on a mobile active site lid at the C terminus, within a K(R/T)ECG(L/I)H motif. Owing to its strict conservation among sulfonucleotide reductases and its proximity to the active site cysteine, it has been suggested that His-252 plays a key role in APR catalysis, specifically as a general base to deprotonate Cys-249. Using site-directed mutagenesis, we have changed His-252 to an alanine residue and analyzed the effect of this mutation on the kinetic parameters, pH rate profile, and ionization of Cys-249 of APR. Interestingly, our data demonstrate that His-252 does not perturb the pK(a) of Cys-249 or play a direct role in rate-limiting chemical steps of the reaction. Rather, we show that His-252 enhances substrate affinity via interaction with the α-phosphate and the endocyclic ribose oxygen. These findings were further supported by isothermal titration calorimetry to provide a thermodynamic profile of ligand-protein interactions. From an applied standpoint, our study suggests that small-molecules targeting residues in the dynamic C-terminal segment, particularly His-252, may lead to inhibitors with improved binding affinity.
Collapse
Affiliation(s)
- Jiyoung A Hong
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
15
|
Bhave DP, Hong JA, Lee M, Jiang W, Krebs C, Carroll KS. Spectroscopic studies on the [4Fe-4S] cluster in adenosine 5'-phosphosulfate reductase from Mycobacterium tuberculosis. J Biol Chem 2010; 286:1216-26. [PMID: 21075841 DOI: 10.1074/jbc.m110.193722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis adenosine 5'-phosphosulfate reductase (MtAPR) is an iron-sulfur protein and a validated target to develop new antitubercular agents, particularly for the treatment of latent infection. The enzyme harbors a [4Fe-4S](2+) cluster that is coordinated by four cysteinyl ligands, two of which are adjacent in the amino acid sequence. The iron-sulfur cluster is essential for catalysis; however, the precise role of the [4Fe-4S] cluster in APR remains unknown. Progress in this area has been hampered by the failure to generate a paramagnetic state of the [4Fe-4S] cluster that can be studied by electron paramagnetic resonance spectroscopy. Herein, we overcome this limitation and report the EPR spectra of MtAPR in the [4Fe-4S](+) state. The EPR signal is rhombic and consists of two overlapping S = ½ species. Substrate binding to MtAPR led to a marked increase in the intensity and resolution of the EPR signal and to minor shifts in principle g values that were not observed among a panel of substrate analogs, including adenosine 5'-diphosphate. Using site-directed mutagenesis, in conjunction with kinetic and EPR studies, we have also identified an essential role for the active site residue Lys-144, whose side chain interacts with both the iron-sulfur cluster and the sulfate group of adenosine 5'-phosphosulfate. The implications of these findings are discussed with respect to the role of the iron-sulfur cluster in the catalytic mechanism of APR.
Collapse
|
16
|
Hong JA, Bhave DP, Carroll KS. Identification of critical ligand binding determinants in Mycobacterium tuberculosis adenosine-5'-phosphosulfate reductase. J Med Chem 2009; 52:5485-95. [PMID: 19678707 DOI: 10.1021/jm900728u] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Mycobacterium tuberculosis adenosine-5'-phosphosulfate (APS) reductase is an iron-sulfur protein and a validated target to develop new antitubercular agents, particularly for the treatment of latent infection. To facilitate the development of potent and specific inhibitors of APS reductase, we have probed the molecular determinants that underlie binding and specificity through a series of substrate and product analogues. Our study highlights the importance of specific substitutent groups for substrate binding and provides functional evidence for ligand-specific conformational states. An active site model has been developed for M. tuberculosis APS reductase that is in accord with the results presented here as well as prior structural data reported for Pseudomonas aeruginosa APS reductase and related enzymes. This model illustrates the functional features required for the interaction of APS reductase with a ligand and provides a pharmacological roadmap for the rational design of small molecules as potential inhibitors of APS reductase present in human pathogens, including M. tuberculosis.
Collapse
Affiliation(s)
- Jiyoung A Hong
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-2216, USA
| | | | | |
Collapse
|
17
|
|