1
|
Weissman B, Ekesan Ş, Lin HC, Gardezi S, Li NS, Giese TJ, McCarthy E, Harris ME, York DM, Piccirilli JA. Dissociative Transition State in Hepatitis Delta Virus Ribozyme Catalysis. J Am Chem Soc 2023; 145:2830-2839. [PMID: 36706353 PMCID: PMC10112047 DOI: 10.1021/jacs.2c10079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Ribonucleases and small nucleolytic ribozymes are both able to catalyze RNA strand cleavage through 2'-O-transphosphorylation, provoking the question of whether protein and RNA enzymes facilitate mechanisms that pass through the same or distinct transition states. Here, we report the primary and secondary 18O kinetic isotope effects for hepatitis delta virus ribozyme catalysis that reveal a dissociative, metaphosphate-like transition state in stark contrast to the late, associative transition states observed for reactions catalyzed by specific base, Zn2+ ions, or ribonuclease A. This new information provides evidence for a discrete ribozyme active site design that modulates the RNA cleavage pathway to pass through an altered transition state.
Collapse
Affiliation(s)
- Benjamin Weissman
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Hsuan-Chun Lin
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Shahbaz Gardezi
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Nan-Sheng Li
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| | - Timothy J Giese
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Erika McCarthy
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Joseph A Piccirilli
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Rumaling MI, Chee FP, Bade A, Hasbi NH, Daim S, Juhim F, Duinong M, Rasmidi R. Methods of optical spectroscopy in detection of virus in infected samples: A review. Heliyon 2022; 8:e10472. [PMID: 36060463 PMCID: PMC9422564 DOI: 10.1016/j.heliyon.2022.e10472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/05/2022] [Accepted: 08/23/2022] [Indexed: 01/08/2023] Open
Affiliation(s)
- Muhammad Izzuddin Rumaling
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Fuei Pien Chee
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
- Corresponding author.
| | - Abdullah Bade
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Nur Hasshima Hasbi
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Sylvia Daim
- Faculty of Medicine and Health Science, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Floressy Juhim
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Mivolil Duinong
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| | - Rosfayanti Rasmidi
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA Sabah Branch, Kota Kinabalu Campus, 88997 Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
3
|
Ekesan Ş, York DM. Dynamical ensemble of the active state and transition state mimic for the RNA-cleaving 8-17 DNAzyme in solution. Nucleic Acids Res 2019; 47:10282-10295. [PMID: 31511899 PMCID: PMC6821293 DOI: 10.1093/nar/gkz773] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 02/01/2023] Open
Abstract
We perform molecular dynamics simulations, based on recent crystallographic data, on the 8-17 DNAzyme at four states along the reaction pathway to determine the dynamical ensemble for the active state and transition state mimic in solution. A striking finding is the diverse roles played by Na+ and Pb2+ ions in the electrostatically strained active site that impact all four fundamental catalytic strategies, and share commonality with some features recently inferred for naturally occurring hammerhead and pistol ribozymes. The active site Pb2+ ion helps to stabilize in-line nucleophilic attack, provides direct electrostatic transition state stabilization, and facilitates leaving group departure. A conserved guanine residue is positioned to act as the general base, and is assisted by a bridging Na+ ion that tunes the pKa and facilitates in-line fitness. The present work provides insight into how DNA molecules are able to solve the RNA-cleavage problem, and establishes functional relationships between the mechanism of these engineered DNA enzymes with their naturally evolved RNA counterparts. This adds valuable information to our growing body of knowledge on general mechanisms of phosphoryl transfer reactions catalyzed by RNA, proteins and DNA.
Collapse
Affiliation(s)
- Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Lu J, Koo SC, Weissman BP, Harris ME, Li NS, Piccirilli JA. Evidence That Nucleophile Deprotonation Exceeds Bond Formation in the HDV Ribozyme Transition State. Biochemistry 2018; 57:3465-3472. [PMID: 29733591 DOI: 10.1021/acs.biochem.8b00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Steric constraints imposed by the active sites of protein and RNA enzymes pose major challenges to the investigation of structure-function relationships within these systems. As a strategy to circumvent such constraints in the HDV ribozyme, we have synthesized phosphoramidites from propanediol derivatives and incorporated them at the 5'-termini of RNA and DNA oligonucleotides to generate a series of novel substrates with nucleophiles perturbed electronically through geminal fluorination. In nonenzymatic, hydroxide-catalyzed intramolecular transphosphorylation of the DNA substrates, pH-rate profiles revealed that fluorine substitution reduces the maximal rate and the kinetic p Ka, consistent with the expected electron-withdrawing effect. In HDV ribozyme reactions, we observed that the RNA substrates undergo transphosphorylation relatively efficiently, suggesting that the conformational constraints imposed by a ribofuranose ring are not strictly required for ribozyme catalysis. In contrast to the nonenzymatic reactions, however, substrate fluorination modestly increases the ribozyme reaction rate, consistent with a mechanism in which (1) the 2'-hydroxyl nucleophile exists predominantly in its neutral, protonated form in the ground state and (2) the 2'-hydroxyl bears some negative charge in the rate-determining step, consistent with a transition state in which the extent of 2'-OH deprotonation exceeds the extent of P-O bond formation.
Collapse
Affiliation(s)
- Jun Lu
- Department of Biochemistry and Molecular Biology and Department of Chemistry , University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| | - Selene C Koo
- Department of Biochemistry and Molecular Biology and Department of Chemistry , University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| | - Benjamin P Weissman
- Department of Biochemistry and Molecular Biology and Department of Chemistry , University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| | - Michael E Harris
- Department of Chemistry , University of Florida , 214 Leigh Hall , Gainesville , Florida 32611 , United States
| | - Nan-Sheng Li
- Department of Biochemistry and Molecular Biology and Department of Chemistry , University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| | - Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology and Department of Chemistry , University of Chicago , 929 East 57th Street , Chicago , Illinois 60637 , United States
| |
Collapse
|
5
|
Kolev SK, Petkov PS, Rangelov MA, Trifonov DV, Milenov TI, Vayssilov GN. Interaction of Na+, K+, Mg2+ and Ca2+ counter cations with RNA. Metallomics 2018; 10:659-678. [DOI: 10.1039/c8mt00043c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Data on the location of alkaline and alkaline earth ions at RNA from crystallography, spectroscopy and computational modeling are reviewed.
Collapse
Affiliation(s)
- Stefan K. Kolev
- Acad. E. Djakov Institute of Electronics
- Bulgarian Academy of Sciences
- 1784 Sofia
- Bulgaria
| | - Petko St. Petkov
- Faculty of Chemistry and Pharmacy
- University of Sofia
- 1126 Sofia
- Bulgaria
| | - Miroslav A. Rangelov
- Laboratory of BioCatalysis
- Institute of Organic Chemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| | | | - Teodor I. Milenov
- Acad. E. Djakov Institute of Electronics
- Bulgarian Academy of Sciences
- 1784 Sofia
- Bulgaria
| | | |
Collapse
|
6
|
Bartova S, Pechlaner M, Donghi D, Sigel RKO. Studying metal ion binding properties of a three-way junction RNA by heteronuclear NMR. J Biol Inorg Chem 2016; 21:319-28. [PMID: 26880094 DOI: 10.1007/s00775-016-1341-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/25/2016] [Indexed: 10/22/2022]
Abstract
Self-splicing group II introns are highly structured RNA molecules, containing a characteristic secondary and catalytically active tertiary structure, which is formed only in the presence of Mg(II). Mg(II) initiates the first folding step governed by the κζ element within domain 1 (D1κζ). We recently solved the NMR structure of D1κζ derived from the mitochondrial group II intron ribozyme Sc.ai5γ and demonstrated that Mg(II) is essential for its stabilization. Here, we performed a detailed multinuclear NMR study of metal ion interactions with D1κζ, using Cd(II) and cobalt(III)hexammine to probe inner- and outer-sphere coordination of Mg(II) and thus to better characterize its binding sites. Accordingly, we mapped (1)H, (15)N, (13)C, and (31)P spectral changes upon addition of different amounts of the metal ions. Our NMR data reveal a Cd(II)-assisted macrochelate formation at the 5'-end triphosphate, a preferential Cd(II) binding to guanines in a helical context, an electrostatic interaction in the ζ tetraloop receptor and various metal ion interactions in the GAAA tetraloop and κ element. These results together with our recently published data on Mg(II) interaction provide a much better understanding of Mg(II) binding to D1κζ, and reveal how intricate and complex metal ion interactions can be.
Collapse
Affiliation(s)
- Simona Bartova
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic
| | - Maria Pechlaner
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Institute for Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | - Daniela Donghi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
7
|
Lee TS, Radak BK, Harris ME, York DM. A Two-Metal-Ion-Mediated Conformational Switching Pathway for HDV Ribozyme Activation. ACS Catal 2016; 6:1853-1869. [PMID: 27774349 DOI: 10.1021/acscatal.5b02158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA enzymes serve as a potentially powerful platform from which to design catalysts and engineer new biotechnology. A fundamental understanding of these systems provides insight to guide design. The hepatitis delta virus ribozyme (HDVr) is a small, self-cleaving RNA motif widely distributed in nature, that has served as a paradigm for understanding basic principles of RNA catalysis. Nevertheless, questions remain regarding the precise roles of divalent metal ions and key nucleotides in catalysis. In an effort to establish a reaction mechanism model consistent with available experimental data, we utilize molecular dynamics simulations to explore different conformations and metal ion binding modes along the HDVr reaction path. Building upon recent crystallographic data, our results provide a dynamic model of the HDVr reaction mechanism involving a conformational switch between multiple non-canonical G25:U20 base pair conformations in the active site. These local nucleobase dynamics play an important role in catalysis by modulating the metal binding environments of two Mg2+ ions that support catalysis at different steps of the reaction pathway. The first ion plays a structural role by inducing a base pair flip necessary to obtain the catalytic fold in which C75 moves towards to the scissile phosphate in the active site. Ejection of this ion then permits a second ion to bind elsewhere in the active site and facilitate nucleophile activation. The simulations collectively describe a mechanistic scenario that is consistent with currently available experimental data from crystallography, phosphorothioate substitutions, and chemical probing studies. Avenues for further experimental verification are suggested.
Collapse
Affiliation(s)
- Tai-Sung Lee
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Brian K. Radak
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
- Argonne National Laboratory, Argonne, Illinois 60439, United State
| | - Michael E. Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, United States
| | - Darrin M. York
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
8
|
Sripathi KN, Banáš P, Réblová K, Šponer J, Otyepka M, Walter NG. Wobble pairs of the HDV ribozyme play specific roles in stabilization of active site dynamics. Phys Chem Chem Phys 2015; 17:5887-900. [PMID: 25631765 DOI: 10.1039/c4cp05083e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hepatitis delta virus (HDV) is the only known human pathogen whose genome contains a catalytic RNA motif (ribozyme). The overall architecture of the HDV ribozyme is that of a double-nested pseudoknot, with two GU pairs flanking the active site. Although extensive studies have shown that mutation of either wobble results in decreased catalytic activity, little work has focused on linking these mutations to specific structural effects on catalytic fitness. Here we use molecular dynamics simulations based on an activated structure to probe the active site dynamics as a result of wobble pair mutations. In both wild-type and mutant ribozymes, the in-line fitness of the active site (as a measure of catalytic proficiency) strongly depends on the presence of a C75(N3H3+)N1(O5') hydrogen bond, which positions C75 as the general acid for the reaction. Our mutational analyses show that each GU wobble supports catalytically fit conformations in distinct ways; the reverse G25U20 wobble promotes high in-line fitness, high occupancy of the C75(N3H3+)G1(O5') general-acid hydrogen bond and stabilization of the G1U37 wobble, while the G1U37 wobble acts more locally by stabilizing high in-line fitness and the C75(N3H3+)G1(O5') hydrogen bond. We also find that stable type I A-minor and P1.1 hydrogen bonding above and below the active site, respectively, prevent local structural disorder from spreading and disrupting global conformation. Taken together, our results define specific, often redundant architectural roles for several structural motifs of the HDV ribozyme active site, expanding the known roles of these motifs within all HDV-like ribozymes and other structured RNAs.
Collapse
Affiliation(s)
- Kamali N Sripathi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | | | | | | | | | | |
Collapse
|
9
|
Radak BK, Lee TS, Harris ME, York DM. Assessment of metal-assisted nucleophile activation in the hepatitis delta virus ribozyme from molecular simulation and 3D-RISM. RNA (NEW YORK, N.Y.) 2015; 21:1566-1577. [PMID: 26170378 PMCID: PMC4536318 DOI: 10.1261/rna.051466.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
The hepatitis delta virus ribozyme is an efficient catalyst of RNA 2'-O-transphosphorylation and has emerged as a key experimental system for identifying and characterizing fundamental features of RNA catalysis. Recent structural and biochemical data have led to a proposed mechanistic model whereby an active site Mg(2+) ion facilitates deprotonation of the O2' nucleophile, and a protonated cytosine residue (C75) acts as an acid to donate a proton to the O5' leaving group as noted in a previous study. This model assumes that the active site Mg(2+) ion forms an inner-sphere coordination with the O2' nucleophile and a nonbridging oxygen of the scissile phosphate. These contacts, however, are not fully resolved in the crystal structure, and biochemical data are not able to unambiguously exclude other mechanistic models. In order to explore the feasibility of this model, we exhaustively mapped the free energy surfaces with different active site ion occupancies via quantum mechanical/molecular mechanical (QM/MM) simulations. We further incorporate a three-dimensional reference interaction site model for the solvated ion atmosphere that allows these calculations to consider not only the rate associated with the chemical steps, but also the probability of observing the system in the presumed active state with the Mg(2+) ion bound. The QM/MM results predict that a pathway involving metal-assisted nucleophile activation is feasible based on the rate-controlling transition state barrier departing from the presumed metal-bound active state. However, QM/MM results for a similar pathway in the absence of Mg(2+) are not consistent with experimental data, suggesting that a structural model in which the crystallographically determined Mg(2+) is simply replaced with Na(+) is likely incorrect. It should be emphasized, however, that these results hinge upon the assumption of the validity of the presumed Mg(2+)-bound starting state, which has not yet been definitively verified experimentally, nor explored in depth computationally. Thus, further experimental and theoretical study is needed such that a consensus view of the catalytic mechanism emerges.
Collapse
Affiliation(s)
- Brian K Radak
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, USA
| | - Tai-Sung Lee
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA
| | - Michael E Harris
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | - Darrin M York
- Center for Integrative Proteomics Research and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854-8076, USA
| |
Collapse
|
10
|
Panteva MT, Dissanayake T, Chen H, Radak BK, Kuechler ER, Giambaşu GM, Lee TS, York DM. Multiscale methods for computational RNA enzymology. Methods Enzymol 2015; 553:335-74. [PMID: 25726472 PMCID: PMC4739856 DOI: 10.1016/bs.mie.2014.10.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNA catalysis is of fundamental importance to biology and yet remains ill-understood due to its complex nature. The multidimensional "problem space" of RNA catalysis includes both local and global conformational rearrangements, changes in the ion atmosphere around nucleic acids and metal ion binding, dependence on potentially correlated protonation states of key residues, and bond breaking/forming in the chemical steps of the reaction. The goal of this chapter is to summarize and apply multiscale modeling methods in an effort to target the different parts of the RNA catalysis problem space while also addressing the limitations and pitfalls of these methods. Classical molecular dynamics simulations, reference interaction site model calculations, constant pH molecular dynamics (CpHMD) simulations, Hamiltonian replica exchange molecular dynamics, and quantum mechanical/molecular mechanical simulations will be discussed in the context of the study of RNA backbone cleavage transesterification. This reaction is catalyzed by both RNA and protein enzymes, and here we examine the different mechanistic strategies taken by the hepatitis delta virus ribozyme and RNase A.
Collapse
Affiliation(s)
- Maria T Panteva
- Center for Integrative Proteomics Research, BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Thakshila Dissanayake
- Center for Integrative Proteomics Research, BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Haoyuan Chen
- Center for Integrative Proteomics Research, BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Brian K Radak
- Center for Integrative Proteomics Research, BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Erich R Kuechler
- Center for Integrative Proteomics Research, BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - George M Giambaşu
- Center for Integrative Proteomics Research, BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Tai-Sung Lee
- Center for Integrative Proteomics Research, BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA
| | - Darrin M York
- Center for Integrative Proteomics Research, BioMaPS Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey, USA.
| |
Collapse
|
11
|
Sripathi KN, Tay WW, Banáš P, Otyepka M, Šponer J, Walter NG. Disparate HDV ribozyme crystal structures represent intermediates on a rugged free-energy landscape. RNA (NEW YORK, N.Y.) 2014; 20:1112-28. [PMID: 24854621 PMCID: PMC4114689 DOI: 10.1261/rna.044982.114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/16/2014] [Indexed: 06/03/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme is a member of the class of small, self-cleaving catalytic RNAs found in a wide range of genomes from HDV to human. Both pre- and post-catalysis (precursor and product) crystal structures of the cis-acting genomic HDV ribozyme have been determined. These structures, together with extensive solution probing, have suggested that a significant conformational change accompanies catalysis. A recent crystal structure of a trans-acting precursor, obtained at low pH and by molecular replacement from the previous product conformation, conforms to the product, raising the possibility that it represents an activated conformer past the conformational change. Here, using fluorescence resonance energy transfer (FRET), we discovered that cleavage of this ribozyme at physiological pH is accompanied by a structural lengthening in magnitude comparable to previous trans-acting HDV ribozymes. Conformational heterogeneity observed by FRET in solution appears to have been removed upon crystallization. Analysis of a total of 1.8 µsec of molecular dynamics (MD) simulations showed that the crystallographically unresolved cleavage site conformation is likely correctly modeled after the hammerhead ribozyme, but that crystal contacts and the removal of several 2'-oxygens near the scissile phosphate compromise catalytic in-line fitness. A cis-acting version of the ribozyme exhibits a more dynamic active site, while a G-1 residue upstream of the scissile phosphate favors poor fitness, allowing us to rationalize corresponding changes in catalytic activity. Based on these data, we propose that the available crystal structures of the HDV ribozyme represent intermediates on an overall rugged RNA folding free-energy landscape.
Collapse
Affiliation(s)
- Kamali N. Sripathi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1065, USA
| | - Wendy W. Tay
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | - Pavel Banáš
- Regional Centre of Advance Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advance Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University, 771 46 Olomouc, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic
- Masaryk University, Campus Bohunice, 625 00 Brno, Czech Republic
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| |
Collapse
|
12
|
Riccitelli NJ, Delwart E, Lupták A. Identification of minimal HDV-like ribozymes with unique divalent metal ion dependence in the human microbiome. Biochemistry 2014; 53:1616-26. [PMID: 24555915 DOI: 10.1021/bi401717w] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
HDV-like self-cleaving ribozymes have been found in a wide variety of organisms, implicated in diverse biological processes, and their activity typically shows a strong divalent metal dependence, but little metal specificity. Recent studies suggested that very short variants of these ribozymes exist in nature, but their distribution and biochemical properties have not been established. To map out the distribution of small HDV-like ribozymes, the drz-Spur-3 sequence was minimized to yield a core construct for structure-based bioinformatic searches. These searches revealed several microbial ribozymes, particularly in the human microbiome. Kinetic profile of the smallest ribozyme revealed two distinct metal binding sites, only one of which promotes fast catalysis. Furthermore, this ribozyme showed markedly reduced activity in Ca(2+), even in the presence of physiological Mg(2+) concentrations. Our study substantially expands the number of microbial HDV-like ribozymes and provides an example of cleavage regulation by divalent metals.
Collapse
Affiliation(s)
- Nathan J Riccitelli
- Department of Chemistry, ∥Department of Pharmaceutical Sciences, and ⊥Department of Molecular Biology and Biochemistry, University of California-Irvine , Irvine, California 92697, United States
| | | | | |
Collapse
|
13
|
Bonneau E, Legault P. NMR localization of divalent cations at the active site of the Neurospora VS ribozyme provides insights into RNA-metal-ion interactions. Biochemistry 2014; 53:579-90. [PMID: 24364590 PMCID: PMC3906864 DOI: 10.1021/bi401484a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Metal cations represent key elements of RNA structure and function. In the Neurospora VS ribozyme, metal cations play diverse roles; they are important for substrate recognition, formation of the active site, and shifting the pKa's of two key nucleobases that contribute to the general acid-base mechanism. Recently, we determined the NMR structure of the A730 loop of the VS ribozyme active site (SLVI) that contributes the general acid (A756) in the enzymatic mechanism of the cleavage reaction. Our studies showed that magnesium (Mg(2+)) ions are essential to stabilize the formation of the S-turn motif within the A730 loop that exposes the A756 nucleobase for catalysis. In this article, we extend these NMR investigations by precisely mapping the Mg(2+)-ion binding sites using manganese-induced paramagnetic relaxation enhancement and cadmium-induced chemical-shift perturbation of phosphorothioate RNAs. These experiments identify five Mg(2+)-ion binding sites within SLVI. Four Mg(2+) ions in SLVI are associated with known RNA structural motifs, including the G-U wobble pair and the GNRA tetraloop, and our studies reveal novel insights about Mg(2+) ion binding to these RNA motifs. Interestingly, one Mg(2+) ion is specifically associated with the S-turn motif, confirming its structural role in the folding of the A730 loop. This Mg(2+) ion is likely important for formation of the active site and may play an indirect role in catalysis.
Collapse
Affiliation(s)
- Eric Bonneau
- Département de Biochimie et Médecine Moléculaire, Université de Montréal , C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | |
Collapse
|
14
|
Thaplyal P, Ganguly A, Golden BL, Hammes-Schiffer S, Bevilacqua PC. Thio effects and an unconventional metal ion rescue in the genomic hepatitis delta virus ribozyme. Biochemistry 2013; 52:6499-514. [PMID: 24001219 DOI: 10.1021/bi4000673] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Metal ion and nucleobase catalysis are important for ribozyme mechanism, but the extent to which they cooperate is unclear. A crystal structure of the hepatitis delta virus (HDV) ribozyme suggested that the pro-RP oxygen at the scissile phosphate directly coordinates a catalytic Mg(2+) ion and is within hydrogen bonding distance of the amine of the general acid C75. Prior studies of the genomic HDV ribozyme, however, showed neither a thio effect nor metal ion rescue using Mn(2+). Here, we combine experiment and theory to explore phosphorothioate substitutions at the scissile phosphate. We report significant thio effects at the scissile phosphate and metal ion rescue with Cd(2+). Reaction profiles with an SP-phosphorothioate substitution are indistinguishable from those of the unmodified substrate in the presence of Mg(2+) or Cd(2+), supporting the idea that the pro-SP oxygen does not coordinate metal ions. The RP-phosphorothioate substitution, however, exhibits biphasic kinetics, with the fast-reacting phase displaying a thio effect of up to 5-fold and the slow-reacting phase displaying a thio effect of ~1000-fold. Moreover, the fast- and slow-reacting phases give metal ion rescues in Cd(2+) of up to 10- and 330-fold, respectively. The metal ion rescues are unconventional in that they arise from Cd(2+) inhibiting the oxo substrate but not the RP substrate. This metal ion rescue suggests a direct interaction of the catalytic metal ion with the pro-RP oxygen, in line with experiments with the antigenomic HDV ribozyme. Experiments without divalent ions, with a double mutant that interferes with Mg(2+) binding, or with C75 deleted suggest that the pro-RP oxygen plays at most a redundant role in positioning C75. Quantum mechanical/molecular mechanical (QM/MM) studies indicate that the metal ion contributes to catalysis by interacting with both the pro-RP oxygen and the nucleophilic 2'-hydroxyl, supporting the experimental findings.
Collapse
Affiliation(s)
- Pallavi Thaplyal
- Department of Chemistry and Center for RNA Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | | | | | | | | |
Collapse
|
15
|
Kolev S, Petkov PS, Rangelov M, Vayssilov GN. Ab initio molecular dynamics of Na⁺ and Mg²⁺ countercations at the backbone of RNA in water solution. ACS Chem Biol 2013; 8:1576-89. [PMID: 23642311 DOI: 10.1021/cb300463h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The interactions between sodium or magnesium ions and phosphate groups of the RNA backbone represented as dinucleotide fragments in water solution have been studied using ab initio Born-Oppenheimer molecular dynamics. All systems have been simulated at 300 and 320 K. Sodium ions have mobility higher than that of the magnesium ions and readily change their position with respect to the phosphate groups, from directly bonded to completely solvated state, with a rough estimate of the lifetime of bonded Na(+) of about 20-30 ps. The coordination number of the sodium ions frequently changes in irregular intervals ranging from several femtoseconds to about 10 ps with the most frequently encountered coordination number five, followed by six. The magnesium ion is stable both as directly bonded to an oxygen atom from the phosphate group and completely solvated by water. In both states the Mg(2+) ion has exactly six oxygen atoms in the first coordination shell; moreover, during the whole simulation of more than 100 ps no exchange of ligand in the first coordination shells has been observed. Solvation of the terminal phosphate oxygen atoms by water molecules forming hydrogen bonds in different locations of the ions is also discussed. The stability of the system containing sodium ions essentially does not depend on the position of the ions with respect to the phosphate groups.
Collapse
Affiliation(s)
- Stefan Kolev
- Faculty of Chemistry and Pharmacy, University of Sofia, Boulevard James Bouchier 1, 1126 Sofia, Bulgaria
| | - Petko St. Petkov
- Faculty of Chemistry and Pharmacy, University of Sofia, Boulevard James Bouchier 1, 1126 Sofia, Bulgaria
| | - Miroslav Rangelov
- Laboratory of BioCatalysis, Institute of Organic Chemistry, Bulgarian Academy of Sciences, Str. Acad. G. Bontchev, Bl. 9, 1113 Sofia, Bulgaria
| | - Georgi N. Vayssilov
- Faculty of Chemistry and Pharmacy, University of Sofia, Boulevard James Bouchier 1, 1126 Sofia, Bulgaria
| |
Collapse
|
16
|
Chen J, Ganguly A, Miswan Z, Hammes-Schiffer S, Bevilacqua PC, Golden BL. Identification of the catalytic Mg²⁺ ion in the hepatitis delta virus ribozyme. Biochemistry 2013; 52:557-67. [PMID: 23311293 DOI: 10.1021/bi3013092] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hepatitis delta virus ribozyme catalyzes an RNA cleavage reaction using a catalytic nucleobase and a divalent metal ion. The catalytic base, C75, serves as a general acid and has a pK(a) shifted toward neutrality. Less is known about the role of metal ions in the mechanism. A recent crystal structure of the precleavage ribozyme identified a Mg²⁺ ion that interacts through its partial hydration sphere with the G25·U20 reverse wobble. In addition, this Mg²⁺ ion is in position to directly coordinate the nucleophile, the 2'-hydroxyl of U(-1), suggesting it can serve as a Lewis acid to facilitate deprotonation of the 2'-hydroxyl. To test the role of the active site Mg²⁺ ion, we replaced the G25·U20 reverse wobble with an isosteric A25·C20 reverse wobble. This change was found to significantly reduce the negative potential at the active site, as supported by electrostatics calculations, suggesting that active site Mg²⁺ binding could be adversely affected by the mutation. The kinetic analysis and molecular dynamics of the A25·C20 double mutant suggest that this variant stably folds into an active structure. However, pH-rate profiles of the double mutant in the presence of Mg²⁺ are inverted relative to the profiles for the wild-type ribozyme, suggesting that the A25·C20 double mutant has lost the active site metal ion. Overall, these studies support a model in which the partially hydrated Mg²⁺ positioned at the G25·U20 reverse wobble is catalytic and could serve as a Lewis acid, a Brønsted base, or both to facilitate deprotonation of the nucleophile.
Collapse
Affiliation(s)
- Ji Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
17
|
Lévesque D, Reymond C, Perreault JP. Characterization of the trans Watson-Crick GU base pair located in the catalytic core of the antigenomic HDV ribozyme. PLoS One 2012; 7:e40309. [PMID: 22768274 PMCID: PMC3386971 DOI: 10.1371/journal.pone.0040309] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/04/2012] [Indexed: 01/09/2023] Open
Abstract
The HDV ribozyme’s folding pathway is, by far, the most complex folding
pathway elucidated to date for a small ribozyme. It includes 6 different steps
that have been shown to occur before the chemical cleavage. It is likely that
other steps remain to be discovered. One of the most critical of these unknown
steps is the formation of the trans Watson-Crick GU base
pair within loop III. The U23 and G28 nucleotides that
form this base pair are perfectly conserved in all natural variants of the
HDV ribozyme, and therefore are considered as being part of the signature
of HDV-like ribozymes. Both the formation and the transformation of this base
pair have been studied mainly by crystal structure and by molecular dynamic
simulations. In order to obtain physical support for the formation of this
base pair in solution, a set of experiments, including direct mutagenesis,
the site-specific substitution of chemical groups, kinetic studies, chemical
probing and magnesium-induced cleavage, were performed with the specific goal
of characterizing this trans Watson-Crick GU base pair in
an antigenomic HDV ribozyme. Both U23 and G28 can be
substituted for nucleotides that likely preserve some of the H-bond interactions
present before and after the cleavage step. The formation of the more stable trans
Watson-Crick base pair is shown to be a post-cleavage event, while a possibly
weaker trans Watson-Crick/Hoogsteen interaction seems to
form before the cleavage step. The formation of this unusually stable post-cleavage
base pair may act as a driving force on the chemical cleavage by favouring
the formation of a more stable ground state of the product-ribozyme complex.
To our knowledge, this represents the first demonstration of a potential stabilising
role of a post-cleavage conformational switch event in a ribozyme-catalyzed
reaction.
Collapse
Affiliation(s)
- Dominique Lévesque
- Département de Biochimie, Faculté
de Médecine et des Sciences de la Santé, Université de
Sherbrooke, Sherbrooke, Québec, Canada
| | - Cédric Reymond
- Département de Biochimie, Faculté
de Médecine et des Sciences de la Santé, Université de
Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-Pierre Perreault
- Département de Biochimie, Faculté
de Médecine et des Sciences de la Santé, Université de
Sherbrooke, Sherbrooke, Québec, Canada
- * E-mail:
| |
Collapse
|
18
|
Chen J, Dishler AL, Kennedy SD, Yildirim I, Liu B, Turner DH, Serra MJ. Testing the nearest neighbor model for canonical RNA base pairs: revision of GU parameters. Biochemistry 2012; 51:3508-22. [PMID: 22490167 PMCID: PMC3335265 DOI: 10.1021/bi3002709] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Indexed: 11/30/2022]
Abstract
Thermodynamic parameters for GU pairs are important for predicting the secondary structures of RNA and for finding genomic sequences that code for structured RNA. Optical melting curves were measured for 29 RNA duplexes with GU pairs to improve nearest neighbor parameters for predicting stabilities of helixes. The updated model eliminates a prior penalty assumed for terminal GU pairs. Six additional duplexes with the 5'GG/3'UU motif were added to the single representation in the previous database. This revises the ΔG°(37) for the 5'GG/3'UU motif from an unfavorable 0.5 kcal/mol to a favorable -0.2 kcal/mol. Similarly, the ΔG°(37) for the 5'UG/3'GU motif changes from 0.3 to -0.6 kcal/mol. The correlation coefficients between predicted and experimental ΔG°(37), ΔH°, and ΔS° for the expanded database are 0.95, 0.89, and 0.87, respectively. The results should improve predictions of RNA secondary structure.
Collapse
Affiliation(s)
- Jonathan
L. Chen
- Department
of Chemistry, University of Rochester,
Rochester, New York 14627, United States
| | - Abigael L. Dishler
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, United States
| | - Scott D. Kennedy
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Ilyas Yildirim
- Department
of Chemistry, University of Rochester,
Rochester, New York 14627, United States
| | - Biao Liu
- Department
of Chemistry, University of Rochester,
Rochester, New York 14627, United States
| | - Douglas H. Turner
- Department
of Chemistry, University of Rochester,
Rochester, New York 14627, United States
- Center for RNA Biology, University of Rochester, Rochester, New York 14627, United States
| | - Martin J. Serra
- Department of Chemistry, Allegheny College, Meadville, Pennsylvania 16335, United States
| |
Collapse
|
19
|
Abstract
Metal ions are inextricably involved with nucleic acids due to their polyanionic nature. In order to understand the structure and function of RNAs and DNAs, one needs to have detailed pictures on the structural, thermodynamic, and kinetic properties of metal ion interactions with these biomacromolecules. In this review we first compile the physicochemical properties of metal ions found and used in combination with nucleic acids in solution. The main part then describes the various methods developed over the past decades to investigate metal ion binding by nucleic acids in solution. This includes for example hydrolytic and radical cleavage experiments, mutational approaches, as well as kinetic isotope effects. In addition, spectroscopic techniques like EPR, lanthanide(III) luminescence, IR and Raman as well as various NMR methods are summarized. Aside from gaining knowledge about the thermodynamic properties on the metal ion-nucleic acid interactions, especially NMR can be used to extract information on the kinetics of ligand exchange rates of the metal ions applied. The final section deals with the influence of anions, buffers, and the solvent permittivity on the binding equilibria between metal ions and nucleic acids. Little is known on some of these aspects, but it is clear that these three factors have a large influence on the interaction between metal ions and nucleic acids.
Collapse
Affiliation(s)
- Maria Pechlaner
- Institute of Inorganic Chemistry, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
20
|
Ganguly A, Bevilacqua PC, Hammes-Schiffer S. Quantum Mechanical/Molecular Mechanical Study of the HDV Ribozyme: Impact of the Catalytic Metal Ion on the Mechanism. J Phys Chem Lett 2011; 2:2906-2911. [PMID: 22163069 PMCID: PMC3233192 DOI: 10.1021/jz2013215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A recent crystal structure of the precleaved HDV ribozyme along with biochemical data support a mechanism for phosphodiester bond self-cleavage in which C75 acts as a general acid and bound Mg(2+) ion acts as a Lewis acid. Herein this precleaved crystal structure is used as the basis for quantum mechanical/molecular mechanical calculations. These calculations indicate that the self-cleavage reaction is concerted with a phosphorane-like transition state when a divalent ion, Mg(2+) or Ca(2+), is bound at the catalytic site but is sequential with a phosphorane intermediate when a monovalent ion, such as Na(+), is at this site. Electrostatic potential calculations suggest that the divalent metal ion at the catalytic site lowers the pK(a) of C75, leading to the concerted mechanism in which the proton is partially transferred to the leaving group in the phosphorane-like transition state. These observations are consistent with experimental data, including pK(a) measurements, reaction kinetics, and proton inventories with divalent and monovalent ions.
Collapse
|
21
|
Lee TS, Giambaşu G, Harris ME, York DM. Characterization of the Structure and Dynamics of the HDV Ribozyme at Different Stages Along the Reaction Path. J Phys Chem Lett 2011; 2:2538-2543. [PMID: 22200005 PMCID: PMC3244300 DOI: 10.1021/jz201106y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The structure and dynamics of the hepatitis delta virus ribozyme (HDVr) are studies using molecular dynamics simulations at several stages along its catalytic reaction path, including reactant, activated precursor, transition state mimic and product states, departing from an initial structure based on the C75U mutant crystal structure (PDB: 1VC7). Results of five 350 ns molecular dynamics simulations reveal a spontaneous rotation of U-1 that leads to an in-line conformation and support the role of protonated C75 as the general acid in the transition state. Our results provide rationale for the interpretation of several important experimental results, and make experimentally testable predictions regarding the roles of key active site residues that are not obvious from any available crystal structures.
Collapse
|
22
|
Golden BL. Two distinct catalytic strategies in the hepatitis δ virus ribozyme cleavage reaction. Biochemistry 2011; 50:9424-33. [PMID: 22003985 DOI: 10.1021/bi201157t] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The hepatitis delta virus (HDV) ribozyme and related RNAs are widely dispersed in nature. This RNA is a small nucleolytic ribozyme that self-cleaves to generate products with a 2',3'-cyclic phosphate and a free 5'-hydroxyl. Although small ribozymes are dependent on divalent metal ions under biologically relevant buffer conditions, they function in the absence of divalent metal ions at high ionic strengths. This characteristic suggests that a functional group within the covalent structure of small ribozymes is facilitating catalysis. Structural and mechanistic analyses have demonstrated that the HDV ribozyme active site contains a cytosine with a perturbed pK(a) that serves as a general acid to protonate the leaving group. The reaction of the HDV ribozyme in monovalent cations alone never approaches the velocity of the Mg(2+)-dependent reaction, and there is significant biochemical evidence that a Mg(2+) ion participates directly in catalysis. A recent crystal structure of the HDV ribozyme revealed that there is a metal binding pocket in the HDV ribozyme active site. Modeling of the cleavage site into the structure suggested that this metal ion can interact directly with the scissile phosphate and the nucleophile. In this manner, the Mg(2+) ion can serve as a Lewis acid, facilitating deprotonation of the nucleophile and stabilizing the conformation of the cleavage site for in-line attack of the nucleophile at the scissile phosphate. This catalytic strategy had previously been observed only in much larger ribozymes. Thus, in contrast to most large and small ribozymes, the HDV ribozyme uses two distinct catalytic strategies in its cleavage reaction.
Collapse
Affiliation(s)
- Barbara L Golden
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063, United States.
| |
Collapse
|
23
|
Sánchez-Luque FJ, López MC, Macias F, Alonso C, Thomas MC. Identification of an hepatitis delta virus-like ribozyme at the mRNA 5'-end of the L1Tc retrotransposon from Trypanosoma cruzi. Nucleic Acids Res 2011; 39:8065-77. [PMID: 21724615 PMCID: PMC3185411 DOI: 10.1093/nar/gkr478] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
L1Tc is a non-LTR LINE element from Trypanosoma cruzi that encodes its transposition machinery and bears an internal promoter. Herewith, we report the identification of an in vitro active hepatitis delta virus-like ribozyme located in the first 77 nt at the 5′-end of the L1Tc mRNA (L1TcRz). The data presented show that L1TcRz has a co-transcriptional function. Using gel-purified uncleaved RNA transcripts, the data presented indicate that the kinetics of the self-cleaving, in a magnesium-dependent reaction, fits to a two-phase decay curve. The cleavage point identified by primer extension takes place at +1 position of the element. The hydroxyl nature of the 5′-end of the 3′-fragment generated by the cleavage activity of L1TcRz was confirmed. Since we have previously described that the 77-nt long fragment located at the 5′-end of L1Tc has promoter activity, the existence of a ribozyme in L1Tc makes this element to be the first described non-LTR retroelement that has an internal promoter–ribozyme dual function. The L1Tc nucleotides located downstream of the ribozyme catalytic motif appear to inhibit its activity. This inhibition may be influenced by the existence of a specific L1Tc RNA conformation that is recognized by RNase P.
Collapse
Affiliation(s)
- Francisco J Sánchez-Luque
- Departamento de Biología Molecular, Instituto de Parasitología y Biomedicina López Neyra-CSIC, Parque Tecnológico de Ciencias de Salud, Granada
| | | | | | | | | |
Collapse
|
24
|
Veeraraghavan N, Ganguly A, Golden BL, Bevilacqua PC, Hammes-Schiffer S. Mechanistic strategies in the HDV ribozyme: chelated and diffuse metal ion interactions and active site protonation. J Phys Chem B 2011; 115:8346-57. [PMID: 21644800 PMCID: PMC3144556 DOI: 10.1021/jp203202e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The crystal structure of the precleaved form of the hepatitis delta virus (HDV) ribozyme reveals two G•U wobbles near the active site: a rare reverse G•U wobble involving a syn G base, and a standard G•U wobble at the cleavage site. The catalytic mechanism for this ribozyme has been proposed to involve a Mg(2+) ion bound to the reverse G•U wobble, as well as a protonated C75 base. We carried out molecular dynamics simulations to analyze metal ion interaction with the reverse and standard G•U wobbles and to investigate the impact of C75 protonation on the structure and motions of the ribozyme. We identified two types of Mg(2+) ions associated with the ribozyme, chelated and diffuse, at the reverse and standard G•U wobbles, respectively, which appear to contribute to catalysis and stability, respectively. These two metal ion sites exhibit relatively independent behavior. Protonation of C75 was observed to locally organize the active site in a manner that facilitates the catalytic mechanism, in which C75(+) acts as a general acid and Mg(2+) as a Lewis acid. The simulations also indicated that the overall structure and thermal motions of the ribozyme are not significantly influenced by the catalytic Mg(2+) interaction or C75 protonation. This analysis suggests that the reaction pathway of the ribozyme is dominated by small local motions at the active site rather than large-scale global conformational changes. These results are consistent with a wealth of experimental data.
Collapse
Affiliation(s)
- Narayanan Veeraraghavan
- Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | | | | | |
Collapse
|
25
|
Cottrell JW, Scott LG, Fedor MJ. The pH dependence of hairpin ribozyme catalysis reflects ionization of an active site adenine. J Biol Chem 2011; 286:17658-64. [PMID: 21454684 DOI: 10.1074/jbc.m111.234906] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding how self-cleaving ribozymes mediate catalysis is crucial in light of compelling evidence that human and bacterial gene expression can be regulated through RNA self-cleavage. The hairpin ribozyme catalyzes reversible phosphodiester bond cleavage through a mechanism that does not require divalent metal cations. Previous structural and biochemical evidence implicated the amidine group of an active site adenosine, A38, in a pH-dependent step in catalysis. We developed a way to determine microscopic pK(a) values in active ribozymes based on the pH-dependent fluorescence of 8-azaadenosine (8azaA). We compared the microscopic pK(a) for ionization of 8azaA at position 38 with the apparent pK(a) for the self-cleavage reaction in a fully functional hairpin ribozyme with a unique 8azaA at position 38. Microscopic and apparent pK(a) values were virtually the same, evidence that A38 protonation accounts for the decrease in catalytic activity with decreasing pH. These results implicate the neutral unprotonated form of A38 in a transition state that involves formation of the 5'-oxygen-phosphorus bond.
Collapse
Affiliation(s)
- Joseph W Cottrell
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
26
|
Christian EL, Anderson VE, Harris ME. Deconvolution of Raman spectroscopic signals for electrostatic, H-bonding, and inner-sphere interactions between ions and dimethyl phosphate in solution. J Inorg Biochem 2011; 105:538-47. [PMID: 21334281 DOI: 10.1016/j.jinorgbio.2010.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 12/14/2010] [Accepted: 12/17/2010] [Indexed: 11/24/2022]
Abstract
Quantitative analysis of metal ion-phosphodiester interactions is a significant experimental challenge due to the complexities introduced by inner-sphere, outer-sphere (H-bonding with coordinated water), and electrostatic interactions that are difficult to isolate in solution studies. Here, we provide evidence that inner-sphere, H-bonding and electrostatic interactions between ions and dimethyl phosphate can be deconvoluted through peak fitting in the region of the Raman spectrum for the symmetric stretch of non-bridging phosphate oxygen (ν(s)PO(2)(-)). An approximation of the change in vibrational spectra due to different interaction modes is achieved using ions capable of all or a subset of the three forms of metal ion interaction. Contribution of electrostatic interactions to ion-induced changes to the Raman ν(s)PO(2)(-) signal could be modeled by monitoring attenuation of ν(s)PO(2)(-) in the presence of tetramethylammonium, while contribution of H-bonding and inner-sphere coordination could be approximated from the intensities of altered ν(s)PO(2)(-) vibrational modes created by an interaction with ammonia, monovalent or divalent ions. A model is proposed in which discrete spectroscopic signals for inner-sphere, H-bonding, and electrostatic interactions are sufficient to account for the total observed change in ν(s)PO(2)(-) signal due to interaction with a specific ion capable of all three modes of interaction. Importantly, the quantitative results are consistent with relative levels of coordination predicted from absolute electronegativity and absolute hardness of alkali and alkaline earth metals.
Collapse
Affiliation(s)
- Eric L Christian
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
27
|
Johnson-Buck AE, McDowell SE, Walter NG. Metal ions: supporting actors in the playbook of small ribozymes. Met Ions Life Sci 2011; 9:175-96. [PMID: 22010272 DOI: 10.1039/9781849732512-00175] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Since the 1980s, several small RNA motifs capable of chemical catalysis have been discovered. These small ribozymes, composed of between approximately 40 and 200 nucleotides, have been found to play vital roles in the replication of subviral and viral pathogens, as well as in gene regulation in prokaryotes, and have recently been discovered in noncoding eukaryotic RNAs. All of the known natural small ribozymes - the hairpin, hammerhead, hepatitis delta virus, Varkud satellite, and glmS ribozymes--catalyze the same self-cleavage reaction as RNase A, resulting in two products, one bearing a 2'-3' cyclic phosphate and the other a 5'-hydroxyl group. Although originally thought to be obligate metalloenzymes like the group I and II self-splicing introns, the small ribozymes are now known to support catalysis in a wide variety of cations that appear to be only indirectly involved in catalysis. Nevertheless, under physiologic conditions, metal ions are essential for the proper folding and function of the small ribozymes, the most effective of these being magnesium. Metal ions contribute to catalysis in the small ribozymes primarily by stabilizing the catalytically active conformation, but in some cases also by activating RNA functional groups for catalysis, directly participating in catalytic acid-base chemistry, and perhaps by neutralizing the developing negative charge of the transition state. Although interactions between the small ribozymes and cations are relatively nonspecific, ribozyme activity is quite sensitive to the types and concentrations of metal ions present in solution, suggesting a close evolutionary relationship between cellular metal ion homeostasis and cation requirements of catalytic RNAs, and perhaps RNA in general.
Collapse
Affiliation(s)
- Alexander E Johnson-Buck
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA.
| | | | | |
Collapse
|
28
|
Ennifar E, Walter P, Dumas P. Cation-dependent cleavage of the duplex form of the subtype-B HIV-1 RNA dimerization initiation site. Nucleic Acids Res 2010; 38:5807-16. [PMID: 20460458 PMCID: PMC2943608 DOI: 10.1093/nar/gkq344] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The crystal structure of subtype-B HIV-1 genomic RNA Dimerization Initiation Site duplex revealed chain cleavage at a specific position resulting in 3'-phosphate and 5'-hydroxyl termini. A crystallographic analysis showed that Ba(2+), Mn(2+), Co(2+) and Zn(2+) bind specifically on a guanine base close to the cleaved position. The crystal structures also point to a necessary conformational change to induce an 'in-line' geometry at the cleavage site. In solution, divalent cations increased the rate of cleavage with pH/pKa compensation, indicating that a cation-bound hydroxide anion is responsible for the cleavage. We propose a 'Trojan horse' mechanism, possibly of general interest, wherein a doubly charged cation hosted near the cleavage site as a 'harmless' species is further transformed in situ into an 'aggressive' species carrying a hydroxide anion.
Collapse
Affiliation(s)
| | | | - Philippe Dumas
- *To whom correspondence should be addressed. Tel: +33 388 41 70 02; Fax: +33 388 60 22 18;
| |
Collapse
|
29
|
Hammerhead ribozymes: true metal or nucleobase catalysis? Where is the catalytic power from? Molecules 2010; 15:5389-407. [PMID: 20714304 PMCID: PMC6257768 DOI: 10.3390/molecules15085389] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/29/2010] [Accepted: 08/04/2010] [Indexed: 11/17/2022] Open
Abstract
The hammerhead ribozyme was first considered as a metalloenzyme despite persistent inconsistencies between structural and functional data. In the last decade, metal ions were confirmed as catalysts in self-splicing ribozymes but displaced by nucleobases in self-cleaving ribozymes. However, a model of catalysis just relying on nucleobases as catalysts does not fully fit some recent data. Gathering and comparing data on metal ions in self-cleaving and self-splicing ribozymes, the roles of divalent metal ions and nucleobases are revisited. Hypothetical models based on cooperation between metal ions and nucleobases are proposed for the catalysis and evolution of this prototype in RNA catalysis.
Collapse
|
30
|
Chen JH, Yajima R, Chadalavada DM, Chase E, Bevilacqua PC, Golden BL. A 1.9 Å Crystal Structure of the HDV Ribozyme Precleavage Suggests both Lewis Acid and General Acid Mechanisms Contribute to Phosphodiester Cleavage. Biochemistry 2010; 49:6508-18. [DOI: 10.1021/bi100670p] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jui-Hui Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47906
| | - Rieko Yajima
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Durga M. Chadalavada
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Elaine Chase
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47906
| | - Philip C. Bevilacqua
- Department of Chemistry, Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Barbara L. Golden
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47906
| |
Collapse
|
31
|
Chen Y, Eldho NV, Dayie TK, Carey PR. Probing adenine rings and backbone linkages using base specific isotope-edited Raman spectroscopy: application to group II intron ribozyme domain V. Biochemistry 2010; 49:3427-35. [PMID: 20225830 DOI: 10.1021/bi902117w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Raman difference spectroscopy is used to probe the properties of a 36-nt RNA molecule, "D5", which lies at the heart of the catalytic apparatus in group II introns. For D5 that has all of its adenine residues labeled with (13)C and (15)N and utilizing Raman difference spectroscopy, we identify the conformationally sensitive -C-O-P-O-C- stretching modes of the unlabeled bonds adjacent to adenine bases, as well as the adenine ring modes themselves. The phosphodiester modes can be assigned to individual adenine residues based on earlier NMR data. The effect of Mg(2+) binding was explored by analyzing the Raman difference spectra for [D5 + Mg(2+)] minus [D5 no Mg(2+)], for D5 unlabeled, or D5 labeled with (13)C/(15)N-enriched adenine. In both sets of data we assign differential features to G ring modes perturbed by Mg(2+) binding at the N7 position. In the A-labeled spectra we attribute a Raman differential near 1450 cm(-1) and changes of intensity at 1296 cm(-1) to Mg binding at the N7 position of adenine bases. The A and G bases involved in Mg(2+) binding again can be identified using earlier NMR results. For the unlabeled D5, a change in the C-O-P-O-C stretch profile at 811 cm(-1) upon magnesium binding is due to a "tightening up" (in the sense of a more rigid molecule with less dynamic interchange among competing ribose conformers) of the D5 structure. For adenine-labeled D5, small changes in the adenine backbone bond signatures in the 810-830 cm(-1) region suggest that small conformational changes occur in the tetraloop and bulge regions upon binding of Mg(2+). The PO(2)(-) stretching vibration, near 1100 cm(-1), from the nonbridging phosphate groups, probes the effect of Mg(2+)-hydrate inner-sphere interactions that cause an upshift. In turn, the upshift is modulated by the presence of monovalent cations since in the presence of Na(+) and Li(+) the upshift is 23 +/- 2 cm(-1) while in the presence of K(+) and Cs(+) it is 13 +/- 3 cm(-1), a finding that correlates with the differences in hydration radii. These subtle differences in electrostatic interactions may be related to observed variations in catalytic activity. For a reconstructed ribozyme comprising domains 1-3 (D123) connected in cis plus domain 5 (D5) supplied in trans, cleavage of spliced exon substrates in the presence of magnesium and K(+) or Cs(+) is more efficient than that in the presence of magnesium with Na(+) or Li(+).
Collapse
Affiliation(s)
- Yuanyuan Chen
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4935, USA
| | | | | | | |
Collapse
|
32
|
Christian EL, Anderson VE, Carey PR, Harris ME. A quantitative Raman spectroscopic signal for metal-phosphodiester interactions in solution. Biochemistry 2010; 49:2869-79. [PMID: 20180599 DOI: 10.1021/bi901866u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurate identification and quantification of metal ion-phosphodiester interactions are essential for understanding the role of metal ions as determinants of three-dimensional folding of large RNAs and as cofactors in the active sites of both RNA and protein phosphodiesterases. Accomplishing this goal is difficult due to the dynamic and complex mixture of direct and indirect interactions formed with nucleic acids and other phosphodiesters in solution. To address this issue, Raman spectroscopy has been used to measure changes in bond vibrational energies due to metal interactions. However, the contributions of inner-sphere, H-bonding, and electrostatic interactions to the Raman spectrum of phosphoryl oxygens have not been analyzed quantitatively. Here, we report that all three forms of metal ion interaction result in attenuation of the Raman signal for the symmetric vibration of the nonbridging phosphate oxygens (nu(s)PO(2)(-)), while only inner-sphere coordination gives rise to an apparent shift of nu(s)PO(2)(-) to higher wavenumbers (nu(s)PO(2)(-)M) in solution. Formation of nu(s)PO(2)(-)M is shown to be both dependent on metal ion identity and an accurate measure of site-specific metal ion binding. In addition, the spectroscopic parameter reflecting the energetic difference between nu(s)PO(2)(-) and nu(s)PO(2)(-)M (DeltanuM) is largely insensitive to changes in phosphodiester structure but strongly dependent on the absolute electronegativity and hardness of the interacting metal ion. Together, these studies provide strong experimental support for the use of nu(s)PO(2)(-)M and DeltanuM as general spectroscopic features for the quantitative analysis of metal binding affinity and the identification of metal ions associated with phosphodiesters in solution.
Collapse
Affiliation(s)
- Eric L Christian
- Center for RNA Molecular Biology, Case Western Reserve University School of Medicine,Cleveland, Ohio 44106, USA.
| | | | | | | |
Collapse
|
33
|
R2 retrotransposons encode a self-cleaving ribozyme for processing from an rRNA cotranscript. Mol Cell Biol 2010; 30:3142-50. [PMID: 20421411 DOI: 10.1128/mcb.00300-10] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The non-long terminal repeat (non-LTR) retrotransposon R2 is inserted into the 28S rRNA genes of many animals. Expression of the element appears to be by cotranscription with the rRNA gene unit. We show here that processing of the rRNA cotranscript at the 5' end of the R2 element in Drosophila simulans is rapid and utilizes an unexpected mechanism. Using RNA synthesized in vitro, the 5' untranslated region of R2 was shown capable of rapid and efficient self-cleavage of the 28S-R2 cotranscript. The 5' end generated in vitro by the R2 ribozyme was at the position identical to that found for in vivo R2 transcripts. The RNA segment corresponding to the R2 ribozyme could be folded into a double pseudoknot structure similar to that of the hepatitis delta virus (HDV) ribozyme. Remarkably, 21 of the nucleotide positions in and around the active site of the HDV ribozyme were identical in R2. R2 elements from other Drosophila species were also shown to encode HDV-like ribozymes capable of self-cleavage. Tracing their sequence evolution in the Drosophila lineage suggests that the extensive similarity of the R2 ribozyme from D. simulans to that of HDV was a result of convergent evolution, not common descent.
Collapse
|
34
|
Efficient inhibition of hepatitis B virus replication by hepatitis delta virus ribozymes delivered by targeting retrovirus. Virol J 2010; 7:61. [PMID: 20236514 PMCID: PMC2850903 DOI: 10.1186/1743-422x-7-61] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 03/17/2010] [Indexed: 12/14/2022] Open
Abstract
Background Hepatitis delta virus (HDV) ribozyme is an attractive molecular tool that can specifically recognize and catalyze the self-cleavage of the viral RNA phosphodiester backbone. However, a major obstacle in the medical application of the HDV ribozyme is the lack of specificity in the delivery of the ribozyme to defined target cells. Results The objective of this study was to determine whether retroviral vectors can deliver the HDV ribozyme into the target cells and to elucidate whether HDV ribozyme plays a role in hepatitis B virus (HBV) replication. In our study, the transduction of helper-free pseudotyped retrovirus, which showed a broad host range, in human hepatoma cells was performed under 2 conditions, that is, in the presence of polymerized human serum albumin (pHSA) and in the absence of pHSA. The transduction ability in the presence of pHSA was higher than in the absence of pHSA. Moreover, HBsAg and HBeAg levels after transductions with pHSA were significantly lower than those in the absence of pHSA, thus indicating that the recombinant retrovirus had HBV-specific cleavage activity and targeted HepG2215 cells. Conclusions These data suggest that this system provides a new approach for targeting hepatocytes and has a great potential in gene therapy for HBV infection.
Collapse
|
35
|
Gong B, Chen JH, Bevilacqua PC, Golden BL, Carey PR. Competition between Co(NH(3)(6)3+ and inner sphere Mg2+ ions in the HDV ribozyme. Biochemistry 2010; 48:11961-70. [PMID: 19888753 DOI: 10.1021/bi901091v] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Divalent cations play critical structural and functional roles in many RNAs. While the hepatitis delta virus (HDV) ribozyme can undergo self-cleavage in the presence of molar concentrations of monovalent cations, divalent cations such as Mg(2+) are required for efficient catalysis under physiological conditions. Moreover, the cleavage reaction can be inhibited with Co(NH(3))(6)(3+), an analogue of Mg(H(2)O)(6)(2+). Here, the binding of Mg(2+) and Co(NH(3))(6)(3+) to the HDV ribozyme is studied by Raman microscopic analysis of crystals. Raman difference spectra acquired at different metal ion conditions reveal changes in the ribozyme. When Mg(2+) alone is introduced to the ribozyme, inner sphere coordination of Mg(H(2)O)(x)(2+) (x </= 5) to nonbridging PO(2)(-) oxygen and changes in base stretches and phosphodiester group conformation are observed. In addition, binding of Mg(2+) induces deprotonation of a cytosine assigned to the general acid C75, consistent with solution studies. When Co(NH(3))(6)(3+) alone is introduced, deprotonation of C75 is again observed, as are distinctive changes in base vibrational ring modes and phosphodiester backbone conformation. In contrast to Mg(2+) binding, Co(NH(3))(6)(3+) binding does not perturb PO(2)(-) group vibrations, consistent with its ability to make only outer sphere contacts. Surprisingly, competitive binding studies reveal that Co(NH(3))(6)(3+) ions displace some inner sphere-coordinated magnesium species, including ions coordinated to PO(2)(-) groups or the N7 of a guanine, likely G1 at the active site. These observations contrast with the tenet that Co(NH(3))(6)(3+) ions displace only outer sphere magnesium ions. Overall, our data support two classes of inner sphere Mg(2+)-PO(2)(-) binding sites: sites that Co(NH(3))(6)(3+) can displace and others it cannot.
Collapse
Affiliation(s)
- Bo Gong
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
36
|
Gong B, Chen JH, Yajima R, Chen Y, Chase E, Chadalavada DM, Golden BL, Carey PR, Bevilacqua PC. Raman crystallography of RNA. Methods 2009; 49:101-11. [PMID: 19409996 PMCID: PMC2753759 DOI: 10.1016/j.ymeth.2009.04.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 04/21/2009] [Accepted: 04/23/2009] [Indexed: 01/30/2023] Open
Abstract
Raman crystallography is the application of Raman spectroscopy to single crystals. This technique has been applied to a variety of protein molecules where it has provided unique information about biopolymer folding, substrate binding, and catalysis. Here, we describe the application of Raman crystallography to functional RNA molecules. RNA represents unique opportunities and challenges for Raman crystallography. One issue that confounds studies of RNA is its tendency to adopt multiple non-functional folds. Raman crystallography has the advantage that it isolates a single state of the RNA within the crystal and can evaluate its fold, metal ion binding properties (ligand identity, stoichiometry, and affinity), proton binding properties (identity, stoichiometry, and affinity), and catalytic potential. In particular, base-specific stretches can be identified and then associated with the binding of metal ions and protons. Because measurements are carried out in the hanging drop at ambient, rather than cryo, conditions and because RNA crystals tend to be approximately 70% solvent, RNA dynamics and conformational changes become experimentally accessible. This review focuses on experimental setup and procedures, acquisition and interpretation of Raman data, and determination of physicochemical properties of the RNA. Raman crystallographic and solution biochemical experiments on the HDV RNA enzyme are summarized and found to be in excellent agreement. Remarkably, characterization of the crystalline state has proven to help rather than hinder functional characterization of functional RNA, most likely because the tendency of RNA to fold heterogeneously is limited in a crystalline environment. Future applications of Raman crystallography to RNA are briefly discussed.
Collapse
Affiliation(s)
- Bo Gong
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Jui-Hui Chen
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907
| | - Rieko Yajima
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Yuanyuan Chen
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Elaine Chase
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907
| | - Durga M. Chadalavada
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| | - Barbara L. Golden
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, Indiana 47907
| | - Paul R. Carey
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Philip C. Bevilacqua
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802
| |
Collapse
|
37
|
Lu J, Li NS, Koo SC, Piccirilli JA. Synthesis of Pyridine, Pyrimidine and Pyridinone C-Nucleoside Phosphoramidites for Probing Cytosine Function in RNA. J Org Chem 2009; 74:8021-30. [DOI: 10.1021/jo9016919] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jun Lu
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology and Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637
| | - Nan-Sheng Li
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology and Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637
| | - Selene C. Koo
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology and Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637
| | - Joseph A. Piccirilli
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biology and Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637
| |
Collapse
|
38
|
Frederiksen JK, Piccirilli JA. Identification of catalytic metal ion ligands in ribozymes. Methods 2009; 49:148-66. [PMID: 19651216 DOI: 10.1016/j.ymeth.2009.07.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 07/20/2009] [Accepted: 07/29/2009] [Indexed: 01/05/2023] Open
Abstract
Site-bound metal ions participate in the catalytic mechanisms of many ribozymes. Understanding these mechanisms therefore requires knowledge of the specific ligands on both substrate and ribozyme that coordinate these catalytic metal ions. A number of different structural and biochemical strategies have been developed and refined for identifying metal ion binding sites within ribozymes, and for assessing the catalytic contributions of the metal ions bound at those sites. We review these approaches and provide examples of their application, focusing in particular on metal ion rescue experiments and their roles in the construction of the transition state models for the Tetrahymena group I and RNase P ribozymes.
Collapse
Affiliation(s)
- John K Frederiksen
- The Pritzker School of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|