1
|
He Y, Sun H, Bao H, Hou J, Zhou Q, Wu F, Wang X, Sun M, Shi J, Tang G, Bai H. A natural adhesive-based nanomedicine initiates photothermal-directed in situ immunotherapy with durability and maintenance. Biomaterials 2025; 312:122751. [PMID: 39121726 DOI: 10.1016/j.biomaterials.2024.122751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Tumor immunotherapies have emerged as a promising frontier in the realm of cancer treatment. However, challenges persist in achieving localized, durable immunostimulation while counteracting the tumor's immunosuppressive environment. Here, we develop a natural mussel foot protein-based nanomedicine with spatiotemporal control for tumor immunotherapy. In this nanomedicine, an immunoadjuvant prodrug and a photosensitizer are integrated, which is driven by their dynamic bonding and non-covalent assembling with the protein carrier. Harnessing the protein carrier's bioadhesion, this nanomedicine achieves a drug co-delivery with spatiotemporal precision, by which it not only promotes tumor photothermal ablation but also broadens tumor antigen repertoire, facilitating in situ immunotherapy with durability and maintenance. This nanomedicine also modulates the tumor microenvironment to overcome immunosuppression, thereby amplifying antitumor responses against tumor progression. Our strategy underscores a mussel foot protein-derived design philosophy of drug delivery aimed at refining combinatorial immunotherapy, offering insights into leveraging natural proteins for cancer treatment.
Collapse
Affiliation(s)
- Yunhong He
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, 310028 Hangzhou, PR China
| | - Hong Sun
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, 310028 Hangzhou, PR China
| | - Hanxiao Bao
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, 310028 Hangzhou, PR China
| | - Jue Hou
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, 310028 Hangzhou, PR China
| | - Qiaomei Zhou
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, 310028 Hangzhou, PR China; Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310028 Hangzhou, PR China
| | - Fan Wu
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, 310028 Hangzhou, PR China; Department of Neurosurgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 310028 Hangzhou, PR China
| | | | - Mingli Sun
- Zhejiang Laboratory, 311100 Hangzhou, PR China
| | - Junhui Shi
- Zhejiang Laboratory, 311100 Hangzhou, PR China
| | - Guping Tang
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, 310028 Hangzhou, PR China; Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310028 Hangzhou, PR China
| | - Hongzhen Bai
- Institute of Chemical Biology and Pharmaceutical Chemistry, Department of Chemistry, Zhejiang University, 310028 Hangzhou, PR China.
| |
Collapse
|
2
|
Sun B, Shang Y, Chen H, Khadka K, Pan Y, Hu M, Wang Y. Perfluorooctanoate and nano titanium dioxide impair the byssus performance of the mussel Mytilus coruscus. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134062. [PMID: 38503212 DOI: 10.1016/j.jhazmat.2024.134062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/21/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Perfluorooctanoate (PFOA) is widely used as a surfactant and has metabolic, immunologic, developmental, and genetic toxicity on marine organisms. However, the effects of PFOA on individual defense functions in mussels in the presence of titanium dioxide nanoparticles (nano-TiO2) are poorly understood. To investigate the defense strategies and regulatory mechanisms of mussels under combined stressors, the thick-shell mussels Mytilus coruscus were exposed to different PFOA concentrations (0, 2 and 200 μg/L) and nano-TiO2 (0 and 0.1 mg /L, size: 25 nm) for 14 days. The results showed that, compared to the control group, PFOA and nano-TiO2 significantly reduced the number of byssal threads (NBT), byssal threads length (BTL), diameter of proximal threads (DPB), diameter of middle threads (DMB), diameter of distal byssal threads (DDB), adhesive plaque area (BPA), and breaking force of byssal threads (N). Under the influence of PFOA and nano-TiO2, the morphological surface smoothness of the fractured byssal threads surface increased, concurrently inducing an increased surface roughness in the adhesive plaques. Additionally, under the presence of PFOA and nano-TiO2, the foot displayed dispersed tissue organization and damaged villi, accompanied by an increased incidence of cellular apoptosis and an upregulation of the apoptosis gene caspase-8. Expression of the adhesion gene mfp-3 and byssal threads strength genes (preCOL-D, preCOL-NG) was upregulated. An interactive effect on the performance of byssal threads is observed under the combined influence of PFOA and nano-TiO2. Under co-exposure to PFOA and nano-TiO2, the performance of the byssal threads deteriorates, the foot structure is impaired, and the genes mRNA expression of byssal thread secretory proteins have compensated for the adhesion and byssal threads strength by up-regulation. Within marine ecosystems, organic and particulate contaminants exert a pronounced effect on the essential life processes of individual organisms, thereby jeopardizing their ecological niche within community assemblages and perturbing the dynamic equilibrium of the overarching ecosystem. ENVIRONMENTAL IMPLICATION: Perfluorooctanoic acid (PFOA) is prone to accumulate in marine organisms. TiO2 nanoparticles (nano-TiO2) are emerging environmental pollutants frequently found in marine environment. The effects of PFOA and nano-TiO2 on marine mussels are not well understood, and their toxic mechanisms remain largely unknown. We investigated the impacts of PFOA and nano-TiO2 on mussel byssus defense mechanisms. By assessing byssus performance indicators, morphological structures of the byssus, subcellular localization, and changes in byssal secretion-related genes, we revealed the combined effects and mechanisms through which these two types of pollutants may affect the functional capabilities and survival of mussels in the complex marine ecosystem.
Collapse
Affiliation(s)
- Bingyan Sun
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Haodong Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Kiran Khadka
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yiting Pan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Thuy LT, Kim SY, Dongquoc V, Kim Y, Choi JS, Cho WK. Coordination-driven robust antibacterial coatings using catechol-conjugated carboxymethyl chitosan. Int J Biol Macromol 2023; 249:126090. [PMID: 37541478 DOI: 10.1016/j.ijbiomac.2023.126090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
To prevent bacterial contamination on solid surfaces, a simple yet efficient antibacterial coating was developed in a substrate-independent manner by using the catechol-conjugated carboxymethyl chitosan (CMC-DOPA). The CMC-DOPA was firstly synthesized via an aza-Michael reaction with methyl acrylate and the subsequent acyl substitution with dopamine. The coating strategy consists of spin-coating-assisted deposition of CMC-DOPA on polydopamine-coated substrates and coordination-driven crosslinks between catechol groups and Fe3+ ions in sequence, producing the multilayered CMC-DOPA films. The film thickness was controllable depending on the concentration of CMC-DOPA. Compared to bare controls, the CMC-DOPA-coated substrates reduced the bacterial adhesion by up to 99.8 % and 96.2 % for E. coli and S. aureus, respectively. It is demonstrated that the CMC-DOPA coating can be a robust antibacterial coating across various pH environments, inhibiting bacterial adhesion by 78.7 %, 95.1 %, and 93.2 %, respectively, compared to the control, even after 7 days of acidic, physiological, and alkaline pH treatment. The current coating approach could be applied to various substrates including silicon dioxide, titanium dioxide, and polyurethane. Given its simple and versatile coating capability, we think that the coordination-driven CMC-DOPA coating could be useful for various medical devices and implants.
Collapse
Affiliation(s)
- Le Thi Thuy
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Su Youn Kim
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Viet Dongquoc
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Younjin Kim
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Joon Sig Choi
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
4
|
Rising A, Harrington MJ. Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication. Chem Rev 2023; 123:2155-2199. [PMID: 36508546 DOI: 10.1021/acs.chemrev.2c00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is an urgent need to improve the sustainability of the materials we produce and use. Here, we explore what humans can learn from nature about how to sustainably fabricate polymeric fibers with excellent material properties by reviewing the physical and chemical aspects of materials processing distilled from diverse model systems, including spider silk, mussel byssus, velvet worm slime, hagfish slime, and mistletoe viscin. We identify common and divergent strategies, highlighting the potential for bioinspired design and technology transfer. Despite the diversity of the biopolymeric fibers surveyed, we identify several common strategies across multiple systems, including: (1) use of stimuli-responsive biomolecular building blocks, (2) use of concentrated fluid precursor phases (e.g., coacervates and liquid crystals) stored under controlled chemical conditions, and (3) use of chemical (pH, salt concentration, redox chemistry) and physical (mechanical shear, extensional flow) stimuli to trigger the transition from fluid precursor to solid material. Importantly, because these materials largely form and function outside of the body of the organisms, these principles can more easily be transferred for bioinspired design in synthetic systems. We end the review by discussing ongoing efforts and challenges to mimic biological model systems, with a particular focus on artificial spider silks and mussel-inspired materials.
Collapse
Affiliation(s)
- Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge 141 52, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala 750 07, Sweden
| | | |
Collapse
|
5
|
Taghizadeh A, Taghizadeh M, Yazdi MK, Zarrintaj P, Ramsey JD, Seidi F, Stadler FJ, Lee H, Saeb MR, Mozafari M. Mussel-inspired biomaterials: From chemistry to clinic. Bioeng Transl Med 2022; 7:e10385. [PMID: 36176595 PMCID: PMC9472010 DOI: 10.1002/btm2.10385] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/25/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022] Open
Abstract
After several billions of years, nature still makes decisions on its own to identify, develop, and direct the most effective material for phenomena/challenges faced. Likewise, and inspired by the nature, we learned how to take steps in developing new technologies and materials innovations. Wet and strong adhesion by Mytilidae mussels (among which Mytilus edulis-blue mussel and Mytilus californianus-California mussel are the most well-known species) has been an inspiration in developing advanced adhesives for the moist condition. The wet adhesion phenomenon is significant in designing tissue adhesives and surgical sealants. However, a deep understanding of engaged chemical moieties, microenvironmental conditions of secreted proteins, and other contributing mechanisms for outstanding wet adhesion mussels are essential for the optimal design of wet glues. In this review, all aspects of wet adhesion of Mytilidae mussels, as well as different strategies needed for designing and fabricating wet adhesives are discussed from a chemistry point of view. Developed muscle-inspired chemistry is a versatile technique when designing not only wet adhesive, but also, in several more applications, especially in the bioengineering area. The applications of muscle-inspired biomaterials in various medical applications are summarized for future developments in the field.
Collapse
Affiliation(s)
- Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook UniversityCheonanRepublic of Korea
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in ElectrochemistrySchool of Chemistry, College of Science, University of TehranTehranIran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Joshua D. Ramsey
- School of Chemical Engineering, Oklahoma State UniversityStillwaterOklahomaUSA
| | - Farzad Seidi
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and MaterialsNanjing Forestry UniversityNanjingChina
| | - Florian J. Stadler
- College of Materials Science and EngineeringShenzhen Key Laboratory of Polymer Science and TechnologyGuangdongChina
| | - Haeshin Lee
- Department of ChemistryKorea Advanced Institute of Science and Technology (KAIST)DaejeonRepublic of Korea
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of ChemistryGdańsk University of TechnologyGdańskPoland
| | - Masoud Mozafari
- Department of Tissue Engineering & Regenerative MedicineIran University of Medical SciencesTehranIran
- Present address:
Lunenfeld‐Tanenbaum Research InstituteMount Sinai Hospital, University of TorontoToronto, ONCanada
| |
Collapse
|
6
|
Ishizaka S, Nakagawa S, Matsuoka K, Yoshie N. Tough polymer with a gradual spatial change in the hydrogen bond density controlled by simple one-pot copolymerization. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Waite JH, Harrington MJ. Following the thread: Mytilus mussel byssus as an inspired multi-functional biomaterial. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Over the last 15 years, the byssus of marine mussels (Mytilus spp.) has emerged as an important model system for the bio-inspired development and synthesis of advanced polymers and adhesives. But how did these seemingly inconsequential fibers that are routinely discarded in mussel hors d’oeuvres become the focus of intense international research. In the present review, we take a historical perspective to understand this phenomenon. Our purpose is not to review the sizeable literature of mussel-inspired materials, as there are numerous excellent reviews that cover this topic in great depth. Instead, we explore how the byssus became a magnet for bio-inspired materials science, with a focus on the specific breakthroughs in the understanding of composition, structure, function, and formation of the byssus achieved through fundamental scientific investigation. Extracted principles have led to bio-inspired design of novel materials with both biomedical and technical applications, including surgical adhesives, self-healing polymers, tunable hydrogels, and even actuated composites. Continued study into the byssus of Mytilid mussels and other species will provide a rich source of inspiration for years to come.
Collapse
Affiliation(s)
- J. Herbert Waite
- Marine Sciences Institute, Lagoon Road, University of California, Santa Barbara, CA 93106, USA
| | - Matthew J. Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
8
|
Charlet A, Lutz-Bueno V, Mezzenga R, Amstad E. Shape retaining self-healing metal-coordinated hydrogels. NANOSCALE 2021; 13:4073-4084. [PMID: 33595016 DOI: 10.1039/d0nr08351h] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-coordinated hydrogels are physical hydrogels entirely crosslinked by complexes between ligand decorated polymers and metal ions. The mechanical properties of these hydrogels strongly depend on the density and dynamics of metal-coordinated interactions. Most commonly, telechelic metal-coordinated hydrogels contain catechol or histidine ligands, although hydrogels containing a stronger complexation agent, nitrocatechol, have been reported. Here, we introduce a pyrogallol end-functionalized polymer that can be crosslinked with di- and trivalent ions, in contrast to previously reported metal-coordinated hydrogels. We can tune the mechanical properties of the hydrogels with the types of ions used and the density of crosslinking sites. Ions form nm-sized precipitates that bind to pyrogallols and impart distinct properties to the hydrogels: strong ion-pyrogallol interactions that form in the presence of Al3+, V3+, Mn2+, Fe3+, Co2+, Ni2+ and Cu2+ result in long relaxation times. The resulting hydrogels display solid-like yet reversible mechanical properties, such that they can be processed into macroscopic 3D structures that retain their shapes. Weak ion-pyrogallol interactions that form in the presence of Ca2+ or Zn2+ result in short relaxation times. The resulting hydrogels display a fast self-healing behavior, suited for underwater glues, for example. The flexibility of tuning the mechanical properties of hydrogels simply by selecting the adequate ion-pyrogallol pair broadens the mechanical properties of metal-coordinated hydrogels to suit a wide range of applications that require them to retain their shape for a given time to act as dampers.
Collapse
Affiliation(s)
- Alvaro Charlet
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne, Lausanne 1015, Switzerland.
| | - Viviane Lutz-Bueno
- Laboratory of Food and Soft Materials Science, Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland
| | - Raffaele Mezzenga
- Laboratory of Food and Soft Materials Science, Department of Health Sciences and Technology, ETH Zurich, Zurich 8092, Switzerland and Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Esther Amstad
- Soft Materials Laboratory, Institute of Materials, EPFL Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
9
|
Dong X, Zhao H, Li J, Tian Y, Zeng H, Ramos MA, Hu TS, Xu Q. Progress in Bioinspired Dry and Wet Gradient Materials from Design Principles to Engineering Applications. iScience 2020; 23:101749. [PMID: 33241197 PMCID: PMC7672307 DOI: 10.1016/j.isci.2020.101749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nature does nothing in vain. Through millions of years of revolution, living organisms have evolved hierarchical and anisotropic structures to maximize their survival in complex and dynamic environments. Many of these structures are intrinsically heterogeneous and often with functional gradient distributions. Understanding the convergent and divergent gradient designs in the natural material systems may lead to a new paradigm shift in the development of next-generation high-performance bio-/nano-materials and devices that are critically needed in energy, environmental remediation, and biomedical fields. Herein, we review the basic design principles and highlight some of the prominent examples of gradient biological materials/structures discovered over the past few decades. Interestingly, despite the anisotropic features in one direction (i.e., in terms of gradient compositions and properties), these natural structures retain certain levels of symmetry, including point symmetry, axial symmetry, mirror symmetry, and 3D symmetry. We further demonstrate the state-of-the-art fabrication techniques and procedures in making the biomimetic counterparts. Some prototypes showcase optimized properties surpassing those seen in the biological model systems. Finally, we summarize the latest applications of these synthetic functional gradient materials and structures in robotics, biomedical, energy, and environmental fields, along with their future perspectives. This review may stimulate scientists, engineers, and inventors to explore this emerging and disruptive research methodology and endeavors.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Hong Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiapeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yu Tian
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Melvin A Ramos
- Department of Mechanical Engineering, California State University, Los Angeles, CA 90032, USA
| | - Travis Shihao Hu
- Department of Mechanical Engineering, California State University, Los Angeles, CA 90032, USA
| | - Quan Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
10
|
Recent Advances in Mussel-Inspired Synthetic Polymers as Marine Antifouling Coatings. COATINGS 2020. [DOI: 10.3390/coatings10070653] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synthetic oligomers and polymers inspired by the multifunctional tethering system (byssus) of the common mussel (genus Mytilus) have emerged since the 1980s as a very active research domain within the wider bioinspired and biomimetic materials arena. The unique combination of strong underwater adhesion, robust mechanical properties and self-healing capacity has been linked to a large extent to the presence of the unusual α-amino acid derivative l-DOPA (l-3,4-dihydroxyphenylalanine) as a building block of the mussel byssus proteins. This paper provides a short overview of marine biofouling, discussing the different marine biofouling species and natural defenses against these, as well as biomimicry as a concept investigated in the marine antifouling context. A detailed discussion of the literature on the Mytilus mussel family follows, covering elements of their biology, biochemistry and the specific measures adopted by these mussels to utilise their l-DOPA-rich protein sequences (and specifically the ortho-bisphenol (catechol) moiety) in their benefit. A comprehensive account is then given of the key catechol chemistries (covalent and non-covalent/intermolecular) relevant to adhesion, cohesion and self-healing, as well as of some of the most characteristic mussel protein synthetic mimics reported over the past 30 years and the related polymer functionalisation strategies with l-DOPA/catechol. Lastly, we review some of the most recent advances in such mussel-inspired synthetic oligomers and polymers, claimed as specifically aimed or intended for use in marine antifouling coatings and/or tested against marine biofouling species.
Collapse
|
11
|
Park S, Kim S, Jho Y, Hwang DS. Cation-π Interactions and Their Contribution to Mussel Underwater Adhesion Studied Using a Surface Forces Apparatus: A Mini-Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16002-16012. [PMID: 31423790 DOI: 10.1021/acs.langmuir.9b01976] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mussel underwater adhesion is a model phenomenon important for the understanding of broader biological adhesion and the development of biomimetic wet adhesives. The catechol moiety of 3,4-dihydroxyphenyl-l-alanine (DOPA) is known to be actively involved in the mechanism of mussel underwater adhesion; however, other underwater adhesion mechanisms are also crucial. The surface forces apparatus (SFA) has often been used to explore the contributions of other mechanisms to mussel underwater adhesion; e.g., recent SFA-based nanomechanical studies have revealed that cation-π interactions, one of the strongest intermolecular interactions in water, are the pivotal interactions of adhesive proteins involved in underwater mussel adhesion. This mini-review surveys recent research on cation-π interactions and their contributions to strong mussel underwater adhesion, shedding light on some biological processes and facilitating the development of biomedical adhesives.
Collapse
Affiliation(s)
- Sohee Park
- Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Chengam-ro, Nam-gu , Pohang 37673 , Republic of Korea
| | - Sangsik Kim
- Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Chengam-ro, Nam-gu , Pohang 37673 , Republic of Korea
- Division of Integrative Biosciences and Biotechnology , Pohang University of Science and Technology (POSTECH) , 77 Chengam-ro, Nam-gu , Pohang 37673 , Republic of Korea
| | - YongSeok Jho
- Department of Physics and Research Institute of Natural Science , Gyeongsang National University , Jinju 52828 , Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Chengam-ro, Nam-gu , Pohang 37673 , Republic of Korea
- Division of Integrative Biosciences and Biotechnology , Pohang University of Science and Technology (POSTECH) , 77 Chengam-ro, Nam-gu , Pohang 37673 , Republic of Korea
| |
Collapse
|
12
|
Xu Q, Xu M, Lin C, Zhao Q, Zhang R, Dong X, Zhang Y, Tian S, Tian Y, Xia Z. Metal Coordination-Mediated Functional Grading and Self-Healing in Mussel Byssus Cuticle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1902043. [PMID: 31832326 PMCID: PMC6891911 DOI: 10.1002/advs.201902043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/15/2019] [Indexed: 05/31/2023]
Abstract
Metal-containing polymer networks are ubiquitous in biological systems, and their unique structures enable a variety of fascinating biological behaviors. Cuticle of mussel byssal threads, containing Fe-catecholate complexes, shows remarkably high hardness, high extensibility, and self-healing capability. Understanding strengthening and self-healing mechanisms is essential for elucidating animal behaviors and rationally designing mussel-inspired materials. Here, direct evidence of Fe3+ and Fe2+ gradient distribution across the cuticle thickness is demonstrated, which shows more Fe2+ inside the inner cuticle, to support the hypothesis that the cuticle is a functionally graded material with high stiffness, extensibility, and self-healing capacity. The mechanical tests of the mussel threads show that both strength and extensibility of the threads decrease with increasing oxygen contents, but this property degradation can be restored upon removing the oxygen. The first-principles calculations explain the change in iron coordination, which plays a key role in strengthening, degradation, and self-healing of the polymer networks. The oxygen absorbs on metal ions, weakening the iron-catecholate bonds in the cuticle and collagen core, but this process can be reversed by sea water. These findings can have important implications in the design of next-generation bioinspired robust, highly extensible materials, and catalysis.
Collapse
Affiliation(s)
- Quan Xu
- State Key Laboratory of Heavy Oil ProcessingBeijing Key Laboratory of Biogas Upgrading UtilizationHarvard SEAS‐CUPB Joint Laboratory on Petroleum ScienceCollege of New Energy and Materials ScienceChina University of Petroleum‐BeijingBeijing102249China
| | - Meng Xu
- Department of OrthopedicsGeneral Hospital of Chinese People's Liberation ArmyBeijing100853China
| | - Chun‐Yu Lin
- Department of Materials Science and EngineeringUniversity of North TexasDentonTX76203USA
| | - Qiang Zhao
- School of Chemistry and Chemical EngineeringHuazhong University of Science&TechnologyWuhan435000China
| | - Rui Zhang
- State Key Laboratory of Heavy Oil ProcessingBeijing Key Laboratory of Biogas Upgrading UtilizationHarvard SEAS‐CUPB Joint Laboratory on Petroleum ScienceCollege of New Energy and Materials ScienceChina University of Petroleum‐BeijingBeijing102249China
| | - Xiaoxiao Dong
- State Key Laboratory of Heavy Oil ProcessingBeijing Key Laboratory of Biogas Upgrading UtilizationHarvard SEAS‐CUPB Joint Laboratory on Petroleum ScienceCollege of New Energy and Materials ScienceChina University of Petroleum‐BeijingBeijing102249China
| | - Yida Zhang
- State Key Laboratory of Heavy Oil ProcessingBeijing Key Laboratory of Biogas Upgrading UtilizationHarvard SEAS‐CUPB Joint Laboratory on Petroleum ScienceCollege of New Energy and Materials ScienceChina University of Petroleum‐BeijingBeijing102249China
| | - Shouceng Tian
- State Key Laboratory of Heavy Oil ProcessingBeijing Key Laboratory of Biogas Upgrading UtilizationHarvard SEAS‐CUPB Joint Laboratory on Petroleum ScienceCollege of New Energy and Materials ScienceChina University of Petroleum‐BeijingBeijing102249China
| | - Yu Tian
- State Key Laboratory of TribologyTsinghua UniversityBeijing100084China
| | - Zhenhai Xia
- Department of Materials Science and EngineeringUniversity of North TexasDentonTX76203USA
| |
Collapse
|
13
|
Andersen A, Chen Y, Birkedal H. Bioinspired Metal⁻Polyphenol Materials: Self-Healing and Beyond. Biomimetics (Basel) 2019; 4:E30. [PMID: 31105215 PMCID: PMC6632061 DOI: 10.3390/biomimetics4020030] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
The blue mussel incorporates the polyphenolic amino acid l-3,4-dihydroxyphenylalanine (DOPA) to achieve self-healing, pH-responsiveness, and impressive underwater adhesion in the byssus threads that ensure the survival of the animal. This is achieved by a pH-dependent and versatile reaction chemistry of polyphenols, including both physical interactions as well as reversible and irreversible chemical bonding. With a short introduction to the biological background, we here review the latest advances in the development of smart materials based on the metal-chelating capabilities of polyphenols. We focus on new ways of utilizing the polyphenolic properties, including studies on the modifications of the nearby chemical environment (on and near the polyphenolic moiety) and on the incorporation of polyphenols into untraditional materials.
Collapse
Affiliation(s)
- Amanda Andersen
- Department of Chemistry and iNANO, Aarhus University, 14 Gustav Wieds Vej, 8000 Aarhus, Denmark.
| | - Yaqing Chen
- Department of Chemistry and iNANO, Aarhus University, 14 Gustav Wieds Vej, 8000 Aarhus, Denmark.
| | - Henrik Birkedal
- Department of Chemistry and iNANO, Aarhus University, 14 Gustav Wieds Vej, 8000 Aarhus, Denmark.
| |
Collapse
|
14
|
Direct Experimental Evidence of Biomimetic Surfaces with Chemical Modifications Interfering with Adhesive Protein Adsorption. Molecules 2018; 24:molecules24010027. [PMID: 30577641 PMCID: PMC6337514 DOI: 10.3390/molecules24010027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/23/2022] Open
Abstract
Current approaches to dealing with the worldwide problem of marine biofouling are to impart chemical functionality to the surface or utilize microtopography inspired by nature. Previous reports have shown that only introducing a single method may not resist adhesion of mussels or inhibit biofouling in static forms. While it is promising to integrate two methods to develop an effective antifouling strategy, related basic research is still lacking. Here, we have fabricated engineered shark skin surfaces with different feature heights and terminated with different chemical moieties. Atomic force microscopy (AFM) with a modified colloid probe technique and quartz crystal microbalance with a dissipation n (QCM-D) monitoring method have been introduced to directly determine the interactions between adhesive proteins and functionalized surfaces. Our results indicate that the adhesion strength of probe-surface decreases with increasing feature height, and it also decreases from bare Si surface to alkyl and hydroxyl modification, which is attributed to different contact area domains and interaction mechanisms. Combining biomimetic microtopography and surface chemistry, our study provides a new perspective for designing and developing underwater anti-fouling materials.
Collapse
|
15
|
George MN, Pedigo B, Carrington E. Hypoxia weakens mussel attachment by interrupting DOPA cross-linking during adhesive plaque curing. J R Soc Interface 2018; 15:20180489. [PMID: 30355807 PMCID: PMC6228490 DOI: 10.1098/rsif.2018.0489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Marine mussels (Mytilus spp.) attach to a wide variety of surfaces underwater using a network of byssal threads, each tipped with a protein-based adhesive plaque that uses the surrounding seawater environment as a curing agent. Plaques undergo environmental post-processing, requiring a basic seawater pH be maintained for up to 8 days for the adhesive to strengthen completely. Given the sensitivity of plaques to local pH conditions long after deposition, we investigated the effect of other aspects of the seawater environment that are known to vary in nearshore habitats on plaque curing. The effect of seawater temperature, salinity and dissolved oxygen concentration were investigated using tensile testing, atomic force microscopy and amino acid compositional analysis. High temperature (30°C) and hyposalinity (1 PSU) had no effect on adhesion strength, while incubation in hypoxia (0.9 mg l-1) caused plaques to have a mottled coloration and prematurely peel from substrates, leading to a 51% decrease in adhesion strength. AFM imaging of the plaque cuticle found that plaques cured in hypoxia had regions of lower stiffness throughout, indicative of reductions in DOPA cross-linking between adhesive proteins. A better understanding of the dynamics of plaque curing could aid in the design of better synthetic adhesives, particularly in medicine where adhesion must take place within wet body cavities.
Collapse
Affiliation(s)
- Matthew N George
- Friday Harbor Laboratories, 620 University Road, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA 98195, USA
| | - Benjamin Pedigo
- Department of Bioengineering, University of Washington, 720 15th Avenue NE, Seattle, WA 98105, USA
| | - Emily Carrington
- Friday Harbor Laboratories, 620 University Road, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, 24 Kincaid Hall, Seattle, WA 98195, USA
| |
Collapse
|
16
|
Intertidal exposure favors the soft-studded armor of adaptive mussel coatings. Nat Commun 2018; 9:3424. [PMID: 30143627 PMCID: PMC6109138 DOI: 10.1038/s41467-018-05952-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/20/2018] [Indexed: 11/17/2022] Open
Abstract
The mussel cuticle, a thin layer that shields byssal threads from environmental exposure, is a model among high-performance coatings for being both hard and hyper-extensible. However, despite avid interest in translating its features into an engineered material, the mechanisms underlying this performance are manifold and incompletely understood. To deepen our understanding of this biomaterial, we explore here the ultrastructural, scratch-resistant, and mechanical features at the submicrometer scale and relate our observations to individual cuticular components. These investigations show that cuticle nanomechanics are governed by granular microinclusions/nanoinclusions, which, contrary to previous interpretations, are three-fold softer than the surrounding matrix. This adaptation, which is found across several related mussel species, is linked to the level of hydration and presumed to maintain bulk performance during tidal exposures. Given the interest in implementing transfer of biological principles to modern materials, these findings may have noteworthy implications for the design of durable synthetic coatings. There is interest in the development of mussel inspired materials; however, this requires an understanding of the materials. Here, the authors report on an investigation into the properties of mussel cuticle from different species that challenges conventional wisdom about particle filled composites.
Collapse
|
17
|
Yang J, Włodarczyk-Biegun MK, Filippov A, Akerboom S, Dompé M, van Hees IA, Mocan M, Kamperman M. Functional Polymeric Materials Inspired by Geckos, Mussels, and Spider Silk. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Juan Yang
- Physical Chemistry and Soft Matter; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | | | - Alexei Filippov
- Physical Chemistry and Soft Matter; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Sabine Akerboom
- Physical Chemistry and Soft Matter; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Marco Dompé
- Physical Chemistry and Soft Matter; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Ilse A. van Hees
- Physical Chemistry and Soft Matter; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Merve Mocan
- Physical Chemistry and Soft Matter; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Marleen Kamperman
- Physical Chemistry and Soft Matter; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| |
Collapse
|
18
|
Zhang X, Liu J, Zhang Z, Wu S, Tang Z, Guo B, Zhang L. Toughening Elastomers Using a Mussel-Inspired Multiphase Design. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23485-23489. [PMID: 29975499 DOI: 10.1021/acsami.8b08844] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is a challenge to simultaneously achieve high stretchability, high modulus, and recoverability of polymers. Inspired by the multiphase structure of mussel byssus cuticles, we circumvent this dilemma by introducing a deformable microphase-separated granule with rich coordination into a ductile rubber network. The granule can serve as an additional cross-link to improve the modulus, while the sacrificial, reversible coordination can dissociate and reconstruct continuously during stretching to dissipate energy. The elastomer with such a bioinspired multiphase structure exhibits over a 10-fold increase in toughness compared to the original sample. We envision that this work offers a novel yet facile biomimetic route toward high-performance elastomers.
Collapse
Affiliation(s)
- Xuhui Zhang
- Department of Polymer Materials and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Jun Liu
- State Key Laboratory of Organic/Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Zhiyu Zhang
- State Key Laboratory of Organic/Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Siwu Wu
- Department of Polymer Materials and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Zhenghai Tang
- Department of Polymer Materials and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Baochun Guo
- Department of Polymer Materials and Engineering , South China University of Technology , Guangzhou 510640 , P. R. China
| | - Liqun Zhang
- State Key Laboratory of Organic/Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
19
|
Li S, Xia Z, Chen Y, Gao Y, Zhan A. Byssus Structure and Protein Composition in the Highly Invasive Fouling Mussel Limnoperna fortunei. Front Physiol 2018; 9:418. [PMID: 29713291 PMCID: PMC5911496 DOI: 10.3389/fphys.2018.00418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/04/2018] [Indexed: 12/28/2022] Open
Abstract
Biofouling mediated by byssus adhesion in invasive bivalves has become a global environmental problem in aquatic ecosystems, resulting in negative ecological and economic consequences. Previous studies suggested that mechanisms responsible for byssus adhesion largely vary among bivalves, but it is poorly understood in freshwater species. Understanding of byssus structure and protein composition is the prerequisite for revealing these mechanisms. Here, we used multiple methods, including scanning electron microscope, liquid chromatography–tandem mass spectrometry, transcriptome sequencing, real-time quantitative PCR, inductively coupled plasma mass spectrometry, to investigate structure, and protein composition of byssus in the highly invasive freshwater mussel Limnoperna fortunei. The results indicated that the structure characteristics of adhesive plaque, proximal and distal threads were conducive to byssus adhesion, contributing to the high biofouling capacity of this species. The 3,4-dihydroxyphenyl-α-alanine (Dopa) is a major post-transnationally modification in L. fortunei byssus. We identified 16 representative foot proteins with typical repetitive motifs and conserved domains by integrating transcriptomic and proteomic approaches. In these proteins, Lfbp-1, Lffp-2, and Lfbp-3 were specially located in foot tissue and highly expressed in the rapid byssus formation period, suggesting the involvement of these foot proteins in byssus production and adhesion. Multiple metal irons, including Ca2+, Mg2+, Zn2+, Al3+, and Fe3+, were abundant in both foot tissue and byssal thread. The heavy metals in these irons may be directly accumulated by L. fortunei from surrounding environments. Nevertheless, some metal ions (e.g., Ca2+) corresponded well with amino acid preferences of L. fortunei foot proteins, suggesting functional roles of these metal ions by interacting with foot proteins in byssus adhesion. Overall, this study provides structural and molecular bases of adhesive mechanisms of byssus in L. fortunei, and findings here are expected to develop strategies against biofouling by freshwater organisms.
Collapse
Affiliation(s)
- Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhiqiang Xia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,Department of Biological Sciences, Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yangchun Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Chen WG, Witten J, Grindy SC, Holten-Andersen N, Ribbeck K. Charge Influences Substrate Recognition and Self-Assembly of Hydrophobic FG Sequences. Biophys J 2017; 113:2088-2099. [PMID: 29117531 DOI: 10.1016/j.bpj.2017.08.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 08/08/2017] [Accepted: 08/29/2017] [Indexed: 01/19/2023] Open
Abstract
The nuclear pore complex controls the passage of molecules via hydrophobic phenylalanine-glycine (FG) domains on nucleoporins. Such FG domains consist of repeating units of FxFG, FG, or GLFG sequences, many of which are interspersed with highly charged amino acid sequences. Despite the high density of charge in certain FG domains, if and how charge influences FG-domain self-assembly and selective binding of nuclear transport receptors is largely unexplored. Using rationally designed short peptide sequences, we determined that the charge type and identity of amino acids surrounding FG sequences impact the structure and selectivity of FG-based gels. Moreover, we showed that spatial localization of the charged amino acids with respect to the FG sequence determines the degree to which charge influences hydrophobic interactions. Taken together, our study highlights that charge type and placement of amino acids regulate FG-sequence function and are important considerations when studying the mechanism of nuclear pore complex transport in vivo.
Collapse
Affiliation(s)
- Wesley G Chen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Jacob Witten
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Computational Systems Biology Initiative, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Scott C Grindy
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Niels Holten-Andersen
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
21
|
Zhang F, Xie G, Pan J. Tunable Adsorption and Film Formation of Mussel Adhesive Protein by Potential Control. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8749-8756. [PMID: 28071917 DOI: 10.1021/acs.langmuir.6b04125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mussel adhesive proteins are of great interest in many applications because of their outstanding adhesive property and film-forming ability. Understanding and controlling the film formation and its performance is crucial for the effective use of such proteins. In this study, we focus on the potential controlled film formation and compaction of one mussel adhesive protein, Mefp-1. The adsorption and film-forming behavior of Mefp-1 on a platinum (Pt) substrate under applied potentials were investigated by cyclic voltammetry, potential-controlled electrochemical impedance spectroscopy (EIS), and quartz crystal microbalance with dissipation monitoring (QCM-D). Moreover, microfriction measurements were performed to evaluate the mechanical properties of the Mefp-1 films formed at selected potentials. The results led to the conclusion that Mefp-1 adsorbs on the Pt substrate through both electrostatic and nonelectrostatic interactions and shows an effective blocking effect for the electroactive sites on the substrate. The properties of the adsorbed Mefp-1 film vary with the applied potential, and the compactness of the adsorbed Mefp-1 film can be reversibly tuned by the applied potential.
Collapse
Affiliation(s)
- Fan Zhang
- Division of Surface and Corrosion Science, Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology , Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | - Guoxin Xie
- Division of Surface and Corrosion Science, Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology , Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
| | - Jinshan Pan
- Division of Surface and Corrosion Science, Department of Chemistry, School of Chemical Science and Engineering, KTH Royal Institute of Technology , Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| |
Collapse
|
22
|
Gerdol M, Fujii Y, Hasan I, Koike T, Shimojo S, Spazzali F, Yamamoto K, Ozeki Y, Pallavicini A, Fujita H. The purplish bifurcate mussel Mytilisepta virgata gene expression atlas reveals a remarkable tissue functional specialization. BMC Genomics 2017; 18:590. [PMID: 28789640 PMCID: PMC5549309 DOI: 10.1186/s12864-017-4012-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/02/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mytilisepta virgata is a marine mussel commonly found along the coasts of Japan. Although this species has been the subject of occasional studies concerning its ecological role, growth and reproduction, it has been so far almost completely neglected from a genetic and molecular point of view. In the present study we present a high quality de novo assembled transcriptome of the Japanese purplish mussel, which represents the first publicly available collection of expressed sequences for this species. RESULTS The assembled transcriptome comprises almost 50,000 contigs, with a N50 statistics of ~1 kilobase and a high estimated completeness based on the rate of BUSCOs identified, standing as one of the most exhaustive sequence resources available for mytiloid bivalves to date. Overall this data, accompanied by gene expression profiles from gills, digestive gland, mantle rim, foot and posterior adductor muscle, presents an accurate snapshot of the great functional specialization of these five tissues in adult mussels. CONCLUSIONS We highlight that one of the most striking features of the M. virgata transcriptome is the high abundance and diversification of lectin-like transcripts, which pertain to different gene families and appear to be expressed in particular in the digestive gland and in the gills. Therefore, these two tissues might be selected as preferential targets for the isolation of molecules with interesting carbohydrate-binding properties. In addition, by molecular phylogenomics, we provide solid evidence in support of the classification of M. virgata within the Brachidontinae subfamily. This result is in agreement with the previously proposed hypothesis that the morphological features traditionally used to group Mytilisepta spp. and Septifer spp. within the same clade are inappropriate due to homoplasy.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34126 Trieste, Italy
| | - Yuki Fujii
- Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298 Japan
| | - Imtiaj Hasan
- Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 Japan
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205 Bangladesh
| | - Toru Koike
- Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298 Japan
| | - Shunsuke Shimojo
- Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298 Japan
| | - Francesca Spazzali
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34126 Trieste, Italy
| | - Kaname Yamamoto
- Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298 Japan
| | - Yasuhiro Ozeki
- Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027 Japan
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34126 Trieste, Italy
| | - Hideaki Fujita
- Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki, 859-3298 Japan
| |
Collapse
|
23
|
Bouhlel Z, Genard B, Ibrahim N, Carrington E, Babarro JMF, Lok A, Flores AAV, Pellerin C, Tremblay R, Marcotte I. Interspecies comparison of the mechanical properties and biochemical composition of byssal threads. J Exp Biol 2017; 220:984-994. [DOI: 10.1242/jeb.141440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 12/19/2016] [Indexed: 12/31/2022]
Abstract
Several bivalve species produce byssus threads to provide attachment to substrates, with mechanical properties highly variable among species. Here, we examined the distal section of byssal threads produced by a range of bivalve species (Mytilus edulis, Mytilus trossulus, Mytilus galloprovincialis, Mytilus californianus, Pinna nobilis, Perna perna, Xenostrobus securis, Brachidontes solisianus and Isognomon bicolor) collected from different nearshore environments. Morphological and mechanical properties were measured, and biochemical analyses were performed. Multivariate redundancy analyses on mechanical properties revealed that byssal threads of M. californianus, M. galloprovincialis and P. nobilis have very distinct mechanical behaviors compared to the remaining species. Extensibility, strength and force were the main variables separating these species groups, which were highest for M. californianus and lowest for P. nobilis. Furthermore, the analysis of the amino acid composition revealed that I. bicolor and P. nobilis threads are significantly different from the other species, suggesting a different underlying structural strategy. Determination of metal contents showed that the individual concentration of inorganic elements varies but that the dominant elements are conserved between species. Altogether, this bivalve species comparison suggests some molecular bases for the biomechanical characteristics of byssal fibers that may reflect phylogenetic limitations.
Collapse
Affiliation(s)
- Zeineb Bouhlel
- Institut des Science de la Mer, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, Québec, G5L 3A1 Canada
| | - Bertrand Genard
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec, H3C 3P8 Canada
| | - Neilly Ibrahim
- Département de chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7 Canada
| | - Emily Carrington
- Department of Biology and Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, Washington 98250, USA
| | - José M. F. Babarro
- Instituto de Investigaciones Marinas CSIC, Eduardo Cabello 6, 36208 Vigo, Spain
| | - Aynur Lok
- Aynur Lok, Ege University, Faculty of Fisheries, Genclik Caddesi No: 1235040 Bornova, Izmir, Turkey
| | - Augusto A. V. Flores
- Centro de biologia marinha, Universidade de São Paulo, Rod, Maniel Hipólito, do Rego, São Sebastião, SP, 11600-000, Brazil
| | - Christian Pellerin
- Département de chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec, H3C 3J7 Canada
| | - Réjean Tremblay
- Institut des Science de la Mer, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, Québec, G5L 3A1 Canada
| | - Isabelle Marcotte
- Département de chimie, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montréal, Québec, H3C 3P8 Canada
| |
Collapse
|
24
|
Huang S, Hou Q, Guo D, Yang H, Chen T, Liu F, Hu G, Zhang M, Zhang J, Wang J. Adsorption mechanism of mussel-derived adhesive proteins onto various self-assembled monolayers. RSC Adv 2017. [DOI: 10.1039/c7ra07425e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mussel adhesion to a variety of surfaces has received considerable attention due to its ability to bind strongly to many surfaces under water.
Collapse
|
25
|
Qin CL, Pan QD, Qi Q, Fan MH, Sun JJ, Li NN, Liao Z. In-depth proteomic analysis of the byssus from marine mussel Mytilus coruscus. J Proteomics 2016; 144:87-98. [DOI: 10.1016/j.jprot.2016.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 11/24/2022]
|
26
|
Nabavi SS, Hartmann MA. Weak reversible cross links may decrease the strength of aligned fiber bundles. SOFT MATTER 2016; 12:2047-2055. [PMID: 26750612 DOI: 10.1039/c5sm02614h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Reversible cross-linking is an effective strategy to specifically tailor the mechanical properties of polymeric materials that can be found in a variety of biological as well as man-made materials. Using a simple model in this paper the influence of weak, reversible cross-links on the mechanical properties of aligned fiber bundles is investigated. Special emphasis in this analysis is put on the strength of the investigated structures. Using Monte Carlo methods two topologies of cross-links exceeding the strength of the covalent backbone are studied. Most surprisingly only two cross-links are sufficient to break the backbone of a multi chain system, resulting in a reduced strength of the material. The found effect crucially depends on the ratio of inter- to intra-chain cross-links and, thus, on the grafting density that determines this ratio.
Collapse
Affiliation(s)
- S Soran Nabavi
- Institute of Physics, Montanuniversitaet Leoben, Franz-Josef Strasse 18, 8700 Leoben, Austria.
| | | |
Collapse
|
27
|
Menyo MS, Hawker CJ, Waite JH. Rate-Dependent Stiffness and Recovery in Interpenetrating Network Hydrogels through Sacrificial Metal Coordination Bonds. ACS Macro Lett 2015; 4:1200-1204. [PMID: 27818845 PMCID: PMC5096649 DOI: 10.1021/acsmacrolett.5b00664] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four-arm poly(ethylene glycol) (PEG) star polymers modified with 3-hydroxy-4-pyridinone (HOPO) end groups were shown to form transient, coordination networks upon addition of trivalent cations In3+, Fe3+, and Al3+. These coordination-based hydrogels exhibited high activation energies of viscoelasticity (34 kT) and characteristic bond lifetimes tunable over 2 orders of magnitude and could be incorporated into poly(hydroxyethylacrylamide)-based covalent scaffolds to create interpenetrating network hydrogels. Measurements carried out in compression and tension demonstrate that the secondary coordination network imparts toughness and stiffness to the overall material, and unlike traditional interpenetrating networks (IPNs), the extent of toughening is dependent on the rate at which the materials are deformed. The dynamic character of the coordination network also allows recovery after mechanical damage following high amplitude strains.
Collapse
Affiliation(s)
- Matthew S. Menyo
- Graduate Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - J. Herbert Waite
- Graduate Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, United States
- Marine Science Institute, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
28
|
Liu C, Li S, Huang J, Liu Y, Jia G, Xie L, Zhang R. Extensible byssus of Pinctada fucata: Ca(2+)-stabilized nanocavities and a thrombospondin-1 protein. Sci Rep 2015; 5:15018. [PMID: 26446436 PMCID: PMC4597212 DOI: 10.1038/srep15018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/15/2015] [Indexed: 11/09/2022] Open
Abstract
The extensible byssus is produced by the foot of bivalve animals, including the pearl oyster Pinctada fucata, and enables them to attach to hard underwater surfaces. However, the mechanism of their extensibility is not well understood. To understand this mechanism, we analyzed the ultrastructure, composition and mechanical properties of the P. fucata byssus using electron microscopy, elemental analysis, proteomics and mechanical testing. In contrast to the microstructures of Mytilus sp. byssus, the P. fucata byssus has an exterior cuticle without granules and an inner core with nanocavities. The removal of Ca2+ by ethylenediaminetetraacetic acid (EDTA) treatment expands the nanocavities and reduces the extensibility of the byssus, which is accompanied by a decrease in the β-sheet conformation of byssal proteins. Through proteomic methods, several proteins with antioxidant and anti-corrosive properties were identified as the main components of the distal byssus regions. Specifically, a protein containing thrombospondin-1 (TSP-1), which is highly expressed in the foot, is hypothesized to be responsible for byssus extensibility. Together, our findings demonstrate the importance of inorganic ions and multiple proteins for bivalve byssus extension, which could guide the future design of biomaterials for use in seawater.
Collapse
Affiliation(s)
- Chuang Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084 China.,Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084 China
| | - Shiguo Li
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084 China
| | - Jingliang Huang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084 China
| | - Yangjia Liu
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084 China
| | - Ganchu Jia
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084 China
| | - Liping Xie
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084 China
| | - Rongqing Zhang
- Institute of Marine Biotechnology, Collaborative Innovation Center of Deep Sea Biology, School of Life Sciences, Tsinghua University, Beijing 100084 China
| |
Collapse
|
29
|
Miller DR, Das S, Huang KY, Han S, Israelachvili JN, Waite JH. Mussel Coating Protein-Derived Complex Coacervates Mitigate Frictional Surface Damage. ACS Biomater Sci Eng 2015; 1:1121-1128. [PMID: 26618194 PMCID: PMC4642218 DOI: 10.1021/acsbiomaterials.5b00252] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/14/2015] [Indexed: 12/01/2022]
Abstract
![]()
The role of friction in the functional
performance of biomaterial
interfaces is widely reckoned to be critical and complicated but poorly
understood. To better understand friction forces, we investigated
the natural adaptation of the holdfast or byssus of mussels that live
in high-energy surf habitats. As the outermost covering of the byssus,
the cuticle deserves particular attention for its adaptations to frictional
wear under shear. In this study, we coacervated one of three variants
of a key cuticular component, mussel foot protein 1, mfp-1 [(1) Mytilus californianus mcfp-1, (2) rmfp-1, and (3) rmfp-1-Dopa],
with hyaluronic acid (HA) and investigated the wear protection capabilities
of these coacervates to surfaces (mica) during shear. Native mcfp-1/HA
coacervates had an intermediate coefficient of friction (μ ∼0.3)
but conferred excellent wear protection to mica with no damage from
applied loads, F⊥, as high as 300
mN (pressure, P, > 2 MPa). Recombinant rmfp-1/HA
coacervates exhibited a comparable coefficient of friction (μ
∼0.3); however, wear protection was significantly inferior
(damage at F⊥ > 60 mN) compared
with that of native protein coacervates. Wear protection of rmfp-1/HA
coacervates increased 5-fold upon addition of the surface adhesive
group 3,4-dihydroxyphenylalanine, (Dopa). We propose a Dopa-dependent
wear protection mechanism to explain the differences in wear protection
between coacervates. Our results reveal a significant untapped potential
for coacervates in applications that require adhesion, lubrication,
and wear protection. These applications include artificial joints,
contact lenses, dental sealants, and hair and skin conditioners.
Collapse
Affiliation(s)
- Dusty Rose Miller
- Biomolecular Science and Engineering Program, University of California , Santa Barbara, California 93106-9611, United States
| | - Saurabh Das
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106-5080, United States
| | - Kuo-Ying Huang
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106-9625, United States
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106-9625, United States
| | - Jacob N Israelachvili
- Department of Chemical Engineering, University of California , Santa Barbara, California 93106-5080, United States
| | - J Herbert Waite
- Department of Chemistry and Biochemistry, University of California , Santa Barbara, California 93106-9625, United States
| |
Collapse
|
30
|
Schmitt CNZ, Winter A, Bertinetti L, Masic A, Strauch P, Harrington MJ. Mechanical homeostasis of a DOPA-enriched biological coating from mussels in response to metal variation. J R Soc Interface 2015; 12:0466. [PMID: 26311314 PMCID: PMC4614455 DOI: 10.1098/rsif.2015.0466] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 07/31/2015] [Indexed: 11/12/2022] Open
Abstract
Protein-metal coordination interactions were recently found to function as crucial mechanical cross-links in certain biological materials. Mussels, for example, use Fe ions from the local environment coordinated to DOPA-rich proteins to stiffen the protective cuticle of their anchoring byssal attachment threads. Bioavailability of metal ions in ocean habitats varies significantly owing to natural and anthropogenic inputs on both short and geological spatio-temporal scales leading to large variations in byssal thread metal composition; however, it is not clear how or if this affects thread performance. Here, we demonstrate that in natural environments mussels can opportunistically replace Fe ions in the DOPA coordination complex with V and Al. In vitro removal of the native DOPA-metal complexes with ethylenediaminetetraacetic acid and replacement with either Fe or V does not lead to statistically significant changes in cuticle performance, indicating that each metal ion is equally sufficient as a DOPA cross-linking agent, able to account for nearly 85% of the stiffness and hardness of the material. Notably, replacement with Al ions also leads to full recovery of stiffness, but only 82% recovery of hardness. These findings have important implications for the adaptability of this biological material in a dynamically changing and unpredictable habitat.
Collapse
Affiliation(s)
- Clemens N Z Schmitt
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - Alette Winter
- Institute of Chemistry, University of Potsdam, Potsdam 14476, Germany
| | - Luca Bertinetti
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - Admir Masic
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | - Peter Strauch
- Institute of Chemistry, University of Potsdam, Potsdam 14476, Germany
| | - Matthew J Harrington
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| |
Collapse
|
31
|
Wen HB, Hua D, Ma XY, Jin W, Zhuang YB, Gu RB, Yuan XH, Du XW, Xu P. Byssogenesis in the juvenile pink heelsplitter mussel, Potamilus alatus (Bivalvia: Unionidae). J Morphol 2015; 276:1273-82. [PMID: 26312454 DOI: 10.1002/jmor.20406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 04/17/2015] [Accepted: 05/01/2015] [Indexed: 11/09/2022]
Abstract
The North American pink heelsplitter (Potamilus alatus) differs from most freshwater mussels in China by the ability to secrete an ephemeral byssus during its juvenile stage. In the present study, light microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to investigate this ephemeral byssal structure, and amino acid composition was analyzed and compared with that of other species. The results revealed that the byssus consists of a long byssal thread and a few adhesive plaques which are randomly set up along the thread and assembled by petioles. There is a thin but distinctive cuticle with a continuous homogeneous matrix surrounding the byssal thread. Structural variation occurred when the byssal thread was differentially stretched. Four-stranded helical primary fasciculi, which form a stable rope-like structure, become evident after removal of the cuticle. The primary fasciculi consist of bundles of hundreds of parallel secondary fasciculi, each measuring about 5 μm in diameter. All evidence indicates that the byssus of the pink heelsplitter has a significantly different macrostructure and microstructure than the permanent byssus of the marine mussel Mytilus. Byssogenesis ceases when juveniles exceed 30 mm in length, although it varies greatly even among juveniles of similar size. Byssus formation is influenced by substrate type. The unique characteristics of the byssus have important advantages for survival, transition, and aggregation during the early life history. This study not only provides first insight into the structure of the ephemeral byssus and its relationship to freshwater mussel development and growth, but also suggests possibilities for the synthesis of novel biopolymer materials particularly useful in freshwater ecosystems.
Collapse
Affiliation(s)
- Hai B Wen
- Wuxi Fishery College, Nanjing Agriculture University, Jiangsu, 214081, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, 214081, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, 214081, China
| | - Dan Hua
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, 214081, China
| | - Xue Y Ma
- Wuxi Fishery College, Nanjing Agriculture University, Jiangsu, 214081, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, 214081, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, 214081, China
| | - Wu Jin
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, 214081, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, 214081, China
| | - Yan B Zhuang
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, 214081, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, 214081, China
| | - Ruo B Gu
- Wuxi Fishery College, Nanjing Agriculture University, Jiangsu, 214081, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, 214081, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, 214081, China
| | - Xin H Yuan
- Wuxi Fishery College, Nanjing Agriculture University, Jiangsu, 214081, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, 214081, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, 214081, China
| | - Xin W Du
- Wuxi Fishery College, Nanjing Agriculture University, Jiangsu, 214081, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, 214081, China
| | - Pao Xu
- Wuxi Fishery College, Nanjing Agriculture University, Jiangsu, 214081, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, 214081, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, 214081, China
| |
Collapse
|
32
|
Das S, Miller DR, Kaufman Y, Martinez Rodriguez NR, Pallaoro A, Harrington MJ, Gylys M, Israelachvili JN, Waite JH. Tough coating proteins: subtle sequence variation modulates cohesion. Biomacromolecules 2015; 16:1002-8. [PMID: 25692318 DOI: 10.1021/bm501893y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mussel foot protein-1 (mfp-1) is an essential constituent of the protective cuticle covering all exposed portions of the byssus (plaque and the thread) that marine mussels use to attach to intertidal rocks. The reversible complexation of Fe(3+) by the 3,4-dihydroxyphenylalanine (Dopa) side chains in mfp-1 in Mytilus californianus cuticle is responsible for its high extensibility (120%) as well as its stiffness (2 GPa) due to the formation of sacrificial bonds that help to dissipate energy and avoid accumulation of stresses in the material. We have investigated the interactions between Fe(3+) and mfp-1 from two mussel species, M. californianus (Mc) and M. edulis (Me), using both surface sensitive and solution phase techniques. Our results show that although mfp-1 homologues from both species bind Fe(3+), mfp-1 (Mc) contains Dopa with two distinct Fe(3+)-binding tendencies and prefers to form intramolecular complexes with Fe(3+). In contrast, mfp-1 (Me) is better adapted to intermolecular Fe(3+) binding by Dopa. Addition of Fe(3+) did not significantly increase the cohesion energy between the mfp-1 (Mc) films at pH 5.5. However, iron appears to stabilize the cohesive bridging of mfp-1 (Mc) films at the physiologically relevant pH of 7.5, where most other mfps lose their ability to adhere reversibly. Understanding the molecular mechanisms underpinning the capacity of M. californianus cuticle to withstand twice the strain of M. edulis cuticle is important for engineering of tunable strain tolerant composite coatings for biomedical applications.
Collapse
Affiliation(s)
- Saurabh Das
- Department of Chemical Engineering, ‡Biomolecular Science and Engineering, §Department of Molecular, Cell and Developmental Biology, ∥Department of Chemistry and Biochemistry, and #Materials Research Laboratory, University of California , Santa Barbara, California 93106, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Zheden V, Klepal W, Gorb SN, Kovalev A. Mechanical properties of the cement of the stalked barnacle Dosima fascicularis (Cirripedia, Crustacea). Interface Focus 2015; 5:20140049. [PMID: 25657833 PMCID: PMC4275868 DOI: 10.1098/rsfs.2014.0049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The stalked barnacle Dosima fascicularis secretes foam-like cement, the amount of which usually exceeds that produced by other barnacles. When Dosima settles on small objects, this adhesive is additionally used as a float which gives buoyancy to the animal. The dual use of the cement by D. fascicularis requires mechanical properties different from those of other barnacle species. In the float, two regions with different morphological structure and mechanical properties can be distinguished. The outer compact zone with small gas-filled bubbles (cells) is harder than the interior one and forms a protective rind presumably against mechanical damage. The inner region with large, gas-filled cells is soft. This study demonstrates that D. fascicularis cement is soft and visco-elastic. We show that the values of the elastic modulus, hardness and tensile stress are considerably lower than in the rigid cement of other barnacles.
Collapse
Affiliation(s)
- Vanessa Zheden
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructure Research , University of Vienna , Vienna , Austria
| | - Waltraud Klepal
- Faculty of Life Sciences, Core Facility Cell Imaging and Ultrastructure Research , University of Vienna , Vienna , Austria
| | - Stanislav N Gorb
- Zoological Institute: Functional Morphology and Biomechanics , Kiel University , Kiel , Germany
| | - Alexander Kovalev
- Zoological Institute: Functional Morphology and Biomechanics , Kiel University , Kiel , Germany
| |
Collapse
|
34
|
Degtyar E, Harrington MJ, Politi Y, Fratzl P. Die Bedeutung von Metallionen für die mechanischen Eigenschaften von Biomaterialien auf Proteinbasis. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
35
|
Degtyar E, Harrington MJ, Politi Y, Fratzl P. The Mechanical Role of Metal Ions in Biogenic Protein-Based Materials. Angew Chem Int Ed Engl 2014; 53:12026-44. [DOI: 10.1002/anie.201404272] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Indexed: 12/23/2022]
|
36
|
Kim S, Gim T, Park JW, Kim J, Kang SM. Fe(III)/Polydopamine-Mediated Capture and Release of Catecholic Compounds. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.9.2828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Nabavi SS, Harrington MJ, Fratzl P, Hartmann MA. Influence of sacrificial bonds on the mechanical behaviour of polymer chains. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2014. [DOI: 10.1680/bbn.14.00009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
38
|
Ai Y, Nie J, Wu G, Yang D. The DOPA-functionalized bioadhesive with properties of photocrosslinked and thermoresponsive. J Appl Polym Sci 2014. [DOI: 10.1002/app.41102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yufei Ai
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education; Beijing University of Chemical Technology; Beijing 100029 China
- Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; Beijing 100029 People's Republic of China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education; Beijing University of Chemical Technology; Beijing 100029 China
- Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; Beijing 100029 People's Republic of China
| | - Gang Wu
- Department of Orthopedics, Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Dongzhi Yang
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education; Beijing University of Chemical Technology; Beijing 100029 China
- Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology; Beijing 100029 People's Republic of China
| |
Collapse
|
39
|
Vendamme R, Schüwer N, Eevers W. Recent synthetic approaches and emerging bio-inspired strategies for the development of sustainable pressure-sensitive adhesives derived from renewable building blocks. J Appl Polym Sci 2014. [DOI: 10.1002/app.40669] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
| | - Nicolas Schüwer
- Nitto Denko Europe Technical Centre SARL; Quartier de l'Innovation de l'École Polytechnique Fédérale de Lausanne (EPFL); Bâtiment G 1015 Lausanne Switzerland
| | - Walter Eevers
- Vlaamse Instelling voor Technologisch Onderzoek (VITO NV); Boeretang 200 2400 Mol Belgium
| |
Collapse
|
40
|
Fullenkamp DE, Barrett DG, Miller DR, Kurutz JW, Messersmith PB. pH-dependent cross-linking of catechols through oxidation via Fe 3+ and potential implications for mussel adhesion. RSC Adv 2014; 4:25127-25134. [PMID: 25243062 DOI: 10.1039/c4ra03178d] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mussel byssus is a remarkable attachment structure that is formed by injection molding and rapid in-situ hardening of concentrated solutions of proteins enriched in the catecholic amino acid 3,4-dihydroxy-L-phenylalanine (DOPA). Fe3+, found in high concentrations in the byssus, has been speculated to participate in redox reactions with DOPA that lead to protein polymerization, however direct evidence to support this hypothesis has been lacking. Using small molecule catechols, DOPA-containing peptides, and native mussel foot proteins, we report the first direct observation of catechol oxidation and polymerization accompanied by reduction of Fe3+ to Fe2+. In the case of the small molecule catechol, we identified two dominant dimer species and characterized their connectivities by nuclear magnetic resonance (NMR), with the C6-C6 and C5-C6 linked species as the major and minor products, respectively. For the DOPA-containing peptide, we studied the pH dependence of the reaction and demonstrated that catechol polymerization occurs readily at low pH, but is increasingly diminished in favor of metal-catechol coordination interactions at higher pH. Finally, we demonstrate that Fe3+ can induce cross-links in native byssal mussel proteins mefp-1 and mcfp-1 at acidic pH. Based on these findings, we discuss the potential implications to the chemistry of mussel adhesion.
Collapse
Affiliation(s)
- Dominic E Fullenkamp
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208 ; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208
| | - Devin G Barrett
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208 ; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 ; Institute for Bionanotechnology in Medicine, Northwestern University, Evanston, IL 60208
| | - Dusty R Miller
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Josh W Kurutz
- Integrated Molecular Structure Education and Research Center, Northwestern University, Evanston, IL 60208
| | - Phillip B Messersmith
- Biomedical Engineering Department, Northwestern University, Evanston, IL 60208 ; Materials Science and Engineering Department, Northwestern University, Evanston, IL 60208 ; Chemical and Biological Engineering Department, Northwestern University, Evanston, IL 60208 ; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208 ; Institute for Bionanotechnology in Medicine, Northwestern University, Evanston, IL 60208 ; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208
| |
Collapse
|
41
|
Kim S, Kim DS, Kang SM. Reversible Layer-by-Layer Deposition on Solid Substrates Inspired by Mussel Byssus Cuticle. Chem Asian J 2013; 9:63-6. [DOI: 10.1002/asia.201301291] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Indexed: 11/07/2022]
|
42
|
In situ confocal Raman micro-spectroscopy and electrochemical studies of mussel adhesive protein and ceria composite film on carbon steel in salt solutions. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.05.078] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Zvarec O, Purushotham S, Masic A, Ramanujan RV, Miserez A. Catechol-functionalized chitosan/iron oxide nanoparticle composite inspired by mussel thread coating and squid beak interfacial chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10899-10906. [PMID: 23865752 DOI: 10.1021/la401858s] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Biological materials offer a wide range of multifunctional and structural properties that are currently not achieved in synthetic materials. Herein we report on the synthesis and preparation of bioinspired organic/inorganic composites that mimic the key physicochemical features associated with the mechanical strengthening of both squid beaks and mussel thread coatings using chitosan as an initial template. While chitosan is a well-known biocompatible material, it suffers from key drawbacks that have limited its usage in a wider range of structural biomedical applications. First, its load-bearing capability in hydrated conditions remains poor, and second it completely dissolves at pH < 6, preventing its use in mild acidic microenvironments. In order to overcome these intrinsic limitations, a chitosan-based organic/inorganic biocomposite is prepared that mimics the interfacial chemistry of squid beaks and mussel thread coating. Chitosan was functionalized with catechol moieties in a highly controlled fashion and combined with superparamagnetic iron oxide (γ-Fe2O3) nanoparticles to give composites that represent a significant improvement in functionality of chitosan-based biomaterials. The inorganic/organic (γ-Fe2O3/catechol) interfaces are stabilized and strengthened by coordination bonding, resulting in hybrid composites with improved stability at high temperatures, physiological pH conditions, and acid/base conditions. The inclusion of superparamagnetic particles also makes the composites stimuli-responsive.
Collapse
Affiliation(s)
- Ondrej Zvarec
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | | | | | | | | |
Collapse
|
44
|
In situ investigations of Fe3+ induced complexation of adsorbed Mefp-1 protein film on iron substrate. J Colloid Interface Sci 2013; 404:62-71. [DOI: 10.1016/j.jcis.2013.05.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/29/2013] [Accepted: 05/04/2013] [Indexed: 11/20/2022]
|
45
|
Lu Q, Danner E, Waite JH, Israelachvili JN, Zeng H, Hwang DS. Adhesion of mussel foot proteins to different substrate surfaces. J R Soc Interface 2013; 10:20120759. [PMID: 23173195 PMCID: PMC3565691 DOI: 10.1098/rsif.2012.0759] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/01/2012] [Indexed: 11/12/2022] Open
Abstract
Mussel foot proteins (mfps) have been investigated as a source of inspiration for the design of underwater coatings and adhesives. Recent analysis of various mfps by a surface forces apparatus (SFA) revealed that mfp-1 functions as a coating, whereas mfp-3 and mfp-5 resemble adhesive primers on mica surfaces. To further refine and elaborate the surface properties of mfps, the force-distance profiles of the interactions between thin mfp (i.e. mfp-1, mfp-3 or mfp-5) films and four different surface chemistries, namely mica, silicon dioxide, polymethylmethacrylate and polystyrene, were measured by an SFA. The results indicate that the adhesion was exquisitely dependent on the mfp tested, the substrate surface chemistry and the contact time. Such studies are essential for understanding the adhesive versatility of mfps and related/similar adhesion proteins, and for translating this versatility into a new generation of coatings and (including in vivo) adhesive materials.
Collapse
Affiliation(s)
- Qingye Lu
- Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, CanadaT6G 2V4
| | - Eric Danner
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - J. Herbert Waite
- Materials Research Laboratory, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Jacob N. Israelachvili
- Department of Chemical Engineering, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
- Materials Research Laboratory, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Hongbo Zeng
- Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, CanadaT6G 2V4
| | - Dong Soo Hwang
- POSTECH Ocean Science and Technology Institute, School of Environmental Science and Engineering, Pohang University of Science and Technology, Hyoja-Dong, Nam-Gu, Pohang, Gyeongbuk 790784, Korea
| |
Collapse
|
46
|
Hwang DS, Waite JH. Three intrinsically unstructured mussel adhesive proteins, mfp-1, mfp-2, and mfp-3: analysis by circular dichroism. Protein Sci 2012; 21:1689-95. [PMID: 22915553 DOI: 10.1002/pro.2147] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 11/10/2022]
Abstract
Mussel foot proteins (mfps) mediate fouling by the byssal holdfast and have been extensively investigated as models for versatile polymer-mediated underwater adhesion and coatings. However, insights into the structural properties of mfps have lagged far behind the nanomechanical advances, owing in part to the inability of these proteins to crystallize as well as their limited solubility. Here, solution secondary structures of mfp-1, mfp-2, and mfp-3, localized in the mussel byssal cuticle, adhesive plaque, and plaque-substratum interface, respectively, were investigated using circular dichroism. All three have significant extended coil solution structure, but two, mfp-1 and mfp-2, appear to have punctuated regions of structure separated by unstructured domains. Apart from its punctuated distribution, the structure in mfp-1 resembles other structural proteins such as collagen and plant cell-wall proteins with prominent polyproline II helical structure. As in collagen, PP II structure of mfp-1 is incrementally disrupted by increasing the temperature and by raising pH. However, no recognizable change in mfp-1's PP II structure was evident with the addition with Ca²⁺ and Fe³⁺. In contrast, mfp-2 exhibits Ca²⁺- and disulfide-stabilized epidermal growth factor-like domains separated by unstructured sequence. Mfp-2 showed calcium-binding ability. Bound calcium in mfp-2 was not removed by chelation at pH 5.5, but it was released upon reduction of disulfide bonds. Mfp-3, in contrast, appears to consist largely of unstructured extended coils.
Collapse
Affiliation(s)
- Dong Soo Hwang
- POSTECH Ocean Science and Technology Institute and School of Environmental Science and Engineering, Pohang University of Science and Technology, Hyoja-Dong, Nam-Gu, Pohang, Gyeongbuk 790-784, Korea.
| | | |
Collapse
|
47
|
Hwang DS, Zeng H, Lu Q, Israelachvili J, Waite JH. Adhesion mechanism in a DOPA-deficient foot protein from green mussels(). SOFT MATTER 2012; 8:5640-5648. [PMID: 23105946 PMCID: PMC3482130 DOI: 10.1039/c2sm25173f] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The holdfast or byssus of Asian green mussels, Perna viridis, contains a foot protein, pvfp-1, that differs in two respects from all other known adhesive mussel foot proteins (mfp): (1) instead of the hallmark L-3,4-dihydroxyphenylalanine (DOPA) residues in mfp-1, for example, pvfp-1 contains C(2)-mannosyl-7-hydroxytryptophan (Man7OHTrp). (2) In addition, pvfp-1 chains are not monomeric like mfp-1 but trimerized by collagen and coiled-coil domains near the carboxy terminus after a typical domain of tandemly repeated decapeptides. Here, the contribution of these peculiarities to adhesion was examined using a surface forces apparatus (SFA). Unlike previously studied mfp-1s, pvfp-1 showed significant adhesion to mica and, in symmetric pvfp-1 films, substantial cohesive interactions were present at pH 5.5. The role of Man7OHTrp in adhesion is not clear, and a DOPA-like role for Man7OHTrp in metal complexation (e.g., Cu(2+), Fe(3+)) was not observed. Instead, cation-π interactions with low desolvation penalty between Man7OHTrp and lysyl side chains and conformational changes (raveling and unraveling of collagen helix and coiled-coil domains) are the best explanations for the strong adhesion between pvfp-1 monomolecular films. The strong adhesion mechanism induced by cation-π interactions and conformational changes in pvfp-1 provides new insights for the development of biomimetic underwater adhesives.
Collapse
Affiliation(s)
- Dong Soo Hwang
- Ocean Science and Technology Institute, Pohang University of Science and Technology, Hyoja-Dong, Nam-Gu, Pohang, Gyeongbuk, 790-784, Korea
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4 Canada. Fax: +1-780-492-2881; Tel: +1-780-492-1044
| | - Qingye Lu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 2V4 Canada. Fax: +1-780-492-2881; Tel: +1-780-492-1044
| | - Jacob Israelachvili
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
| | - J. Herbert Waite
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
48
|
Barlow DE, Wahl KJ. Optical spectroscopy of marine bioadhesive interfaces. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2012; 5:229-51. [PMID: 22524229 DOI: 10.1146/annurev-anchem-061010-113844] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Marine organisms have evolved extraordinarily effective adhesives that cure underwater and resist degradation. These underwater adhesives differ dramatically in structure and function and are composed of multiple proteins assembled into functional composites. The processes by which these bioadhesives cure--conformational changes, dehydration, polymerization, and cross-linking--are challenging to quantify because they occur not only underwater but also in a buried interface between the substrate and the organism. In this review, we highlight interfacial optical spectroscopy approaches that can reveal the biochemical processes and structure of marine bioadhesives, with particular emphasis on macrofoulers such as barnacles and mussels.
Collapse
Affiliation(s)
- Daniel E Barlow
- Chemistry Division, U.S. Naval Research Laboratory, Washington, DC 20375-5342, USA
| | | |
Collapse
|
49
|
Molecular interactions of mussel protective coating protein, mcfp-1, from Mytilus californianus. Biomaterials 2012; 33:1903-11. [DOI: 10.1016/j.biomaterials.2011.11.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 11/13/2011] [Indexed: 11/16/2022]
|
50
|
Hwang DS, Harrington MJ, Lu Q, Masic A, Zeng H, Waite JH. Mussel foot protein-1 (mcfp-1) interaction with titania surfaces(). ACTA ACUST UNITED AC 2012; 22:15530-15533. [PMID: 23100857 DOI: 10.1039/c2jm32439c] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Marine mussels utilize a variety of DOPA-rich proteins for purposes of underwater adhesion, as well as for creating hard and flexible surface coatings for their tough and stretchy byssal fibers. In the present study, moderately strong, yet reversible wet adhesion between the protective mussel coating protein, mcfp-1, and amorphous titania was measured with a surface force apparatus (SFA). In parallel, resonance Raman spectroscopy was employed to identify the presence of bidentate DOPA-Ti coordination bonds at the TiO(2)-protein interface, suggesting that catechol-TiO(2) complexation contributes to the observed reversible wet adhesion. These results have important implications for the design of protective coatings on TiO(2).
Collapse
Affiliation(s)
- Dong Soo Hwang
- POSTECH Ocean Science and Technology Institute, Pohang University of Science and Technology, Pohang 790784, South Korea
| | | | | | | | | | | |
Collapse
|