1
|
Weßbecher IM, Brieger A. Phosphorylation meets DNA mismatch repair. DNA Repair (Amst) 2018; 72:107-114. [PMID: 30249411 DOI: 10.1016/j.dnarep.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022]
Abstract
DNA mismatch repair (MMR) is a highly conserved process and ensures the removal of mispaired DNA bases and insertion-deletion loops right after replication. For this, a MutSα or MutSβ protein complex recognizes the DNA damage, MutLα nicks the erroneous strand, exonuclease 1 removes the wrong nucleotides, DNA polymerase δ refills the gap and DNA ligase I joins the fragments to seal the nicks and complete the repair process. The failure to accomplish these functions is associated with higher mutation rates and may lead to cancer, which highlights the importance of MMR by the maintenance of genomic stability. The post-replicative MMR implies that involved proteins are regulated at several levels, including posttranslational modifications (PTMs). Phosphorylation is one of the most common and major PTMs. Suitable with its regulatory force phosphorylation was shown to influence MMR factors thereby adjusting eukaryotic MMR activity. In this review, we summarized the current knowledge of the role of phosphorylation of MMR process involved proteins and their functional relevance.
Collapse
Affiliation(s)
| | - Angela Brieger
- Medical Clinic I, Biomedical Research Laboratory, Goethe-University, Frankfurt a.M., Germany.
| |
Collapse
|
2
|
Lee MYWT, Wang X, Zhang S, Zhang Z, Lee EYC. Regulation and Modulation of Human DNA Polymerase δ Activity and Function. Genes (Basel) 2017; 8:genes8070190. [PMID: 28737709 PMCID: PMC5541323 DOI: 10.3390/genes8070190] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/07/2017] [Accepted: 07/11/2017] [Indexed: 12/28/2022] Open
Abstract
This review focuses on the regulation and modulation of human DNA polymerase δ (Pol δ). The emphasis is on the mechanisms that regulate the activity and properties of Pol δ in DNA repair and replication. The areas covered are the degradation of the p12 subunit of Pol δ, which converts it from a heterotetramer (Pol δ4) to a heterotrimer (Pol δ3), in response to DNA damage and also during the cell cycle. The biochemical mechanisms that lead to degradation of p12 are reviewed, as well as the properties of Pol δ4 and Pol δ3 that provide insights into their functions in DNA replication and repair. The second focus of the review involves the functions of two Pol δ binding proteins, polymerase delta interaction protein 46 (PDIP46) and polymerase delta interaction protein 38 (PDIP38), both of which are multi-functional proteins. PDIP46 is a novel activator of Pol δ4, and the impact of this function is discussed in relation to its potential roles in DNA replication. Several new models for the roles of Pol δ3 and Pol δ4 in leading and lagging strand DNA synthesis that integrate a role for PDIP46 are presented. PDIP38 has multiple cellular localizations including the mitochondria, the spliceosomes and the nucleus. It has been implicated in a number of cellular functions, including the regulation of specialized DNA polymerases, mitosis, the DNA damage response, mouse double minute 2 homolog (Mdm2) alternative splicing and the regulation of the NADPH oxidase 4 (Nox4).
Collapse
Affiliation(s)
- Marietta Y W T Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Xiaoxiao Wang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Sufang Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Zhongtao Zhang
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | - Ernest Y C Lee
- Department Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
3
|
Barnes R, Eckert K. Maintenance of Genome Integrity: How Mammalian Cells Orchestrate Genome Duplication by Coordinating Replicative and Specialized DNA Polymerases. Genes (Basel) 2017; 8:genes8010019. [PMID: 28067843 PMCID: PMC5295014 DOI: 10.3390/genes8010019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/19/2016] [Accepted: 12/27/2016] [Indexed: 12/30/2022] Open
Abstract
Precise duplication of the human genome is challenging due to both its size and sequence complexity. DNA polymerase errors made during replication, repair or recombination are central to creating mutations that drive cancer and aging. Here, we address the regulation of human DNA polymerases, specifically how human cells orchestrate DNA polymerases in the face of stress to complete replication and maintain genome stability. DNA polymerases of the B-family are uniquely adept at accurate genome replication, but there are numerous situations in which one or more additional DNA polymerases are required to complete genome replication. Polymerases of the Y-family have been extensively studied in the bypass of DNA lesions; however, recent research has revealed that these polymerases play important roles in normal human physiology. Replication stress is widely cited as contributing to genome instability, and is caused by conditions leading to slowed or stalled DNA replication. Common Fragile Sites epitomize “difficult to replicate” genome regions that are particularly vulnerable to replication stress, and are associated with DNA breakage and structural variation. In this review, we summarize the roles of both the replicative and Y-family polymerases in human cells, and focus on how these activities are regulated during normal and perturbed genome replication.
Collapse
Affiliation(s)
- Ryan Barnes
- Biomedical Sciences Graduate Program, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Kristin Eckert
- Departments of Pathology and Biochemistry & Molecular Biology, The Jake Gittlen Laboratories for Cancer Research, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
4
|
A Systems Biology Approach to the Coordination of Defensive and Offensive Molecular Mechanisms in the Innate and Adaptive Host-Pathogen Interaction Networks. PLoS One 2016; 11:e0149303. [PMID: 26881892 PMCID: PMC4755559 DOI: 10.1371/journal.pone.0149303] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/29/2016] [Indexed: 11/19/2022] Open
Abstract
Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.
Collapse
|
5
|
|
6
|
Lee MYWT, Zhang S, Lin SHS, Chea J, Wang X, LeRoy C, Wong A, Zhang Z, Lee EYC. Regulation of human DNA polymerase delta in the cellular responses to DNA damage. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:683-698. [PMID: 23047826 DOI: 10.1002/em.21743] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 06/01/2023]
Abstract
The p12 subunit of polymerase delta (Pol δ) is degraded in response to DNA damage induced by UV, alkylating agents, oxidative, and replication stresses. This leads to the conversion of the Pol δ4 holoenzyme to the heterotrimer, Pol δ3. We review studies that establish that Pol δ3 formation is an event that could have a major impact on cellular processes in genomic surveillance, DNA replication, and DNA repair. p12 degradation is dependent on the apical ataxia telangiectasia and Rad3 related (ATR) kinase and is mediated by the ubiquitin-proteasome system. Pol δ3 exhibits properties of an "antimutator" polymerase, suggesting that it could contribute to an increased surveillance against mutagenesis, for example, when Pol δ carries out bypass synthesis past small base lesions that engage in spurious base pairing. Chromatin immunoprecipitation analysis and examination of the spatiotemporal recruitment of Pol δ to sites of DNA damage show that Pol δ3 is the primary form of Pol δ associated with cyclobutane pyrimidine dimer lesions and therefore should be considered as the operative form of Pol δ engaged in DNA repair. We propose a model for the switching of Pol δ with translesion polymerases, incorporating the salient features of the recently determined structure of monoubiquitinated proliferating cell nuclear antigen and emphasizing the role of Pol δ3. Because of the critical role of Pol δ activity in DNA replication and repair, the formation of Pol δ3 in response to DNA damage opens the prospect that pleiotropic effects may ensue. This opens the horizons for future exploration of how this novel response to DNA damage contributes to genomic stability.
Collapse
Affiliation(s)
- Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
DNA polymerase δ (Pol δ) is a member of the B-family DNA polymerases and is one of the major replicative DNA polymerases in eukaryotes. In addition to chromosomal DNA replication it is also involved in DNA repair and recombination. Pol δ is a multi-subunit complex comprised of a catalytic subunit and accessory subunits. The latter subunits play a critical role in the regulation of Pol δ functions. Recent progress in the structural characterization of Pol δ, together with a vast number of biochemical and functional studies, provides the basis for understanding the intriguing mechanisms of its regulation during DNA replication, repair and recombination. In this chapter we review the current state of the Pol δ structure-function relationship with an emphasis on the role of its accessory subunits.
Collapse
Affiliation(s)
- Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-7696, USA,
| |
Collapse
|
8
|
Rahmeh AA, Zhou Y, Xie B, Li H, Lee EYC, Lee MYWT. Phosphorylation of the p68 Subunit of Pol δ Acts as a Molecular Switch To Regulate Its Interaction with PCNA. Biochemistry 2011; 51:416-24. [DOI: 10.1021/bi201638e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amal A. Rahmeh
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Yajing Zhou
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Bin Xie
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Hao Li
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Ernest Y. C. Lee
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| | - Marietta Y. W. T. Lee
- Department
of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, United States
| |
Collapse
|