1
|
McFarlane A, Pohler E, Moraga I. Molecular and cellular factors determining the functional pleiotropy of cytokines. FEBS J 2023; 290:2525-2552. [PMID: 35246947 PMCID: PMC10952290 DOI: 10.1111/febs.16420] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/26/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Cytokines are soluble factors vital for mammalian physiology. Cytokines elicit highly pleiotropic activities, characterized by their ability to induce a wide spectrum of functional responses in a diverse range of cell subsets, which makes their study very challenging. Cytokines activate signalling via receptor dimerization/oligomerization, triggering activation of the JAK (Janus kinase)/STAT (signal transducer and activator of transcription) signalling pathway. Given the strong crosstalk and shared usage of key components of cytokine signalling pathways, a long-standing question in the field pertains to how functional diversity is achieved by cytokines. Here, we discuss how biophysical - for example, ligand-receptor binding affinity and topology - and cellular - for example, receptor, JAK and STAT protein levels, endosomal compartment - parameters contribute to the modulation and diversification of cytokine responses. We review how these parameters ultimately converge into a common mechanism to fine-tune cytokine signalling that involves the control of the number of Tyr residues phosphorylated in the receptor intracellular domain upon cytokine stimulation. This results in different kinetics of STAT activation, and induction of specific gene expression programs, ensuring the generation of functional diversity by cytokines using a limited set of signalling intermediaries. We describe how these first principles of cytokine signalling have been exploited using protein engineering to design cytokine variants with more specific and less toxic responses for immunotherapy.
Collapse
Affiliation(s)
- Alison McFarlane
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| | - Elizabeth Pohler
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| | - Ignacio Moraga
- Division of Cell Signalling and ImmunologySchool of Life SciencesUniversity of DundeeUK
| |
Collapse
|
2
|
Pawar AB, Sengupta D. Effect of Membrane Composition on Receptor Association: Implications of Cancer Lipidomics on ErbB Receptors. J Membr Biol 2018; 251:359-368. [DOI: 10.1007/s00232-018-0015-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
|
3
|
Adlung L, Kar S, Wagner MC, She B, Chakraborty S, Bao J, Lattermann S, Boerries M, Busch H, Wuchter P, Ho AD, Timmer J, Schilling M, Höfer T, Klingmüller U. Protein abundance of AKT and ERK pathway components governs cell type-specific regulation of proliferation. Mol Syst Biol 2017; 13:904. [PMID: 28123004 PMCID: PMC5293153 DOI: 10.15252/msb.20167258] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signaling through the AKT and ERK pathways controls cell proliferation. However, the integrated regulation of this multistep process, involving signal processing, cell growth and cell cycle progression, is poorly understood. Here, we study different hematopoietic cell types, in which AKT and ERK signaling is triggered by erythropoietin (Epo). Although these cell types share the molecular network topology for pro‐proliferative Epo signaling, they exhibit distinct proliferative responses. Iterating quantitative experiments and mathematical modeling, we identify two molecular sources for cell type‐specific proliferation. First, cell type‐specific protein abundance patterns cause differential signal flow along the AKT and ERK pathways. Second, downstream regulators of both pathways have differential effects on proliferation, suggesting that protein synthesis is rate‐limiting for faster cycling cells while slower cell cycles are controlled at the G1‐S progression. The integrated mathematical model of Epo‐driven proliferation explains cell type‐specific effects of targeted AKT and ERK inhibitors and faithfully predicts, based on the protein abundance, anti‐proliferative effects of inhibitors in primary human erythroid progenitor cells. Our findings suggest that the effectiveness of targeted cancer therapy might become predictable from protein abundance.
Collapse
Affiliation(s)
- Lorenz Adlung
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sandip Kar
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, Germany.,Department of Chemistry, Indian Institute of Technology, Mumbai, India
| | - Marie-Christine Wagner
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bin She
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sajib Chakraborty
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jie Bao
- Systems Biology of the Cellular Microenvironment Group, IMMZ, ALU, Freiburg, Germany
| | - Susen Lattermann
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Boerries
- Systems Biology of the Cellular Microenvironment Group, IMMZ, ALU, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment Group, IMMZ, ALU, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Wuchter
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany.,Institute for Transfusion Medicine and Immunology, University of Heidelberg, Mannheim, Germany
| | - Anthony D Ho
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Jens Timmer
- Center for Biological Signaling Studies (BIOSS), Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Marcel Schilling
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany .,BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Ursula Klingmüller
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany .,Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
4
|
Merkle R, Steiert B, Salopiata F, Depner S, Raue A, Iwamoto N, Schelker M, Hass H, Wäsch M, Böhm ME, Mücke O, Lipka DB, Plass C, Lehmann WD, Kreutz C, Timmer J, Schilling M, Klingmüller U. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells. PLoS Comput Biol 2016; 12:e1005049. [PMID: 27494133 PMCID: PMC4975441 DOI: 10.1371/journal.pcbi.1005049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/05/2016] [Indexed: 01/23/2023] Open
Abstract
Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid progenitor cells unaffected. Thus, the proposed modeling strategy can be employed as a general procedure to identify cell type-specific parameters and to recommend treatment strategies for the selective targeting of specific cell types. A major challenge in the development of therapeutic interventions is the selective inhibition of a signal transduction pathway in one cell type such as a cancer cell leaving the other cell type such as a healthy cell as unaffected as possible. Here, we propose a new approach that combines mathematical modeling based on quantitative experimental data with statistical methods. We demonstrate based on simulated data that our approach can determine which parameters are the same and which parameters differ in two exemplary cell types. We compare a lung cancer cell line to the precursor cells of red blood cells. We show that the same signal transduction network induced by erythropoietin (EPO), a hormone that is frequently employed to treat anemia in cancer patients, regulates survival of both cell types. Based on our experimental data in combination with our computational approach, we identify seven cell type-specific differences in this signaling pathway. Our strategy allows predicting therapeutic targets that could be inhibited to interfere with survival of lung cancer cells while leaving production of red blood cells unaffected.
Collapse
Affiliation(s)
- Ruth Merkle
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Bernhard Steiert
- Institute of Physics, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Florian Salopiata
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Sofia Depner
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Andreas Raue
- Institute of Physics, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Nao Iwamoto
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Max Schelker
- Institute of Physics, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Helge Hass
- Institute of Physics, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Marvin Wäsch
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Martin E. Böhm
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Oliver Mücke
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Daniel B. Lipka
- Regulation of Cellular Differentiation Group, Division Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Christoph Plass
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Wolf D. Lehmann
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Clemens Kreutz
- Institute of Physics, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Jens Timmer
- Institute of Physics, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
- * E-mail: (JT); (MS); (UK)
| | - Marcel Schilling
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- * E-mail: (JT); (MS); (UK)
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- * E-mail: (JT); (MS); (UK)
| |
Collapse
|
5
|
Pawar AB, Deshpande SA, Gopal SM, Wassenaar TA, Athale CA, Sengupta D. Thermodynamic and kinetic characterization of transmembrane helix association. Phys Chem Chem Phys 2015; 17:1390-8. [DOI: 10.1039/c4cp03732d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transient dimerization of transmembrane proteins is an important event in several cellular processes and here we use coarse-grain and meso-scale modeling methods to quantify their underlying dynamics.
Collapse
Affiliation(s)
| | | | | | - Tsjerk A. Wassenaar
- Department of Biology
- Computational Biology
- University of Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | | | | |
Collapse
|
6
|
Effect of Lipid Bilayer Composition on Membrane Protein Association. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2015. [DOI: 10.1016/bs.adplan.2015.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Sharonov GV, Bocharov EV, Kolosov PM, Astapova MV, Arseniev AS, Feofanov AV. Point mutations in dimerization motifs of the transmembrane domain stabilize active or inactive state of the EphA2 receptor tyrosine kinase. J Biol Chem 2014; 289:14955-64. [PMID: 24733396 DOI: 10.1074/jbc.m114.558783] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The EphA2 receptor tyrosine kinase plays a central role in the regulation of cell adhesion and guidance in many human tissues. The activation of EphA2 occurs after proper dimerization/oligomerization in the plasma membrane, which occurs with the participation of extracellular and cytoplasmic domains. Our study revealed that the isolated transmembrane domain (TMD) of EphA2 embedded into the lipid bicelle dimerized via the heptad repeat motif L(535)X3G(539)X2A(542)X3V(546)X2L(549) rather than through the alternative glycine zipper motif A(536)X3G(540)X3G(544) (typical for TMD dimerization in many proteins). To evaluate the significance of TMD interactions for full-length EphA2, we substituted key residues in the heptad repeat motif (HR variant: G539I, A542I, G553I) or in the glycine zipper motif (GZ variant: G540I, G544I) and expressed YFP-tagged EphA2 (WT, HR, and GZ variants) in HEK293T cells. Confocal microscopy revealed a similar distribution of all EphA2-YFP variants in cells. The expression of EphA2-YFP variants and their kinase activity (phosphorylation of Tyr(588) and/or Tyr(594)) and ephrin-A3 binding were analyzed with flow cytometry on a single cell basis. Activation of any EphA2 variant is found to occur even without ephrin stimulation when the EphA2 content in cells is sufficiently high. Ephrin-A3 binding is not affected in mutant variants. Mutations in the TMD have a significant effect on EphA2 activity. Both ligand-dependent and ligand-independent activities are enhanced for the HR variant and reduced for the GZ variant compared with the WT. These findings allow us to suggest TMD dimerization switching between the heptad repeat and glycine zipper motifs, corresponding to inactive and active receptor states, respectively, as a mechanism underlying EphA2 signal transduction.
Collapse
Affiliation(s)
- George V Sharonov
- From the Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997 Moscow, Russia, the Faculty of Medicine, Moscow State University, 119992 Moscow, Russia
| | - Eduard V Bocharov
- From the Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997 Moscow, Russia
| | - Peter M Kolosov
- the Department of Molecular Neurobiology, Institute of Higher Nervous Activity and Neurophysiology of RAS, 117485 Moscow, Russia, and
| | - Maria V Astapova
- From the Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997 Moscow, Russia
| | - Alexander S Arseniev
- From the Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997 Moscow, Russia
| | - Alexey V Feofanov
- From the Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997 Moscow, Russia, the Biological Faculty, Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
8
|
Moraga I, Spangler J, Mendoza JL, Garcia KC. Multifarious determinants of cytokine receptor signaling specificity. Adv Immunol 2014; 121:1-39. [PMID: 24388212 DOI: 10.1016/b978-0-12-800100-4.00001-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytokines play crucial roles in regulating immune homeostasis. Two important characteristics of most cytokines are pleiotropy, defined as the ability of one cytokine to exhibit diverse functionalities, and redundancy, defined as the ability of multiple cytokines to exert overlapping activities. Identifying the determinants for unique cellular responses to cytokines in the face of shared receptor usage, pleiotropy, and redundancy will be essential in order to harness the potential of cytokines as therapeutics. Here, we discuss the biophysical (ligand-receptor geometry and affinity) and cellular (receptor trafficking and intracellular abundance of signaling molecules) parameters that contribute to the specificity of cytokine bioactivities. Whereas the role of extracellular ternary complex geometry in cytokine-induced signaling is still not completely elucidated, cytokine-receptor affinity is known to impact signaling through modulation of the stability and kinetics of ternary complex formation. Receptor trafficking also plays an important and likely underappreciated role in the diversification of cytokine bioactivities but it has been challenging to experimentally probe trafficking effects. We also review recent efforts to quantify levels of intracellular signaling components, as second messenger abundance can affect cytokine-induced bioactivities both quantitatively and qualitatively. We conclude by discussing the application of protein engineering to develop therapeutically relevant cytokines with reduced pleiotropy and redirected biological functionalities.
Collapse
Affiliation(s)
- Ignacio Moraga
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA; Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Jamie Spangler
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA; Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Juan L Mendoza
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA; Program in Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - K Christopher Garcia
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, USA; Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA; Department of Structural Biology, Stanford University School of Medicine, Stanford, California, USA; Program in Immunology, Stanford University School of Medicine, Stanford, California, USA.
| |
Collapse
|
9
|
Prasanna X, Praveen PJ, Sengupta D. Sequence dependent lipid-mediated effects modulate the dimerization of ErbB2 and its associative mutants. Phys Chem Chem Phys 2013; 15:19031-41. [DOI: 10.1039/c3cp52447g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Abstract
Reliable inter- and intracellular communication is central to both the development and the integrity of multicellular organisms. Key mediators of these processes are cell surface receptors that perceive and convert extracellular cues to trigger intracellular signaling networks and ultimately a phenotypic response. Deregulation of signal transduction leads to a variety of diseases, and aberrations in receptor proteins are very common in various cancer types. Therefore, cell surface receptors have been established as major targets in drug discovery. However, in order to efficiently apply therapeutics, it is crucial to gain knowledge about design principles of receptor signaling. In this chapter, we will discuss signal transduction at the receptor level for examples from different receptor classes.
Collapse
|
11
|
Orientation-specific signalling by thrombopoietin receptor dimers. EMBO J 2011; 30:4398-413. [PMID: 21892137 DOI: 10.1038/emboj.2011.315] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 08/04/2011] [Indexed: 02/08/2023] Open
Abstract
Ligand binding to the thrombopoietin receptor is thought to stabilize an active receptor dimer that regulates megakaryocyte differentiation and platelet formation, as well as haematopoietic stem cell renewal. By fusing a dimeric coiled coil in all seven possible orientations to the thrombopoietin receptor transmembrane (TM)-cytoplasmic domains, we show that specific biological effects and in vivo phenotypes are imparted by distinct dimeric orientations, which can be visualized by cysteine mutagenesis and crosslinking. Using functional assays and computational searches, we identify one orientation that represents the inactive dimeric state and another similar to a physiologically activated receptor. Several other dimeric orientations are identified that induce proliferation and in vivo myeloproliferative and myelodysplastic disorders, indicating the receptor can signal from several dimeric interfaces. The set of dimeric thrombopoietin receptors with different TM orientations may offer new insights into the activation of distinct signalling pathways by a single receptor and suggests that subtle differences in cytokine receptor dimerization provide a new layer of signalling regulation that is relevant for disease.
Collapse
|
12
|
Hubert P, Sawma P, Duneau JP, Khao J, Hénin J, Bagnard D, Sturgis J. Single-spanning transmembrane domains in cell growth and cell-cell interactions: More than meets the eye? Cell Adh Migr 2010; 4:313-24. [PMID: 20543559 PMCID: PMC2900628 DOI: 10.4161/cam.4.2.12430] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/20/2010] [Indexed: 01/28/2023] Open
Abstract
As a whole, integral membrane proteins represent about one third of sequenced genomes, and more than 50% of currently available drugs target membrane proteins, often cell surface receptors. Some membrane protein classes, with a defined number of transmembrane (TM) helices, are receiving much attention because of their great functional and pharmacological importance, such as G protein-coupled receptors possessing 7 TM segments. Although they represent roughly half of all membrane proteins, bitopic proteins (with only 1 TM helix) have so far been less well characterized. Though they include many essential families of receptors, such as adhesion molecules and receptor tyrosine kinases, many of which are excellent targets for biopharmaceuticals (peptides, antibodies, et al.). A growing body of evidence suggests a major role for interactions between TM domains of these receptors in signaling, through homo and heteromeric associations, conformational changes, assembly of signaling platforms, etc. Significantly, mutations within single domains are frequent in human disease, such as cancer or developmental disorders. This review attempts to give an overview of current knowledge about these interactions, from structural data to therapeutic perspectives, focusing on bitopic proteins involved in cell signaling.
Collapse
Affiliation(s)
- Pierre Hubert
- LISM UPR 9027, CNRS-Aix-Marseille University, Marseille, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Ketteler R. The Feynman trajectories: determining the path of a protein using fixed-endpoint assays. ACTA ACUST UNITED AC 2010; 15:321-6. [PMID: 20130209 DOI: 10.1177/1087057109357116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Richard Feynman postulated in 1948 that the path of an electron can be best described by the sum or functional integral of all possible trajectories rather than by the notion of a single, unique trajectory. As a consequence, the position of an electron does not harbor any information about the paths that contributed to this position. This observation constitutes a classical endpoint observation. The endpoint assay is the desired type of experiment for high-throughput screening applications, mainly because of limitations in data acquisition and handling. Quite contrary to electrons, it is possible to extract information about the path of a protein using endpoint assays, and these types of applications are reviewed in this article.
Collapse
Affiliation(s)
- Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom.
| |
Collapse
|