1
|
Sanchez Ramirez DO, Tonetti C, Cruz-Maya I, Guarino V, Peila R, Carletto RA, Varesano A, Vineis C. Design of cysteine-S-sulfonated keratin via pH driven processes: Micro-Structural Properties, biocidal activity and in vitro validation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
2
|
Kandori H. Structure/Function Study of Photoreceptive Proteins by FTIR Spectroscopy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200109] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hideki Kandori
- Department of Life Science and Applied Chemistry & OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya, Aichi 466-8555, Japan
| |
Collapse
|
3
|
Nomura Y, Ito S, Teranishi M, Ono H, Inoue K, Kandori H. Low-temperature FTIR spectroscopy provides evidence for protein-bound water molecules in eubacterial light-driven ion pumps. Phys Chem Chem Phys 2018; 20:3165-3171. [DOI: 10.1039/c7cp05674e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The present FTIR study showed that eubacterial light-driven H+, Na+ and Cl− pump rhodopsins contain strongly hydrogen-bonded water molecule, the functional determinant of light-driven proton pump. This explains well the asymmetric functional conversions of light-driven ion pumps.
Collapse
Affiliation(s)
- Yurika Nomura
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Shota Ito
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Miwako Teranishi
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Hikaru Ono
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Showa-ku
- Japan
| | - Keiichi Inoue
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Showa-ku
- Japan
- OptoBioTechnology Research Center
| | - Hideki Kandori
- Department of Life Science and Applied Chemistry
- Nagoya Institute of Technology
- Showa-ku
- Japan
- OptoBioTechnology Research Center
| |
Collapse
|
4
|
Yi A, Li H, Mamaeva N, Fernandez De Cordoba RE, Lugtenburg J, DeGrip WJ, Spudich JL, Rothschild KJ. Structural Changes in an Anion Channelrhodopsin: Formation of the K and L Intermediates at 80 K. Biochemistry 2017; 56:2197-2208. [PMID: 28350445 DOI: 10.1021/acs.biochem.7b00002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A recently discovered natural family of light-gated anion channelrhodopsins (ACRs) from cryptophyte algae provides an effective means of optogenetically silencing neurons. The most extensively studied ACR is from Guillardia theta (GtACR1). Earlier studies of GtACR1 have established a correlation between formation of a blue-shifted L-like intermediate and the anion channel "open" state. To study structural changes of GtACR1 in the K and L intermediates of the photocycle, a combination of low-temperature Fourier transform infrared (FTIR) and ultraviolet-visible absorption difference spectroscopy was used along with stable-isotope retinal labeling and site-directed mutagenesis. In contrast to bacteriorhodopsin (BR) and other microbial rhodopsins, which form only a stable red-shifted K intermediate at 80 K, GtACR1 forms both stable K and L-like intermediates. Evidence includes the appearance of positive ethylenic and fingerprint vibrational bands characteristic of the L intermediate as well as a positive visible absorption band near 485 nm. FTIR difference bands in the carboxylic acid C═O stretching region indicate that several Asp/Glu residues undergo hydrogen bonding changes at 80 K. The Glu68 → Gln and Ser97 → Glu substitutions, residues located close to the retinylidene Schiff base, altered the K:L ratio and several of the FTIR bands in the carboxylic acid region. In the case of the Ser97 → Glu substitution, a significant red-shift of the absorption wavelength of the K and L intermediates occurs. Sequence comparisons suggest that L formation in GtACR1 at 80 K is due in part to the substitution of the highly conserved Leu or Ile at position 93 in helix 3 (BR sequence) with the homologous Met105 in GtACR1.
Collapse
Affiliation(s)
- Adrian Yi
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | - Hai Li
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, McGovern Medical School , Houston, Texas 77030, United States
| | - Natalia Mamaeva
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | - Roberto E Fernandez De Cordoba
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| | - Johan Lugtenburg
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University , 2300 AR Leiden, The Netherlands
| | - Willem J DeGrip
- Department of Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University , 2300 AR Leiden, The Netherlands
| | - John L Spudich
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, McGovern Medical School , Houston, Texas 77030, United States
| | - Kenneth J Rothschild
- Molecular Biophysics Laboratory, Photonics Center, and Department of Physics, Boston University , Boston, Massachusetts 02215, United States
| |
Collapse
|
5
|
Yomoda H, Makino Y, Tomonaga Y, Hidaka T, Kawamura I, Okitsu T, Wada A, Sudo Y, Naito A. Color-Discriminating Retinal Configurations of Sensory Rhodopsin I by Photo-Irradiation Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Yomoda H, Makino Y, Tomonaga Y, Hidaka T, Kawamura I, Okitsu T, Wada A, Sudo Y, Naito A. Color-discriminating retinal configurations of sensory rhodopsin I by photo-irradiation solid-state NMR spectroscopy. Angew Chem Int Ed Engl 2014; 53:6960-4. [PMID: 24846351 DOI: 10.1002/anie.201309258] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/17/2014] [Indexed: 12/20/2022]
Abstract
SRI (sensory rhodopsin I) can discriminate multiple colors for the attractant and repellent phototaxis. Studies aimed at revealing the color-dependent mechanism show that SRI is a challenging system not only in photobiology but also in photochemistry. During the photoreaction of SRI, an M-intermediate (attractant) transforms into a P-intermediate (repellent) by absorbing blue light. Consequently, SRI then cycles back to the G-state. The photoreactions were monitored with the (13)C NMR signals of [20-(13)C]retnal-SrSRI using in situ photo-irradiation solid-state NMR spectroscopy. The M-intermediate was trapped at -40 °C by illumination at 520 nm. It was transformed into the P-intermediate by subsequent illumination at 365 nm. These results reveal that the G-state could be directly transformed to the P-intermediate by illumination at 365 nm. Thus, the stationary trapped M- and P-intermediates are responsible for positive and negative phototaxis, respectively.
Collapse
Affiliation(s)
- Hiroki Yomoda
- Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501 (Japan)
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ono H, Inoue K, Abe-Yoshizumi R, Kandori H. FTIR Spectroscopy of a Light-Driven Compatible Sodium Ion-Proton Pumping Rhodopsin at 77 K. J Phys Chem B 2014; 118:4784-92. [DOI: 10.1021/jp500756f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Keiichi Inoue
- PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | | | | |
Collapse
|
8
|
Sudo Y, Mizuno M, Wei Z, Takeuchi S, Tahara T, Mizutani Y. The Early Steps in the Photocycle of a Photosensor Protein Sensory Rhodopsin I from Salinibacter ruber. J Phys Chem B 2014; 118:1510-8. [DOI: 10.1021/jp4112662] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yuki Sudo
- Division
of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
- Department
of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585, Japan
| | - Misao Mizuno
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Zhengrong Wei
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Satoshi Takeuchi
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Tahei Tahara
- Molecular
Spectroscopy Laboratory, RIKEN, 2-1 Hirosawa, Wako 351-0198, Japan
- RIKEN Center for Advanced Photonics (RAP), 2-1 Hirosawa, Wako 351-0198, Japan
| | - Yasuhisa Mizutani
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
9
|
Inoue K, Tsukamoto T, Sudo Y. Molecular and evolutionary aspects of microbial sensory rhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:562-77. [PMID: 23732219 DOI: 10.1016/j.bbabio.2013.05.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 02/03/2023]
Abstract
Retinal proteins (~rhodopsins) are photochemically reactive membrane-embedded proteins, with seven transmembrane α-helices which bind the chromophore retinal (vitamin A aldehyde). They are widely distributed through all three biological kingdoms, eukarya, bacteria and archaea, indicating the biological significance of the retinal proteins. Light absorption by the retinal proteins triggers a photoisomerization of the chromophore, leading to the biological function, light-energy conversion or light-signal transduction. This article reviews molecular and evolutionary aspects of the light-signal transduction by microbial sensory receptors and their related proteins. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Keiichi Inoue
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan; Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Takashi Tsukamoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Yuki Sudo
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan; Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan; Department of Life and Coordination-Complex Molecular Science, Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, Japan.
| |
Collapse
|
10
|
Oren A. Salinibacter: an extremely halophilic bacterium with archaeal properties. FEMS Microbiol Lett 2013; 342:1-9. [PMID: 23373661 DOI: 10.1111/1574-6968.12094] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 12/17/2022] Open
Abstract
The existence of large number of a member of the Bacteroidetes in NaCl-saturated brines in saltern crystallizer ponds was first documented in 1999 based on fluorescence in situ hybridization studies. Isolation of the organism and its description as Salinibacter ruber followed soon. It is a rod-shaped, red-orange pigmented, extreme halophile that grows optimally at 20-30% salt. The genus is distributed worldwide in hypersaline environments. Today, the genus Salinibacter includes three species, and a somewhat less halophilic relative, Salisaeta longa, has also been documented. Although belonging to the Bacteria, Salinibacter shares many features with the Archaea of the family Halobacteriaceae that live in the same habitat. Both groups use KCl for osmotic adjustment of their cytoplasm, both mainly possess salt-requiring enzymes with a large excess of acidic amino acids, and both contain different retinal pigments: light-driven proton pumps, chloride pumps, and light sensors. Salinibacter produces an unusual carotenoid, salinixanthin that forms a light antenna and transfers energy to the retinal group of xanthorhodopsin, a light-driven proton pump. Other unusual features of Salinibacter and Salisaeta include the presence of novel sulfonolipids (halocapnine derivatives). Salinibacter has become an excellent model for metagenomic, biogeographic, ecological, and evolutionary studies.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
11
|
Reissig L, Iwata T, Kikukawa T, Demura M, Kamo N, Kandori H, Sudo Y. Influence of Halide Binding on the Hydrogen Bonding Network in the Active Site of Salinibacter Sensory Rhodopsin I. Biochemistry 2012; 51:8802-13. [DOI: 10.1021/bi3009592] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Louisa Reissig
- Division of
Biological Science,
Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
| | - Tatsuya Iwata
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555,
Japan
- Center for Fostering
Young and
Innovative Researchers, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Makoto Demura
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Naoki Kamo
- College of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, 466-8555,
Japan
| | - Yuki Sudo
- Division of
Biological Science,
Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi,
Saitama, 332-0012, Japan
| |
Collapse
|
12
|
Muroda K, Nakashima K, Shibata M, Demura M, Kandori H. Protein-bound water as the determinant of asymmetric functional conversion between light-driven proton and chloride pumps. Biochemistry 2012; 51:4677-84. [PMID: 22583333 DOI: 10.1021/bi300485r] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bacteriorhodopsin (BR) and halorhodopsin (HR) are light-driven outward proton and inward chloride pumps, respectively. They have similar protein architecture, being composed of seven-transmembrane helices that bind an all-trans-retinal. BR can be converted into a chloride pump by a single amino acid replacement at position 85, suggesting that BR and HR share a common transport mechanism, and the ionic specificity is determined by the amino acid at that position. However, HR cannot be converted into a proton pump by the corresponding reverse mutation. Here we mutated 6 and 10 amino acids of HR into BR-like, whereas such multiple HR mutants never pump protons. Light-induced Fourier transform infrared spectroscopy revealed that hydrogen bonds of the retinal Schiff base and water are both strong for BR and both weak for HR. Multiple HR mutants exhibit strong hydrogen bonds of the Schiff base, but the hydrogen bond of water is still weak. We concluded that the cause of nonfunctional conversion of HR is the lack of strongly hydrogen-bonded water, the functional determinant of the proton pump.
Collapse
Affiliation(s)
- Kosuke Muroda
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya, Japan
| | | | | | | | | |
Collapse
|
13
|
Sudo Y, Homma M. [Photosensing by membrane-embedded receptors and its application for the life scientists]. YAKUGAKU ZASSHI 2012; 132:407-16. [PMID: 22465915 DOI: 10.1248/yakushi.132.407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light is one of the most important energy sources and signals providing critical information to biological systems. The photoreceptor rhodopsin, which possesses retinal chromophore (vitamin A aldehyde) surrounded by seven transmembrane alpha-helices, is widely dispersed in prokaryotes and in eukaryotes. Although rhodopsin molecules work as distinctly different photoreceptors, they can be divided according to their two basic functions such as light-energy conversion and light-signal transduction. Thus rhodopsin molecules have great potential for controlling cellular activity by light. Indeed, a light-energy converter channel rhodopsin is used to control neural activity. From 2001, we have been working on various microbial sensory rhodopsins functioning as light-signal converters. In this review, we will introduce rhodopsin molecules from microbes, and will describe artificial and light-dependent protein expression system in Escherichia coli using Anabeana sensory rhodopsin (ASR). The newly developed tools would be widely useful for life scientists.
Collapse
Affiliation(s)
- Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
| | | |
Collapse
|
14
|
Irieda H, Reissig L, Kawanabe A, Homma M, Kandori H, Sudo Y. Structural Characteristics around the β-Ionone Ring of the Retinal Chromophore in Salinibacter Sensory Rhodopsin I. Biochemistry 2011; 50:4912-22. [DOI: 10.1021/bi200284s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Hiroki Irieda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Louisa Reissig
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Akira Kawanabe
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
15
|
Sudo Y, Yuasa Y, Shibata J, Suzuki D, Homma M. Spectral tuning in sensory rhodopsin I from Salinibacter ruber. J Biol Chem 2011; 286:11328-36. [PMID: 21288897 DOI: 10.1074/jbc.m110.187948] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Organisms utilize light as energy sources and as signals. Rhodopsins, which have seven transmembrane α-helices with retinal covalently linked to a conserved Lys residue, are found in various organisms as distant in evolution as bacteria, archaea, and eukarya. One of the most notable properties of rhodopsin molecules is the large variation in their absorption spectrum. Sensory rhodopsin I (SRI) and sensory rhodopsin II (SRII) function as photosensors and have similar properties (retinal composition, photocycle, structure, and function) except for their λ(max) (SRI, ∼560 nm; SRII, ∼500 nm). An expression system utilizing Escherichia coli and the high protein stability of a newly found SRI-like protein, SrSRI, enables studies of mutant proteins. To determine the residue contributing to the spectral shift from SRI to SRII, we constructed various SRI mutants, in which individual residues were substituted with the corresponding residues of SRII. Three such mutants of SrSRI showed a large spectral blue-shift (>14 nm) without a large alteration of their retinal composition. Two of them, A136Y and A200T, are newly discovered color tuning residues. In the triple mutant, the λ(max) was 525 nm. The inverse mutation of SRII (F134H/Y139A/T204A) generated a spectral-shifted SRII toward longer wavelengths, although the effect is smaller than in the case of SRI, which is probably due to the lack of anion binding in the SRII mutant. Thus, half of the spectral shift from SRI to SRII could be explained by only those three residues taking into account the effect of Cl(-) binding.
Collapse
Affiliation(s)
- Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
16
|
Suzuki D, Irieda H, Homma M, Kawagishi I, Sudo Y. Phototactic and chemotactic signal transduction by transmembrane receptors and transducers in microorganisms. SENSORS 2010; 10:4010-39. [PMID: 22319339 PMCID: PMC3274258 DOI: 10.3390/s100404010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/29/2010] [Accepted: 04/09/2010] [Indexed: 12/17/2022]
Abstract
Microorganisms show attractant and repellent responses to survive in the various environments in which they live. Those phototaxic (to light) and chemotaxic (to chemicals) responses are regulated by membrane-embedded receptors and transducers. This article reviews the following: (1) the signal relay mechanisms by two photoreceptors, Sensory Rhodopsin I (SRI) and Sensory Rhodopsin II (SRII) and their transducers (HtrI and HtrII) responsible for phototaxis in microorganisms; and (2) the signal relay mechanism of a chemoreceptor/transducer protein, Tar, responsible for chemotaxis in E. coli. Based on results mainly obtained by our group together with other findings, the possible molecular mechanisms for phototaxis and chemotaxis are discussed.
Collapse
Affiliation(s)
- Daisuke Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
| | - Hiroki Irieda
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
| | - Ikuro Kawagishi
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo, 184-8584, Japan; E-Mail: (I.K.)
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, 184-8584, Japan
| | - Yuki Sudo
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan; E-Mails: (D.S.); (H.I.); (M.H.)
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho Kawaguchi, Saitama, 332-0012, Japan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-52-789-2993; Fax: +81-52-789-3001
| |
Collapse
|
17
|
Yagasaki J, Suzuki D, Ihara K, Inoue K, Kikukawa T, Sakai M, Fujii M, Homma M, Kandori H, Sudo Y. Spectroscopic studies of a sensory rhodopsin I homologue from the archaeon Haloarcula vallismortis. Biochemistry 2010; 49:1183-90. [PMID: 20067303 DOI: 10.1021/bi901824a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sensory rhodopsin I (SRI) functions as a dual receptor regulating both negative and positive phototaxis. It transmits light signals through changes in protein-protein interactions with its transducer protein, HtrI. The phototaxis function of Halobacterium salinarum SRI (HsSRI) has been well characterized using genetic and molecular techniques, whereas that of Salinibacter ruber SRI (SrSRI) has not. SrSRI has the advantage of high protein stability compared with HsSRI and, therefore, provided new information about structural changes and Cl(-) binding of SRI. However, nothing is known about the functional role of SrSRI in phototaxis behavior. In this study, we expressed a SRI homologue from the archaeon Haloarcula vallismortis (HvSRI) as a recombinant protein which uses all-trans-retinal as a chromophore. Functionally important residues of HsSRI are completely conserved in HvSRI (unlike in SrSRI), and HvSRI is extremely stable in buffers without Cl(-). Taking advantage of the high stability, we characterized the photochemical properties of HvSRI under acidic and basic conditions and observed the effects of Cl(-) on the protein under both conditions. Fourier transform infrared results revealed that the structural changes in HvSRI were quite similar to those in HsSRI and SrSRI. Thus, HvSRI can become a useful protein model for improving our understanding of the molecular mechanism of the dual photosensing by SRI.
Collapse
Affiliation(s)
- Jin Yagasaki
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hashimoto K, Choi AR, Furutani Y, Jung KH, Kandori H. Low-Temperature FTIR Study of Gloeobacter Rhodopsin: Presence of Strongly Hydrogen-Bonded Water and Long-Range Structural Protein Perturbation upon Retinal Photoisomerization. Biochemistry 2010; 49:3343-50. [DOI: 10.1021/bi100184k] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kyohei Hashimoto
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Ah Reum Choi
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742, Korea
| | - Yuji Furutani
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Kwang-Hwan Jung
- Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul 121-742, Korea
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
19
|
Dioumaev AK, Wang JM, Lanyi JK. Low-temperature FTIR study of multiple K intermediates in the photocycles of bacteriorhodopsin and xanthorhodopsin. J Phys Chem B 2010; 114:2920-31. [PMID: 20136108 PMCID: PMC3820168 DOI: 10.1021/jp908698f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Low-temperature FTIR spectroscopy of bacteriorhodopsin and xanthorhodopsin was used to elucidate the number of K-like bathochromic states, their sequence, and their contributions to the photoequilibrium mixtures created by illumination at 80-180 K. We conclude that in bacteriorhodopsin the photocycle includes three distinct K-like states in the sequence bR (hv)--> I* --> J --> K(0) --> K(E) --> L --> ..., and similarly in xanthorhodopsin. K(0) is the main fraction in the mixture at 77 K that is formed from J. K(0) becomes thermally unstable above approximately 50 K in both proteins. At 77 K, both J-to-K(0) and K(0)-to-K(E) transitions occur and, contrarily to long-standing belief, cryogenic trapping at 77 K does not produce a pure K state but a mixture of the two states, K(0) and K(E), with contributions from K(E) of approximately 15 and approximately 10% in the two retinal proteins, respectively. Raising the temperature leads to increasing conversion of K(0) to K(E), and the two states coexist (without contamination from non-K-like states) in the 80-140 K range in bacteriorhodopsin, and in the 80-190 K range in xanthorhodopsin. Temperature perturbation experiments in these regions of coexistence revealed that, in spite of the observation of apparently stable mixtures of K(0) and K(E), the two states are not in thermally controlled equilibrium. The K(0)-to-K(E) transition is unidirectional, and the partial transformation to K(E) is due to distributed kinetics, which governs the photocycle dynamics at temperatures below approximately 245 K (Dioumaev and Lanyi, Biochemistry 2008, 47, 11125-11133). From spectral deconvolution, we conclude that the K(E) state, which is increasingly present at higher temperatures, is the same intermediate that is detected by time-resolved FTIR prior to its decay, on a time scale of hundreds of nanoseconds at ambient temperature (Dioumaev and Braiman, J. Phys. Chem. B 1997, 101, 1655-1662), into the K(L) state. We were unable to trap the latter separately from K(E) at low temperature, due to the slow distributed kinetics and the increasingly faster overlapping formation of the L state. Formation of the two consecutive K-like states in both proteins is accompanied by distortion of two different weakly bound water molecules: one in K(0), the other in K(E). The first, well-documented in bacteriorhodopsin at 77 K where K(0) dominates, was assigned to water 401 in bacteriorhodopsin. The other water molecule, whose participation has not been described previously, is disturbed on the next step of the photocycle, in K(E), in both proteins. In bacteriorhodopsin, the most likely candidate is water 407. However, unlike bacteriorhodopsin, the crystal structure of xanthorhodopsin lacks homologous weakly bound water molecules.
Collapse
Affiliation(s)
- Andrei K. Dioumaev
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697
| | - Jennifer M. Wang
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697
| | - Janos K. Lanyi
- Department of Physiology & Biophysics, University of California, Irvine, CA 92697
| |
Collapse
|
20
|
Suzuki D, Furutani Y, Inoue K, Kikukawa T, Sakai M, Fujii M, Kandori H, Homma M, Sudo Y. Effects of chloride ion binding on the photochemical properties of salinibacter sensory rhodopsin I. J Mol Biol 2009; 392:48-62. [PMID: 19560470 DOI: 10.1016/j.jmb.2009.06.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/31/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Abstract
Microbial organisms utilize light not only as energy sources but also as signals by which rhodopsins (containing retinal as a chromophore) work as photoreceptors. Sensory rhodopsin I (SRI) is a dual photoreceptor that regulates both negative and positive phototaxis in microbial organisms, such as the archaeon Halobacterium salinarum and the eubacterium Salinibacter ruber. These organisms live in highly halophilic environments, suggesting the possibility of the effects of salts on the function of SRI. However, such effects remain unclear because SRI proteins from H. salinarum (HsSRI) are unstable in dilute salt solutions. Recently, we characterized a new SRI protein (SrSRI) that is stable even in the absence of salts, thus allowing us to investigate the effects of salts on the photochemical properties of SRI. In this study, we report that the absorption maximum of SrSRI is shifted from 542 to 556 nm in a Cl(-)-dependent manner with a K(m) of 307+/-56 mM, showing that Cl(-)-binding sites exist in SRI. The bathochromic shift was caused not only by NaCl but also by other salts (NaI, NaBr, and NaNO(3)), implying that I(-), Br(-), and NO(3)(-) can also bind to SrSRI. In addition, the photochemical properties during the photocycle are also affected by chloride ion binding. Mutagenesis studies strongly suggested that a conserved residue, His131, is involved in the Cl(-)-binding site. In light of these results, we discuss the effects of the Cl(-) binding to SRI and the roles of Cl(-) binding in its function.
Collapse
|
21
|
Nakashima K, Nakamura T, Takeuchi S, Shibata M, Demura M, Tahara T, Kandori H. Properties of the Anion-Binding Site of pharaonis Halorhodopsin Studied by Ultrafast Pump−Probe Spectroscopy and Low-Temperature FTIR Spectroscopy. J Phys Chem B 2009; 113:8429-34. [DOI: 10.1021/jp902596k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Keisuke Nakashima
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, Molecular Spectroscopy Laboratory, Advanced Science Institute (ASI), RIKEN, Hirosawa, Wako 351-0198, Japan, and Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Takumi Nakamura
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, Molecular Spectroscopy Laboratory, Advanced Science Institute (ASI), RIKEN, Hirosawa, Wako 351-0198, Japan, and Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Satoshi Takeuchi
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, Molecular Spectroscopy Laboratory, Advanced Science Institute (ASI), RIKEN, Hirosawa, Wako 351-0198, Japan, and Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Mikihiro Shibata
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, Molecular Spectroscopy Laboratory, Advanced Science Institute (ASI), RIKEN, Hirosawa, Wako 351-0198, Japan, and Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Makoto Demura
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, Molecular Spectroscopy Laboratory, Advanced Science Institute (ASI), RIKEN, Hirosawa, Wako 351-0198, Japan, and Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Tahei Tahara
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, Molecular Spectroscopy Laboratory, Advanced Science Institute (ASI), RIKEN, Hirosawa, Wako 351-0198, Japan, and Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Hideki Kandori
- Department of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan, Molecular Spectroscopy Laboratory, Advanced Science Institute (ASI), RIKEN, Hirosawa, Wako 351-0198, Japan, and Department of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|