1
|
Shoji S, Ogawa T, Hashishin T, Tamiaki H. Self-Assemblies of Zinc Bacteriochlorophyll-d Analogues Having Amide, Ester, and Urea Groups as Substituents at 17-Position and Observation of Lamellar Supramolecular Nanostructures. Chemphyschem 2018; 19:913-920. [PMID: 29231276 DOI: 10.1002/cphc.201701044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/07/2017] [Indexed: 11/05/2022]
Abstract
Chlorosomes are unique light-harvesting apparatuses in photosynthetic green bacteria. Single chlorosomes contain a large number of bacteriochlorophyll (BChl)-c, -d, -e, and -f molecules, which self-assemble without protein assistance. These BChl self-assemblies involving specific intermolecular interactions (Mg⋅⋅⋅O32 -H⋅⋅⋅O=C131 and π-π stacks of chlorin skeletons) in a chlorosome have been reported to be round-shaped rods (or tubes) with diameters of 5 or 10 nm, or lamellae with a layer spacing of approximately 2 nm. Herein, the self-assembly of synthetic zinc BChl-d analogues having ester, amide, and urea groups in the 17-substituent is reported. Spectroscopic analyses indicate that the zinc BChl-d analogues self-assemble in a nonpolar organic solvent in a similar manner to natural chlorosomal BChls with additional assistance by hydrogen-bonding of secondary amide (or urea) groups (CON-H⋅⋅⋅O=CNH). Microscopic analyses of the supramolecules of a zinc BChl-d analogue bearing amide and urea groups show round- or square-shaped rods with widths of about 65 nm. Cryogenic TEM shows a lamellar arrangement of the zinc chlorin with a layer spacing of 1.5 nm inside the rod. Similar thick rods are also visible in the micrographs of self-assemblies of zinc BChl-d analogues with one or two secondary amide moieties in the 17-substituent.
Collapse
Affiliation(s)
- Sunao Shoji
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Tetsuya Ogawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Takeshi Hashishin
- Faculty of Engineering, Kumamoto University, Kumamoto, Kumamoto, 860-8555, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| |
Collapse
|
2
|
Luo SC, Khin Y, Huang SJ, Yang Y, Hou TY, Cheng YC, Chen HM, Chin YY, Chen CT, Lin HJ, Tang JKH, Chan JCC. Probing the Spatial Organization of Bacteriochlorophyll c by Solid-State Nuclear Magnetic Resonance. Biochemistry 2014; 53:5515-25. [DOI: 10.1021/bi500755r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Yadana Khin
- Department
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States,
| | | | - Yanshen Yang
- Department
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States,
| | | | | | | | - Yi-Ying Chin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chien-Te Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hong-Ji Lin
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Joseph Kuo-Hsiang Tang
- Department
of Chemistry and Biochemistry, Clark University, Worcester, Massachusetts 01610, United States,
| | | |
Collapse
|
3
|
Alster J, Kabeláč M, Tuma R, Pšenčík J, Burda J. Computational study of short-range interactions in bacteriochlorophyll aggregates. COMPUT THEOR CHEM 2012. [DOI: 10.1016/j.comptc.2012.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
4
|
Shoji S, Hashishin T, Tamiaki H. Construction of Chlorosomal Rod Self-Aggregates in the Solid State on Any Substrates from Synthetic Chlorophyll Derivatives Possessing an Oligomethylene Chain at the 17-Propionate Residue. Chemistry 2012; 18:13331-41. [DOI: 10.1002/chem.201201935] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Indexed: 11/09/2022]
|
5
|
Ganapathy S, Oostergetel GT, Reus M, Tsukatani Y, Gomez Maqueo Chew A, Buda F, Bryant DA, Holzwarth AR, de Groot HJM. Structural variability in wild-type and bchQ bchR mutant chlorosomes of the green sulfur bacterium Chlorobaculum tepidum. Biochemistry 2012; 51:4488-98. [PMID: 22577986 DOI: 10.1021/bi201817x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The self-aggregated state of bacteriochlorophyll (BChl) c molecules in chlorosomes belonging to a bchQ bchR mutant of the green sulfur bacteria Chlorobaculum tepidum, which mostly produces a single 17(2)-farnesyl-(R)-[8-ethyl,12-methyl]BChl c homologue, was characterized by solid-state nuclear magnetic resonance (NMR) spectroscopy and high-resolution electron microscopy. A nearly complete (1)H and (13)C chemical shift assignment was obtained from well-resolved homonuclear (13)C-(13)C and heteronuclear (1)H-(13)C NMR data sets collected from (13)C-enriched chlorosome preparations. Pronounced doubling (1:1) of specific (13)C and (1)H resonances revealed the presence of two distinct and nonequivalent BChl c components, attributed to all syn- and all anti-coordinated parallel stacks, depending on the rotation of the macrocycle with respect to the 3(1)-methyl group. Steric hindrance from the 20-methyl functionality induces structural differences between the syn and anti forms. A weak but significant and reproducible reflection at 1/0.69 nm(-1) in the direction perpendicular to the curvature of cylindrical segments observed with electron microscopy also suggests parallel stacking of BChl c molecules, though the observed lamellar spacing of 2.4 nm suggests weaker packing than for wild-type chlorosomes. We propose that relaxation of the pseudosymmetry observed for the wild type and a related BChl d mutant leads to extended domains of alternating syn and anti stacks in the bchQ bchR chlorosomes. Domains can be joined to form cylinders by helical syn-anti transition trajectories. The phase separation in domains on the cylindrical surface represents a basic mechanism for establishing suprastructural heterogeneity in an otherwise uniform supramolecular scaffolding framework that is well-ordered at the molecular level.
Collapse
Affiliation(s)
- Swapna Ganapathy
- Leiden Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Jesorka A, Holzwarth AR, Eichhöfer A, Reddy CM, Kinoshita Y, Tamiaki H, Katterle M, Naubron JV, Balaban TS. Water coordinated zinc dioxo-chlorin and porphyrin self-assemblies as chlorosomal mimics: variability of supramolecular interactions. Photochem Photobiol Sci 2012; 11:1069-80. [DOI: 10.1039/c2pp25016k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Chappaz-Gillot C, Marek PL, Blaive BJ, Canard G, Bürck J, Garab G, Hahn H, Jávorfi T, Kelemen L, Krupke R, Mössinger D, Ormos P, Reddy CM, Roussel C, Steinbach G, Szabó M, Ulrich AS, Vanthuyne N, Vijayaraghavan A, Zupcanova A, Balaban TS. Anisotropic organization and microscopic manipulation of self-assembling synthetic porphyrin microrods that mimic chlorosomes: bacterial light-harvesting systems. J Am Chem Soc 2011; 134:944-54. [PMID: 22148684 DOI: 10.1021/ja203838p] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Being able to control in time and space the positioning, orientation, movement, and sense of rotation of nano- to microscale objects is currently an active research area in nanoscience, having diverse nanotechnological applications. In this paper, we demonstrate unprecedented control and maneuvering of rod-shaped or tubular nanostructures with high aspect ratios which are formed by self-assembling synthetic porphyrins. The self-assembly algorithm, encoded by appended chemical-recognition groups on the periphery of these porphyrins, is the same as the one operating for chlorosomal bacteriochlorophylls (BChl's). Chlorosomes, rod-shaped organelles with relatively long-range molecular order, are the most efficient naturally occurring light-harvesting systems. They are used by green photosynthetic bacteria to trap visible and infrared light of minute intensities even at great depths, e.g., 100 m below water surface or in volcanic vents in the absence of solar radiation. In contrast to most other natural light-harvesting systems, the chlorosomal antennae are devoid of a protein scaffold to orient the BChl's; thus, they are an attractive goal for mimicry by synthetic chemists, who are able to engineer more robust chromophores to self-assemble. Functional devices with environmentally friendly chromophores-which should be able to act as photosensitizers within hybrid solar cells, leading to high photon-to-current conversion efficiencies even under low illumination conditions-have yet to be fabricated. The orderly manner in which the BChl's and their synthetic counterparts self-assemble imparts strong diamagnetic and optical anisotropies and flow/shear characteristics to their nanostructured assemblies, allowing them to be manipulated by electrical, magnetic, or tribomechanical forces.
Collapse
Affiliation(s)
- Cyril Chappaz-Gillot
- ISM2-Chirosciences, Faculté des Sciences, Aix-Marseille Univ. UMR 6263, Saint-Jérôme, Case A62, Avenue Escadrille Normandie-Niemen, F-13397 Marseille, Cedex 20, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Mass O, Pandithavidana DR, Ptaszek M, Santiago K, Springer JW, Jiao J, Tang Q, Kirmaier C, Bocian DF, Holten D, Lindsey JS. De novo synthesis and properties of analogues of the self-assembling chlorosomal bacteriochlorophylls. NEW J CHEM 2011. [DOI: 10.1039/c1nj20611g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Tamiaki H, Morishita H. Vibrational Spectroscopic Analysis of Self-Aggregates of Synthetic Zinc and Cadmium 131-18O-Labeled Bacteriochlorophyll-dAnalogs. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2010. [DOI: 10.1246/bcsj.20100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Akutsu H, Egawa A, Fujiwara T. Atomic structure of the bacteriochlorophyll c assembly in intact chlorosomes from Chlorobium limicola determined by solid-state NMR. PHOTOSYNTHESIS RESEARCH 2010; 104:221-231. [PMID: 20063063 DOI: 10.1007/s11120-009-9523-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 12/21/2009] [Indexed: 05/28/2023]
Abstract
Green sulfur photosynthetic bacteria optimize their antennas, chlorosomes, especially for harvesting weak light by organizing bacteriochlorophyll (BChl) assembly without any support of proteins. As it is difficult to crystallize the organelles, a high-resolution structure of the light-harvesting devices in the chlorosomes has not been clarified. We have determined the structure of BChl c assembly in the intact chlorosomes from Chlorobium limicola on the basis of (13)C dipolar spin-diffusion solid-state NMR analysis of uniformly (13)C-labeled chlorosomes. About 90 intermolecular C-C distances were obtained by the simultaneous assignment of distance correlations and the structure optimization preceded by the polarization-transfer matrix analysis. An atomic structure was obtained, using these distance constraints. The determined structure of the chlorosomal BChl c assembly is built with the parallel layers of piggyback-dimers. This supramolecular structure would provide insights into the mechanism of weak-light capturing.
Collapse
Affiliation(s)
- Hideo Akutsu
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Japan.
| | | | | |
Collapse
|
11
|
Kunieda M, Yamamoto K, Tamiaki H. Self-aggregation of synthetic multi-hydroxylated zinc chlorophylls. Tetrahedron 2010. [DOI: 10.1016/j.tet.2009.12.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Preferential pathways for light-trapping involving beta-ligated chlorophylls. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1254-65. [PMID: 19481055 DOI: 10.1016/j.bbabio.2009.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/18/2009] [Accepted: 05/20/2009] [Indexed: 11/24/2022]
Abstract
The magnesium atom of chlorophylls (Chls) is always five- or six-coordinated within chlorophyll-protein complexes which are the main light-harvesting systems of plants, algae and most photosynthetic bacteria. Due to the presence of stereocenters and the axial ligation of magnesium the two faces of Chls are diastereotopic. It has been previously recognized that the alpha-configuration having the magnesium ligand on the opposite face of the 17-propionic acid moiety is more frequently encountered and is more stable than the more seldom beta-configuration that has the magnesium ligand on the same face [T.S. Balaban, P. Fromme, A.R. Holzwarth, N. Kraubeta, V.I. Prokhorenko, Relevance of the diastereotopic ligation of magnesium atoms in chlorophylls in Photosystem I, Biochim. Biophys. Acta (Bioenergetics), 1556 (2002) 197-207; T. Oba, H. Tamiaki, Which side of the pi-macrocycle plane of (bacterio)chlorophylls is favored for binding of the fifth ligand? Photosynth. Res. 74 (2002) 1-10]. In photosystem I only 14 Chls out of a total of 96 are in a beta-configuration and these occupy preferential positions around the reaction center. We have now analyzed the alpha/beta dichotomy in the homodimeric photosystem II based on the 2.9 A resolution crystal structure [A. Guskov, J. Kern, A. Gabdulkhakov, M. Broser, A. Zouni, W. Saenger, Cyanobacterial photosystem II at 2.9 A resolution: role of quinones, lipids, channels and chloride, Nature Struct. Mol. Biol. 16 (2009) 334-342] and find that out of 35 Chls in each monomer only 9 are definitively in the beta-configuration, while 4 are uncertain. Ab initio calculations using the approximate coupled-cluster singles-and-doubles model CC2 [O. Christiansen, H. Koch, P. Jørgensen, The second-order approximate coupled cluster singles and doubles model CC2, Chem. Phys. Lett. 243 (1995) 409-418] now correctly predict the absorption spectra of Chls a and b and conclusively show for histidine, which is the most frequent axial ligand of magnesium in chlorophyll-protein complexes, that only slight differences (<4 nm) are encountered between the alpha- and beta-configurations. Significant red shifts (up to 50 nm) can, however, be encountered in excitonically coupled beta-beta-Chl dimers. Surprisingly, in both photosystems I and II very similar "special" beta-beta dimers are encountered at practically the same distances from P700 and P680, respectively. In purple bacteria LH2, the B850 ring is composed exclusively of such tightly coupled beta-bacteriochlorophylls a. A statistical analysis of the close contacts with the protein matrix (<5 A) shows significant differences between the alpha- and beta-configurations and the subunit providing the axial magnesium ligand. The present study allows us to conclude that the excitation energy transfer in light-harvesting systems, from a peripheral antenna towards the reaction center, may follow preferential pathways due to structural reasons involving beta-ligated Chls.
Collapse
|