1
|
Domain Analysis and Motif Matcher (DAMM): A Program to Predict Selectivity Determinants in Monosiga brevicollis PDZ Domains Using Human PDZ Data. Molecules 2021; 26:molecules26196034. [PMID: 34641578 PMCID: PMC8512817 DOI: 10.3390/molecules26196034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Choanoflagellates are single-celled eukaryotes with complex signaling pathways. They are considered the closest non-metazoan ancestors to mammals and other metazoans and form multicellular-like states called rosettes. The choanoflagellate Monosiga brevicollis contains over 150 PDZ domains, an important peptide-binding domain in all three domains of life (Archaea, Bacteria, and Eukarya). Therefore, an understanding of PDZ domain signaling pathways in choanoflagellates may provide insight into the origins of multicellularity. PDZ domains recognize the C-terminus of target proteins and regulate signaling and trafficking pathways, as well as cellular adhesion. Here, we developed a computational software suite, Domain Analysis and Motif Matcher (DAMM), that analyzes peptide-binding cleft sequence identity as compared with human PDZ domains and that can be used in combination with literature searches of known human PDZ-interacting sequences to predict target specificity in choanoflagellate PDZ domains. We used this program, protein biochemistry, fluorescence polarization, and structural analyses to characterize the specificity of A9UPE9_MONBE, a M. brevicollis PDZ domain-containing protein with no homology to any metazoan protein, finding that its PDZ domain is most similar to those of the DLG family. We then identified two endogenous sequences that bind A9UPE9 PDZ with <100 μM affinity, a value commonly considered the threshold for cellular PDZ-peptide interactions. Taken together, this approach can be used to predict cellular targets of previously uncharacterized PDZ domains in choanoflagellates and other organisms. Our data contribute to investigations into choanoflagellate signaling and how it informs metazoan evolution.
Collapse
|
2
|
Valgardson J, Cosbey R, Houser P, Rupp M, Van Bronkhorst R, Lee M, Jagodzinski F, Amacher JF. MotifAnalyzer-PDZ: A computational program to investigate the evolution of PDZ-binding target specificity. Protein Sci 2019; 28:2127-2143. [PMID: 31599029 DOI: 10.1002/pro.3741] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
Recognition of short linear motifs (SLiMs) or peptides by proteins is an important component of many cellular processes. However, due to limited and degenerate binding motifs, prediction of cellular targets is challenging. In addition, many of these interactions are transient and of relatively low affinity. Here, we focus on one of the largest families of SLiM-binding domains in the human proteome, the PDZ domain. These domains bind the extreme C-terminus of target proteins, and are involved in many signaling and trafficking pathways. To predict endogenous targets of PDZ domains, we developed MotifAnalyzer-PDZ, a program that filters and compares all motif-satisfying sequences in any publicly available proteome. This approach enables us to determine possible PDZ binding targets in humans and other organisms. Using this program, we predicted and biochemically tested novel human PDZ targets by looking for strong sequence conservation in evolution. We also identified three C-terminal sequences in choanoflagellates that bind a choanoflagellate PDZ domain, the Monsiga brevicollis SHANK1 PDZ domain (mbSHANK1), with endogenously-relevant affinities, despite a lack of conservation with the targets of a homologous human PDZ domain, SHANK1. All three are predicted to be signaling proteins, with strong sequence homology to cytosolic and receptor tyrosine kinases. Finally, we analyzed and compared the positional amino acid enrichments in PDZ motif-satisfying sequences from over a dozen organisms. Overall, MotifAnalyzer-PDZ is a versatile program to investigate potential PDZ interactions. This proof-of-concept work is poised to enable similar types of analyses for other SLiM-binding domains (e.g., MotifAnalyzer-Kinase). MotifAnalyzer-PDZ is available at http://motifAnalyzerPDZ.cs.wwu.edu.
Collapse
Affiliation(s)
- Jordan Valgardson
- Department of Computer Science, Western Washington University, Bellingham, Washington.,Department of Chemistry, Western Washington University, Bellingham, Washington
| | - Robin Cosbey
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Paul Houser
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Milo Rupp
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Raiden Van Bronkhorst
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Michael Lee
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Filip Jagodzinski
- Department of Computer Science, Western Washington University, Bellingham, Washington
| | - Jeanine F Amacher
- Department of Chemistry, Western Washington University, Bellingham, Washington
| |
Collapse
|
3
|
Abstract
Creolimax fragrantissima is a member of the ichthyosporean clade, the earliest branching holozoan lineage. The kinome of Creolimax is markedly reduced as compared to those of metazoans. In particular, Creolimax possesses a single non-receptor tyrosine kinase: CfrSrc, the homolog of c-Src kinase. CfrSrc is an active tyrosine kinase, and it is expressed throughout the lifecycle of Creolimax. In animal cells, the regulatory mechanism for Src involves tyrosine phosphorylation at a C-terminal site by Csk kinase. The lack of Csk in Creolimax suggests that a different mode of negative regulation must exist for CfrSrc. We demonstrate that CfrPTP-3, one of the 7 tyrosine-specific phosphatases (PTPs) in Creolimax, suppresses CfrSrc activity in vitro and in vivo. Transcript levels of CfrPTP-3 and two other PTPs are significantly higher than that of CfrSrc in the motile amoeboid and sessile multinucleate stages of the Creolimax life cycle. Thus, in the context of a highly reduced kinome, a pre-existing PTP may have been co-opted for the role of Src regulation. Creolimax represents a unique model system to study the adaptation of tyrosine kinase signaling and regulatory mechanisms.
Collapse
|
4
|
Tong K, Wang Y, Su Z. Phosphotyrosine signalling and the origin of animal multicellularity. Proc Biol Sci 2018; 284:rspb.2017.0681. [PMID: 28768887 DOI: 10.1098/rspb.2017.0681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022] Open
Abstract
The evolution of multicellular animals (i.e. metazoans) from a unicellular ancestor is one of the most important yet least understood evolutionary transitions. Historically, given its indispensable functions in intercellular communication and exclusive presence in metazoans, phosphotyrosine (pTyr) signalling was considered a metazoan-specific evolutionary innovation that might have contributed to the origin of metazoan multicellularity. However, recent studies have led to a new understanding of pTyr signalling evolution and its role in the metazoan origin. Sequence analyses have unravelled a much earlier emergence of pTyr signalling in eukaryotic evolution. Even so, several distinct properties of holozoan pTyr signalling may have paved the way for a hypothesized functional transition of pTyr signalling at the multicellular origin, from environmental sensing to intercellular communication, and for it to evolve as a powerful intercellular signalling system for multicellularity. Biochemical analyses of premetazoan pTyr signalling components have further revealed the premetazoan origin of many key features of metazoan pTyr signalling, and the metazoan establishment of others, including the Csk-mediated negative regulation of the activity of Src, a conserved tyrosine kinase in the Holozoa. Finally, potential future directions are discussed, with a stress on the biological functions of premetazoan pTyr signalling via newly developed gene manipulation tools in non-animal holozoans.
Collapse
Affiliation(s)
- Kai Tong
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yuyu Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Zhixi Su
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Taskinen B, Ferrada E, Fowler DM. Early emergence of negative regulation of the tyrosine kinase Src by the C-terminal Src kinase. J Biol Chem 2017; 292:18518-18529. [PMID: 28939764 DOI: 10.1074/jbc.m117.811174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/19/2017] [Indexed: 02/05/2023] Open
Abstract
Stringent regulation of tyrosine kinase activity is essential for normal cellular function. In humans, the tyrosine kinase Src is inhibited via phosphorylation of its C-terminal tail by another kinase, C-terminal Src kinase (Csk). Although Src and Csk orthologs are present across holozoan organisms, including animals and protists, the Csk-Src negative regulatory mechanism appears to have evolved gradually. For example, in choanoflagellates, Src and Csk are both active, but the negative regulatory mechanism is reportedly absent. In filastereans, a protist clade closely related to choanoflagellates, Src is active, but Csk is apparently inactive. In this study, we use a combination of bioinformatics, in vitro kinase assays, and yeast-based growth assays to characterize holozoan Src and Csk orthologs. We show that, despite appreciable differences in domain architecture, Csk from Corallochytrium limacisporum, a highly diverged holozoan marine protist, is active and can inhibit Src. However, in comparison with other Csk orthologs, Corallochytrium Csk displays broad substrate specificity and inhibits Src in an activity-independent manner. Furthermore, in contrast to previous studies, we show that Csk from the filasterean Capsaspora owczarzaki is active and that the Csk-Src negative regulatory mechanism is present in Csk and Src proteins from C. owczarzaki and the choanoflagellate Monosiga brevicollis Our results suggest that negative regulation of Src by Csk is more ancient than previously thought and that it might be conserved across all holozoan species.
Collapse
Affiliation(s)
- Barbara Taskinen
- From the Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065 and
| | - Evandro Ferrada
- From the Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065 and
| | - Douglas M Fowler
- From the Department of Genome Sciences, University of Washington, Seattle, Washington 98195-5065 and .,Department of Bioengineering, University of Washington, Seattle, Washington 98195-5065
| |
Collapse
|
6
|
Identification and characterization of tyrosine kinases in anole lizard indicate the conserved tyrosine kinase repertoire in vertebrates. Mol Genet Genomics 2017; 292:1405-1418. [PMID: 28819830 DOI: 10.1007/s00438-017-1356-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022]
Abstract
The tyrosine kinases (TKs) play principal roles in regulation of multicellular aspects of the organism and are implicated in many cancer types and congenital disorders. The anole lizard has recently been introduced as a model organism for laboratory-based studies of organismal function and field studies of ecology and evolution. However, the TK family of anole lizard has not been systematically identified and characterized yet. In this study, we identified 82 TK-encoding genes in the anole lizard genome and classified them into 28 subfamilies through phylogenetic analysis, with no member from ROS and STYK1 subfamilies identified. Although TK domain sequences and domain organization in each subfamily were conserved, the total number of TKs in different species was much variable. In addition, extensive evolutionary analysis in metazoans indicated that TK repertoire in vertebrates tends to be remarkably stable. Phylogenetic analysis of Eph subfamily indicated that the divergence of EphA and EphB occurred prior to the whole genome duplication (WGD) but after the split of Urochordates and vertebrates. Moreover, the expression pattern analysis of lizard TK genes among 9 different tissues showed that 14 TK genes exhibited tissue-specific expression and 6 TK genes were widely expressed. Comparative analysis of TK expression suggested that the tissue specifically expressed genes showed different expression pattern but the widely expressed genes showed similar pattern between anole lizard and human. These results may provide insights into the evolutionary diversification of animal TK genes and would aid future studies on TK protein regulation of key growth and developmental processes.
Collapse
|
7
|
Abstract
The first animals arose more than six hundred million years ago, yet they left little impression in the fossil record. Nonetheless, the cell biology and genome composition of the first animal, the Urmetazoan, can be reconstructed through the study of phylogenetically relevant living organisms. Comparisons among animals and their unicellular and colonial relatives reveal that the Urmetazoan likely possessed a layer of epithelium-like collar cells, preyed on bacteria, reproduced by sperm and egg, and developed through cell division, cell differentiation, and invagination. Although many genes involved in development, body patterning, immunity, and cell-type specification evolved in the animal stem lineage or after animal origins, several gene families critical for cell adhesion, signaling, and gene regulation predate the origin of animals. The ancestral functions of these and other genes may eventually be revealed through studies of gene and genome function in early-branching animals and their closest non-animal relatives.
Collapse
Affiliation(s)
- Daniel J Richter
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200; ,
| | | |
Collapse
|
8
|
Arora DP, Boon EM. Unexpected biotinylation using ATP-γ-Biotin-LC-PEO-amine as a kinase substrate. Biochem Biophys Res Commun 2013; 432:287-90. [PMID: 23399564 DOI: 10.1016/j.bbrc.2013.01.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 11/28/2022]
Abstract
Protein phosphorylation is the most widely studied post-translational modification. Reversible protein phosphorylation is implicated in the regulation of a broad range of cellular processes. As such, there is extensive interest in simple and sensitive procedures for the isolation and detection of phosphorylated proteins. Synthetic analogues of ATP, with a biotin linked to the gamma-phosphate of ATP, have been reported to biotinylate kinase substrates in a kinase-catalyzed reaction. This could be an extremely attractive and versatile method for affinity enrichment of phosphorylated proteins. However, as we report here, the commercially available biotin-ATP analogue, ATP-γ-Biotin-LC-PEO-amine, is capable of biotinylating proteins independent of kinase activity. In fact, we demonstrate that this reagent is capable of non-specifically biotinylating any protein. Although the mechanism of biotinylation is not known, this report uncovers a flaw in a commercially available reagent and also highlights the importance of control experiments when developing new biochemical tools to study enzyme activity.
Collapse
Affiliation(s)
- Dhruv P Arora
- Department of Chemistry and the Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
9
|
Schultheiss KP, Suga H, Ruiz-Trillo I, Miller WT. Lack of Csk-mediated negative regulation in a unicellular SRC kinase. Biochemistry 2012; 51:8267-77. [PMID: 22998693 DOI: 10.1021/bi300965h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphotyrosine-based signaling plays a vital role in cellular communication in multicellular organisms. Unexpectedly, unicellular choanoflagellates (the closest phylogenetic group to metazoans) possess numbers of tyrosine kinases that are comparable to those in complex metazoans. Here, we have characterized tyrosine kinases from the filasterean Capsaspora owczarzaki, a unicellular protist representing the sister group to choanoflagellates and metazoans. Two Src-like tyrosine kinases have been identified in C. owczarzaki (CoSrc1 and CoSrc2), both of which have the arrangement of SH3, SH2, and catalytic domains seen in mammalian Src kinases. In Capsaspora cells, CoSrc1 and CoSrc2 localize to punctate structures in filopodia that may represent primordial focal adhesions. We have cloned, expressed, and purified both enzymes. CoSrc1 and CoSrc2 are active tyrosine kinases. Mammalian Src kinases are normally regulated in a reciprocal fashion by autophosphorylation in the activation loop (which increases activity) and by Csk-mediated phosphorylation of the C-terminal tail (which inhibits activity). Similar to mammalian Src kinases, the enzymatic activities of CoSrc1 and CoSrc2 are increased by autophosphorylation in the activation loop. We have identified a Csk-like kinase (CoCsk) in the genome of C. owczarzaki. We cloned, expressed, and purified CoCsk and found that it has no measurable tyrosine kinase activity. Furthermore, CoCsk does not phosphorylate or regulate CoSrc1 or CoSrc2 in cells or in vitro, and CoSrc1 and CoSrc2 are active in Capsaspora cell lysates. Thus, the function of Csk as a negative regulator of Src family kinases appears to have arisen with the emergence of metazoans.
Collapse
Affiliation(s)
- Kira P Schultheiss
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
10
|
Miller WT. Tyrosine kinase signaling and the emergence of multicellularity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1053-7. [PMID: 22480439 DOI: 10.1016/j.bbamcr.2012.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 11/30/2022]
Abstract
Tyrosine phosphorylation is an essential element of signal transduction in multicellular animals. Although tyrosine kinases were originally regarded as specific to the metazoan lineage, it is now clear that they evolved prior to the split between unicellular and multicellular eukaryotes (≈600million years ago). Genome analyses of choanoflagellates and other protists show an abundance of tyrosine kinases that rivals the most complex animals. Some of these kinases are orthologs of metazoan enzymes (e.g., Src), but others display unique domain compositions not seen in any metazoan. Biochemical experiments have highlighted similarities and differences between the unicellular and multicellular tyrosine kinases. In particular, it appears that the complex systems of kinase autoregulation may have evolved later in the metazoan lineage.
Collapse
Affiliation(s)
- W Todd Miller
- Department of Physiology and Biophysics, School of Medcine, Stony Brook University, Stony Brook, NY 11794-8661, USA.
| |
Collapse
|
11
|
Prieto-Echagüe V, Chan PM, Craddock BP, Manser E, Miller WT. PTB domain-directed substrate targeting in a tyrosine kinase from the unicellular choanoflagellate Monosiga brevicollis. PLoS One 2011; 6:e19296. [PMID: 21541291 PMCID: PMC3082566 DOI: 10.1371/journal.pone.0019296] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/28/2011] [Indexed: 11/19/2022] Open
Abstract
Choanoflagellates are considered to be the closest living unicellular relatives of metazoans. The genome of the choanoflagellate Monosiga brevicollis contains a surprisingly high number and diversity of tyrosine kinases, tyrosine phosphatases, and phosphotyrosine-binding domains. Many of the tyrosine kinases possess combinations of domains that have not been observed in any multicellular organism. The role of these protein interaction domains in M. brevicollis kinase signaling is not clear. Here, we have carried out a biochemical characterization of Monosiga HMTK1, a protein containing a putative PTB domain linked to a tyrosine kinase catalytic domain. We cloned, expressed, and purified HMTK1, and we demonstrated that it possesses tyrosine kinase activity. We used immobilized peptide arrays to define a preferred ligand for the third PTB domain of HMTK1. Peptide sequences containing this ligand sequence are phosphorylated efficiently by recombinant HMTK1, suggesting that the PTB domain of HMTK1 has a role in substrate recognition analogous to the SH2 and SH3 domains of mammalian Src family kinases. We suggest that the substrate recruitment function of the noncatalytic domains of tyrosine kinases arose before their roles in autoinhibition.
Collapse
Affiliation(s)
- Victoria Prieto-Echagüe
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Perry M. Chan
- sGSK group, Neuroscience Research Partnership/A*Star, Singapore, Singapore
| | - Barbara P. Craddock
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Edward Manser
- sGSK group, Neuroscience Research Partnership/A*Star, Singapore, Singapore
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
12
|
Abstract
Tyrosine phosphorylation controls many cellular functions. Yet the three-part toolkit that regulates phosphotyrosine signaling-tyrosine kinases, phosphotyrosine phosphatases, and Src Homology 2 (SH2) domains-is a relatively new innovation. Genomic analyses reveal how this revolutionary signaling system may have originated and why it rapidly became critical to metazoans.
Collapse
Affiliation(s)
- Wendell A Lim
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | | |
Collapse
|