1
|
Wang Q, Geng S, Wang L, Wen Z, Sun X, Huang H. Bacterial mandelic acid degradation pathway and its application in biotechnology. J Appl Microbiol 2022; 133:273-286. [PMID: 35294082 DOI: 10.1111/jam.15529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/22/2021] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
Mandelic acid and its derivatives are an important class of chemical synthetic blocks, which is widely used in drug synthesis and stereochemistry research. In nature, mandelic acid degradation pathway has been widely identified and analyzed as a representative pathway of aromatic compounds degradation. The most studied mandelic acid degradation pathway from Pseudomonas putida consists of mandelate racemase, S-mandelate dehydrogenase, benzoylformate decarboxylase, benzaldehyde dehydrogenase and downstream benzoic acid degradation pathways. Because of the ability to catalyze various reactions of aromatic substrates, pathway enzymes have been widely used in biocatalysis, kinetic resolution, chiral compounds synthesis or construction of new metabolic pathways. In this paper, the physiological significance and the existing range of the mandelic acid degradation pathway were introduced first. Then each of the enzymes in the pathway is reviewed one by one, including the researches on enzymatic properties and the applications in biotechnology as well as efforts that have been made to modify the substrate specificity or improving catalytic activity by enzyme engineering to adapt different applications. The composition of the important metabolic pathway of bacterial mandelic acid degradation pathway as well as the researches and applications of pathway enzymes is summarized in this review for the first time.
Collapse
Affiliation(s)
- Qingzhuo Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Shanshan Geng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Lingru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Zhiqiang Wen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Qixia District, Nanjing, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Nauton L, Hecquet L, Théry V. QM/MM Study of Human Transketolase: Thiamine Diphosphate Activation Mechanism and Complete Catalytic Cycle. J Chem Inf Model 2021; 61:3502-3515. [PMID: 34161071 DOI: 10.1021/acs.jcim.1c00190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A computational model for human transketolase was proposed, showing that thiamine diphosphate activation was based on His110 in place of His481 reported in yeast transketolase. In addition, a complete catalytic reaction pathway was investigated using d-xylulose-5-phosphate and d-ribose-5-phosphate as substrates, showing at every step a perfect superimposition of our model with high-resolution crystallographic structures 3MOS, 4KXV, and 4KXX. This study shows that H2N4' of the active thiamine diphosphate "V form" no longer has a self-activating role but allows self-stabilization of the cofactor and of the Breslow intermediate. These advances in our knowledge of the human transketolase mechanism offer interesting prospects for the design of new drugs, this enzyme being involved in several diseases, and for a better understanding of the reactions catalyzed by transketolases from other sources.
Collapse
Affiliation(s)
- Lionel Nauton
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Laurence Hecquet
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| | - Vincent Théry
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, ICCF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Johnston ML, Freel Meyers CL. Revealing Donor Substrate-Dependent Mechanistic Control on DXPS, an Enzyme in Bacterial Central Metabolism. Biochemistry 2021; 60:929-939. [PMID: 33660509 PMCID: PMC8015787 DOI: 10.1021/acs.biochem.1c00019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/23/2021] [Indexed: 11/28/2022]
Abstract
The thiamin diphosphate-dependent enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) catalyzes the formation of DXP from pyruvate (donor) and d-glyceraldehyde 3-phosphate (d-GAP, acceptor). DXPS is essential in bacteria but absent in human metabolism, highlighting it as a potential antibacterial drug target. The enzyme possesses unique structural and mechanistic features that enable development of selective inhibition strategies and raise interesting questions about DXPS function in bacterial pathogens. DXPS distinguishes itself within the ThDP enzyme class by its exceptionally large active site and random sequential mechanism in DXP formation. In addition, DXPS displays catalytic promiscuity and relaxed acceptor substrate specificity, yet previous studies have suggested a preference for pyruvate as the donor substrate when d-GAP is the acceptor substrate. However, such donor specificity studies are potentially hindered by a lack of knowledge about specific, alternative donor-acceptor pairs. In this study, we exploited the promiscuous oxygenase activity of DXPS to uncover alternative donor substrates for DXPS. Characterization of glycolaldehyde, hydroxypyruvate, and ketobutyrate as donor substrates revealed differences in stabilization of enzyme-bound intermediates and acceptor substrate usage, illustrating the influence of the donor substrate on reaction mechanism and acceptor specificity. In addition, we found that DXPS prevents abortive acetyl-ThDP formation from a DHEThDP carbanion/enamine intermediate, similar to transketolase, supporting the potential physiological relevance of this intermediate on DXPS. Taken together, these results offer clues toward alternative roles for DXPS in bacterial pathogen metabolism.
Collapse
Affiliation(s)
- Melanie L. Johnston
- Department of Pharmacology and Molecular Sciences,
Johns Hopkins University School of Medicine, Baltimore,
Maryland 21205, United States
| | - Caren L. Freel Meyers
- Department of Pharmacology and Molecular Sciences,
Johns Hopkins University School of Medicine, Baltimore,
Maryland 21205, United States
| |
Collapse
|
4
|
Prejanò M, Medina FE, Fernandes PA, Russo N, Ramos MJ, Marino T. The Catalytic Mechanism of Human Transketolase. Chemphyschem 2019; 20:2881-2886. [PMID: 31489766 DOI: 10.1002/cphc.201900650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Indexed: 01/10/2023]
Abstract
We have computationally determined the catalytic mechanism of human transketolase (hTK) using a cluster model approach and density functional theory calculations. We were able to determine all the relevant structures, bringing solid evidences to the proposed experimental mechanism, and to add important detail to the structure of the transition states and the energy profile associated with catalysis. Furthermore, we have established the existence of a crucial intermediate of the catalytic cycle, in agreement with experiments. The calculated data brought new insights to hTK's catalytic mechanism, providing free-energy values for the chemical reaction, as well as adding atomistic detail to the experimental mechanism.
Collapse
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via Ponte Pietro Bucci, 87036, Arcavacata di Rende (CS), Italy
| | - Fabiola Estefany Medina
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Pedro Alexandrino Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Nino Russo
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via Ponte Pietro Bucci, 87036, Arcavacata di Rende (CS), Italy
| | - Maria Joao Ramos
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via Ponte Pietro Bucci, 87036, Arcavacata di Rende (CS), Italy
| |
Collapse
|
5
|
Bielecki M, Howe GW, Kluger R. Charge Dispersion and Its Effects on the Reactivity of Thiamin-Derived Breslow Intermediates. Biochemistry 2018; 57:3867-3872. [PMID: 29856601 DOI: 10.1021/acs.biochem.8b00463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzymic decarboxylation of 2-ketoacids proceeds via their C2-thiazolium adducts of thiamin diphosphate (ThDP). Loss of CO2 from these adducts leads to reactive species that are known as Breslow intermediates. The protein-bound adducts of the 2-ketoacids and ThDP are several orders of magnitude more reactive than the synthetic analogues in solution. Studies of enzymes are consistent with formulation of protein-bound Breslow intermediates with localized carbanionic character at the reactive C2α position, reflecting the charge-stabilized transition state that leads to this form. Our study reveals that nonenzymic decarboxylation of the related thiamin adducts proceeds to the alternative charge-dispersed enol form of the Breslow intermediate. These differences suggest that the greatly enhanced rate of decarboxylation of the precursors to Breslow intermediates in enzymes arises from maintenance of the carbanionic character at the position from which the carboxyl group departs, avoiding charge dispersion by stabilizing electrostatic interactions with the protein as formulated by Warshel. Applying Guthrie's "no-barrier" addition to Marcus theory also leads to the conclusion that maintaining the tetrahedral carbanion at C2α of the resulting adduct minimizes associated kinetic barriers by avoiding rehybridization as part of steps to and from the intermediate. Finally, maintenance of the reactive energetic carbanion agrees with the concepts of Albery and Knowles as the outcome of evolved enzymic processes.
Collapse
Affiliation(s)
- Michael Bielecki
- Davenport Chemistry Laboratories, Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Graeme W Howe
- Davenport Chemistry Laboratories, Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Ronald Kluger
- Davenport Chemistry Laboratories, Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| |
Collapse
|
6
|
Qin M, Song H, Dai X, Chan C, Chan W, Guo Z. Single‐Turnover Kinetics Reveal a Distinct Mode of Thiamine Diphosphate‐Dependent Catalysis in Vitamin K Biosynthesis. Chembiochem 2018; 19:1514-1522. [DOI: 10.1002/cbic.201800143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Mingming Qin
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| | - Haigang Song
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
- Present address: Division of Structural BiologyWellcome Trust Centre of Human GenomicsUniversity of Oxford Roosevelt Drive Oxford OX3 7BN UK
| | - Xin Dai
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| | - Chi‐Kong Chan
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
- Environmental Science ProgramThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| | - Wan Chan
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
- Environmental Science ProgramThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| | - Zhihong Guo
- Department of ChemistryThe Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong
| |
Collapse
|
7
|
Pallitsch K, Rogers MP, Andrews FH, Hammerschmidt F, McLeish MJ. Phosphonodifluoropyruvate is a mechanism-based inhibitor of phosphonopyruvate decarboxylase from Bacteroides fragilis. Bioorg Med Chem 2017; 25:4368-4374. [PMID: 28693916 DOI: 10.1016/j.bmc.2017.06.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/11/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
Abstract
Bacteroides fragilis, a human pathogen, helps in the formation of intra-abdominal abscesses and is involved in 90% of anaerobic peritoneal infections. Phosphonopyruvate decarboxylase (PnPDC), a thiamin diphosphate (ThDP)-dependent enzyme, plays a key role in the formation of 2-aminoethylphosphonate, a component of the cell wall of B. fragilis. As such PnPDC is a possible target for therapeutic intervention in this, and other phosphonate producing organisms. However, the enzyme is of more general interest as it appears to be an evolutionary forerunner to the decarboxylase family of ThDP-dependent enzymes. To date, PnPDC has proved difficult to crystallize and no X-ray structures are available. In the past we have shown that ThDP-dependent enzymes will often crystallize if the cofactor has been irreversibly inactivated. To explore this possibility, and the utility of inhibitors of phosphonate biosynthesis as potential antibiotics, we synthesized phosphonodifluoropyruvate (PnDFP) as a prospective mechanism-based inhibitor of PnPDC. Here we provide evidence that PnDFP indeed inactivates the enzyme, that the inactivation is irreversible, and is accompanied by release of fluoride ion, i.e., PnDFP bears all the hallmarks of a mechanism-based inhibitor. Unfortunately, the enzyme remains refractive to crystallization.
Collapse
Affiliation(s)
| | - Megan P Rogers
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, USA
| | - Forest H Andrews
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, USA
| | | | - Michael J McLeish
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, USA.
| |
Collapse
|
8
|
Mechanistic and Structural Insight to an Evolved Benzoylformate Decarboxylase with Enhanced Pyruvate Decarboxylase Activity. Catalysts 2016. [DOI: 10.3390/catal6120190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
9
|
Nauton L, Hélaine V, Théry V, Hecquet L. Insights into the Thiamine Diphosphate Enzyme Activation Mechanism: Computational Model for Transketolase Using a Quantum Mechanical/Molecular Mechanical Method. Biochemistry 2016; 55:2144-52. [PMID: 26998737 DOI: 10.1021/acs.biochem.5b00787] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose the first computational model for transketolase (TK), a thiamine diphosphate (ThDP)-dependent enzyme, using a quantum mechanical/molecular mechanical method on the basis of crystallographic TK structures from yeast and Escherichia coli, together with experimental kinetic data reported in the literature with wild-type and mutant TK. This model allowed us to define a new route for ThDP activation in the enzyme environment. We evidenced a strong interaction between ThDP and Glu418B of the TK active site, itself stabilized by Glu162A. The crucial point highlighted here is that deprotonation of ThDP C2 is not performed by ThDP N4' as reported in the literature, but by His481B, involving a HOH688A molecule bridge. Thus, ThDP N4' is converted from an amino form to an iminium form, ensuring the stabilization of the C2 carbanion or carbene. Finally, ThDP activation proceeds via an intermolecular process and not by an intramolecular one as reported in the literature. More generally, this proposed ThDP activation mechanism can be applied to some other ThDP-dependent enzymes and used to define the entire TK mechanism with donor and acceptor substrates more accurately.
Collapse
Affiliation(s)
- Lionel Nauton
- Université Clermont Auvergne, Université Blaise-Pascal , Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS , UMR 6296, ICCF, F-63178 Aubiere, France
| | - Virgil Hélaine
- Université Clermont Auvergne, Université Blaise-Pascal , Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS , UMR 6296, ICCF, F-63178 Aubiere, France
| | - Vincent Théry
- Université Clermont Auvergne, Université Blaise-Pascal , Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS , UMR 6296, ICCF, F-63178 Aubiere, France
| | - Laurence Hecquet
- Université Clermont Auvergne, Université Blaise-Pascal , Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France.,CNRS , UMR 6296, ICCF, F-63178 Aubiere, France
| |
Collapse
|
10
|
van Zyl LJ, Schubert WD, Tuffin MI, Cowan DA. Structure and functional characterization of pyruvate decarboxylase from Gluconacetobacter diazotrophicus. BMC STRUCTURAL BIOLOGY 2014; 14:21. [PMID: 25369873 PMCID: PMC4428508 DOI: 10.1186/s12900-014-0021-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/25/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Bacterial pyruvate decarboxylases (PDC) are rare. Their role in ethanol production and in bacterially mediated ethanologenic processes has, however, ensured a continued and growing interest. PDCs from Zymomonas mobilis (ZmPDC), Zymobacter palmae (ZpPDC) and Sarcina ventriculi (SvPDC) have been characterized and ZmPDC has been produced successfully in a range of heterologous hosts. PDCs from the Acetobacteraceae and their role in metabolism have not been characterized to the same extent. Examples include Gluconobacter oxydans (GoPDC), G. diazotrophicus (GdPDC) and Acetobacter pasteutrianus (ApPDC). All of these organisms are of commercial importance. RESULTS This study reports the kinetic characterization and the crystal structure of a PDC from Gluconacetobacter diazotrophicus (GdPDC). Enzyme kinetic analysis indicates a high affinity for pyruvate (K M 0.06 mM at pH 5), high catalytic efficiencies (1.3 • 10(6) M(-1) • s(-1) at pH 5), pHopt of 5.5 and Topt at 45°C. The enzyme is not thermostable (T½ of 18 minutes at 60°C) and the calculated number of bonds between monomers and dimers do not give clear indications for the relatively lower thermostability compared to other PDCs. The structure is highly similar to those described for Z. mobilis (ZmPDC) and A. pasteurianus PDC (ApPDC) with a rmsd value of 0.57 Å for Cα when comparing GdPDC to that of ApPDC. Indole-3-pyruvate does not serve as a substrate for the enzyme. Structural differences occur in two loci, involving the regions Thr341 to Thr352 and Asn499 to Asp503. CONCLUSIONS This is the first study of the PDC from G. diazotrophicus (PAL5) and lays the groundwork for future research into its role in this endosymbiont. The crystal structure of GdPDC indicates the enzyme to be evolutionarily closely related to homologues from Z. mobilis and A. pasteurianus and suggests strong selective pressure to keep the enzyme characteristics in a narrow range. The pH optimum together with reduced thermostability likely reflect the host organisms niche and conditions under which these properties have been naturally selected for. The lack of activity on indole-3-pyruvate excludes this decarboxylase as the enzyme responsible for indole acetic acid production in G. diazotrophicus.
Collapse
Affiliation(s)
- Leonardo J van Zyl
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town, South Africa.
| | - Wolf-Dieter Schubert
- Department of Biochemistry, University of Pretoria, 2 Lynnwood Road, Pretoria, 0002, South Africa.
| | - Marla I Tuffin
- Institute for Microbial Biotechnology and Metagenomics (IMBM), University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town, South Africa.
| | - Don A Cowan
- Department of Genetics, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
11
|
Jordan F, Nemeria NS. Progress in the experimental observation of thiamin diphosphate-bound intermediates on enzymes and mechanistic information derived from these observations. Bioorg Chem 2014; 57:251-262. [PMID: 25228115 DOI: 10.1016/j.bioorg.2014.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/11/2014] [Indexed: 11/26/2022]
Abstract
Thiamin diphosphate (ThDP), the vitamin B1 coenzyme is an excellent representative of coenzymes, which carry out electrophilic catalysis by forming a covalent complex with their substrates. The function of ThDP is to greatly increase the acidity of two carbon acids by stabilizing their conjugate bases, the ylide/carbene/C2-carbanion of the thiazolium ring and the C2α-carbanion/enamine, once the substrate binds to ThDP. In recent years, several ThDP-bound intermediates on such pathways have been characterized by both solution and solid-state methods. Prominent among these advances are X-ray crystallographic results identifying both oxidative and non-oxidative intermediates, rapid chemical quench followed by NMR detection of several intermediates which are stable under acidic conditions, solid-state NMR and circular dichroism detection of the states of ionization and tautomerization of the 4'-aminopyrimidine moiety of ThDP in some of the intermediates. These methods also enabled in some cases determination of the rate-limiting step in the complex series of steps. This review is an update of a review with the same title published by the authors in 2005 in this Journal. Much progress has been made in the intervening decade in the identification of the intermediates and their application to gain additional mechanistic insight.
Collapse
Affiliation(s)
- Frank Jordan
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | | |
Collapse
|
12
|
Patel H, Nemeria NS, Andrews FH, McLeish MJ, Jordan F. Identification of charge transfer transitions related to thiamin-bound intermediates on enzymes provides a plethora of signatures useful in mechanistic studies. Biochemistry 2014; 53:2145-52. [PMID: 24628377 PMCID: PMC3985856 DOI: 10.1021/bi4015743] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Identification
of enzyme-bound intermediates via their spectroscopic
signatures, which then allows direct monitoring of the kinetic fate
of these intermediates, poses a continuing challenge. As an electrophilic
covalent catalyst, the thiamin diphosphate (ThDP) coenzyme forms a
number of noncovalent and covalent intermediates along its reaction
pathways, and multiple UV–vis and circular dichroism (CD) bands
have been identified at Rutgers pertinent to several among them. These
electronic transitions fall into two classes: those for which the
conjugated system provides a reasonable guide to the observed λmax and others in which there is no corresponding conjugated
system and the observed CD bands are best ascribed to charge transfer
(CT) transitions. Herein is reported the reaction of four ThDP enzymes
with alternate substrates: (a) acetyl pyruvate, its methyl ester,
and fluoropyruvate, these providing the shortest side chains attached
at the thiazolium C2 atom and leading to CT bands with λmax values of >390 nm, not pertinent to any on-pathway conjugated
systems (estimated λmax values of <330 nm), and
(b) (E)-4-(4-chlorophenyl)-2-oxo-3-butenoic acid
displaying both a conjugated enamine (430 nm) and a CT transition
(480 nm). We suggest that the CT transitions result from an interaction
of the π bond on the ThDP C2 side chain as a donor, and the
positively charged thiazolium ring as an acceptor, and correspond
to covalent ThDP-bound intermediates. Time resolution of these bands
allows the rate constants for individual steps to be determined. These
CD methods can be applied to the entire ThDP superfamily of enzymes
and should find applications with other enzymes.
Collapse
Affiliation(s)
- Hetalben Patel
- Department of Chemistry, Rutgers, the State University of New Jersey , Newark, New Jersey 07102, United States
| | | | | | | | | |
Collapse
|
13
|
A dual conformation of the post-decarboxylation intermediate is associated with distinct enzyme states in mycobacterial KGD (α-ketoglutarate decarboxylase). Biochem J 2014; 457:425-34. [PMID: 24171907 DOI: 10.1042/bj20131142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
α-Ketoacid dehydrogenases are large multi-enzyme machineries that orchestrate the oxidative decarboxylation of α-ketoacids with the concomitant production of acyl-CoA and NADH. The first reaction, catalysed by α-ketoacid decarboxylases (E1 enzymes), needs a thiamine diphosphate cofactor and represents the overall rate-limiting step. Although the catalytic cycles of E1 from the pyruvate dehydrogenase (E1p) and branched-chain α-ketoacid dehydrogenase (E1b) complexes have been elucidated, little structural information is available on E1o, the first component of the α-ketoglutarate dehydrogenase complex, despite the central role of this complex at the branching point between the TCA (tricarboxylic acid) cycle and glutamate metabolism. In the present study, we provide structural evidence that MsKGD, the E1o (α-ketoglutarate decarboxylase) from Mycobacterium smegmatis, shows two conformations of the post-decarboxylation intermediate, each one associated with a distinct enzyme state. We also provide an overall picture of the catalytic cycle, reconstructed by either crystallographic snapshots or modelling. The results of the present study show that the conformational change leading the enzyme from the initial (early) to the late state, although not required for decarboxylation, plays an essential role in catalysis and possibly in the regulation of mycobacterial E1o.
Collapse
|
14
|
Jordan F, Patel H. Catalysis in Enzymatic Decarboxylations: Comparison of Selected Cofactor-dependent and Cofactor-independent Examples. ACS Catal 2013; 3:1601-1617. [PMID: 23914308 DOI: 10.1021/cs400272x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review is focused on three types of enzymes decarboxylating very different substrates: (1) Thiamin diphosphate (ThDP)-dependent enzymes reacting with 2-oxo acids; (2) Pyridoxal phosphate (PLP)-dependent enzymes reacting with α-amino acids; and (3) An enzyme with no known co-factors, orotidine 5'-monophosphate decarboxylase (OMPDC). While the first two classes have been much studied for many years, during the past decade studies of both classes have revealed novel mechanistic insight challenging accepted understanding. The enzyme OMPDC has posed a challenge to the enzymologist attempting to explain a 1017-fold rate acceleration in the absence of cofactors or even metal ions. A comparison of the available evidence on the three types of decarboxylases underlines some common features and more differences. The field of decarboxylases remains an interesting and challenging one for the mechanistic enzymologist notwithstanding the large amount of information already available.
Collapse
Affiliation(s)
- Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, 73 Warren Street, Newark,
New Jersey 07102, United States
| | - Hetalben Patel
- Department of Chemistry, Rutgers, The State University of New Jersey, 73 Warren Street, Newark,
New Jersey 07102, United States
| |
Collapse
|
15
|
Substrate specificity in thiamin diphosphate-dependent decarboxylases. Bioorg Chem 2011; 43:26-36. [PMID: 22245019 DOI: 10.1016/j.bioorg.2011.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/20/2022]
Abstract
Thiamin diphosphate (ThDP) is the biologically active form of vitamin B(1), and ThDP-dependent enzymes are found in all forms of life. The catalytic mechanism of this family requires the formation of a common intermediate, the 2α-carbanion-enamine, regardless of whether the enzyme is involved in C-C bond formation or breakdown, or even formation of C-N, C-O and C-S bonds. This demands that the enzymes must screen substrates prior to, and/or after, formation of the common intermediate. This review is focused on the group for which the second step is the protonation of the 2α-carbanion, i.e., the ThDP-dependent decarboxylases. Based on kinetic data, sequence/structure alignments and mutagenesis studies the factors involved in substrate specificity have been identified.
Collapse
|
16
|
Characterization of recombinant thiamine diphosphate-dependent phosphonopyruvate decarboxylase from Streptomyces viridochromogenes Tü494. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2009.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Yep A, McLeish MJ. Engineering the Substrate Binding Site of Benzoylformate Decarboxylase. Biochemistry 2009; 48:8387-95. [DOI: 10.1021/bi9008402] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alejandra Yep
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109
| | - Michael J. McLeish
- College of Pharmacy, University of Michigan, Ann Arbor, Michigan 48109
- Department of Chemistry and Chemical Biology, IUPUI, Indianapolis, Indiana 46202
| |
Collapse
|
18
|
Nemeria NS, Chakraborty S, Balakrishnan A, Jordan F. Reaction mechanisms of thiamin diphosphate enzymes: defining states of ionization and tautomerization of the cofactor at individual steps. FEBS J 2009; 276:2432-46. [PMID: 19476485 DOI: 10.1111/j.1742-4658.2009.06964.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We summarize the currently available information regarding the state of ionization and tautomerization of the 4'-aminopyrimidine ring of the thiamine diphosphate on enzymes requiring this coenzyme. This coenzyme forms a series of covalent intermediates with its substrates as an electrophilic catalyst, and the coenzyme itself also carries out intramolecular proton transfers, which is virtually unprecedented in coenzyme chemistry. An understanding of the state of ionization and tautomerization of the 4'-aminopyrimidine ring in each of these intermediates provides important details about proton movements during catalysis. CD spectroscopy, both steady-state and time-resolved, has proved crucial for obtaining this information because no other experimental method has provided such atomic detail so far.
Collapse
Affiliation(s)
- Natalia S Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ, USA.
| | | | | | | |
Collapse
|
19
|
Jordan F, Nemeria NS. Experimental observation of thiamin diphosphate-bound intermediates on enzymes and mechanistic information derived from these observations. Bioorg Chem 2005; 33:190-215. [PMID: 15888311 PMCID: PMC4189838 DOI: 10.1016/j.bioorg.2005.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 02/08/2005] [Accepted: 02/10/2005] [Indexed: 11/27/2022]
Abstract
Thiamin diphosphate (ThDP), the vitamin B1 coenzyme, is an excellent representative of coenzymes, which carry out electrophilic catalysis by forming a covalent complex with their substrates. The function of ThDP is to greatly increase the acidity of two carbon acids by stabilizing their conjugate bases, the ylide/C2-carbanion of the thiazolium ring and the C2alpha-carbanion (or enamine) once the substrate binds to ThDP. In recent years, several ThDP-bound intermediates on such pathways have been characterized by both solution and solid-state (X-ray) methods. Prominent among these advances are X-ray crystallographic results identifying both oxidative and non-oxidative intermediates, rapid chemical quench followed by NMR detection of a several intermediates which are stable under acidic conditions, and circular dichroism detection of the 1',4'-imino tautomer of ThDP in some of the intermediates. Some of these methods also enable the investigator to determine the rate-limiting step in the complex series of steps.
Collapse
Affiliation(s)
- Frank Jordan
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA
| | | |
Collapse
|