1
|
Rydzewski J, Nowak W. Ligand diffusion in proteins via enhanced sampling in molecular dynamics. Phys Life Rev 2017; 22-23:58-74. [PMID: 28410930 DOI: 10.1016/j.plrev.2017.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 10/28/2016] [Accepted: 03/28/2017] [Indexed: 01/17/2023]
Abstract
Computational simulations in biophysics describe the dynamics and functions of biological macromolecules at the atomic level. Among motions particularly important for life are the transport processes in heterogeneous media. The process of ligand diffusion inside proteins is an example of a complex rare event that can be modeled using molecular dynamics simulations. The study of physical interactions between a ligand and its biological target is of paramount importance for the design of novel drugs and enzymes. Unfortunately, the process of ligand diffusion is difficult to study experimentally. The need for identifying the ligand egress pathways and understanding how ligands migrate through protein tunnels has spurred the development of several methodological approaches to this problem. The complex topology of protein channels and the transient nature of the ligand passage pose difficulties in the modeling of the ligand entry/escape pathways by canonical molecular dynamics simulations. In this review, we report a methodology involving a reconstruction of the ligand diffusion reaction coordinates and the free-energy profiles along these reaction coordinates using enhanced sampling of conformational space. We illustrate the above methods on several ligand-protein systems, including cytochromes and G-protein-coupled receptors. The methods are general and may be adopted to other transport processes in living matter.
Collapse
Affiliation(s)
- J Rydzewski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland.
| | - W Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
2
|
Ebert MCCJC, Dürr SL, A. Houle A, Lamoureux G, Pelletier JN. Evolution of P450 Monooxygenases toward Formation of Transient Channels and Exclusion of Nonproductive Gases. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maximilian C. C. J. C. Ebert
- Département
de biochimie, Université de Montréal, Montréal H3T 1J4, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
- CGCC, the Center for Green Chemistry and Catalysis, Montréal H3T 1J4, Canada
| | - Simon L. Dürr
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
- CGCC, the Center for Green Chemistry and Catalysis, Montréal H3T 1J4, Canada
- Département
de chimie, Université de Montréal, Montréal H3T 1J4, Canada
| | - Armande A. Houle
- Département
de biochimie, Université de Montréal, Montréal H3T 1J4, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
- CGCC, the Center for Green Chemistry and Catalysis, Montréal H3T 1J4, Canada
| | - Guillaume Lamoureux
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
- Department
of Chemistry and Biochemistry and Centre for Research in Molecular
Modeling (CERMM), Concordia University, Montreal H4B 1R6, Canada
| | - Joelle N. Pelletier
- Département
de biochimie, Université de Montréal, Montréal H3T 1J4, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec G1V 0A6, Canada
- CGCC, the Center for Green Chemistry and Catalysis, Montréal H3T 1J4, Canada
- Département
de chimie, Université de Montréal, Montréal H3T 1J4, Canada
| |
Collapse
|
3
|
Abstract
P450(BM3) (CYP102A1), a fatty acid hydroxylase from Bacillus megaterium, has been extensively studied over a period of almost forty years. The enzyme has been redesigned to catalyse the oxidation of non-natural substrates as diverse as pharmaceuticals, terpenes and gaseous alkanes using a variety of engineering strategies. Crystal structures have provided a basis for several of the catalytic effects brought about by mutagenesis, while changes to reduction potentials, inter-domain electron transfer rates and catalytic parameters have yielded functional insights. Areas of active research interest include drug metabolite production, the development of process-scale techniques, unravelling general mechanistic aspects of P450 chemistry, methane oxidation, and improving selectivity control to allow the synthesis of fine chemicals. This review draws together the disparate research themes and places them in a historical context with the aim of creating a resource that can be used as a gateway to the field.
Collapse
Affiliation(s)
- Christopher J C Whitehouse
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK
| | | | | |
Collapse
|
4
|
Nuernberger P, Lee KF, Bonvalet A, Bouzhir-Sima L, Lambry JC, Liebl U, Joffre M, Vos MH. Strong Ligand–Protein Interactions Revealed by Ultrafast Infrared Spectroscopy of CO in the Heme Pocket of the Oxygen Sensor FixL. J Am Chem Soc 2011; 133:17110-3. [DOI: 10.1021/ja204549n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Bould J, Baše T, Londesborough MGS, Oro LA, Macías R, Kennedy JD, Kubát P, Fuciman M, Polívka T, Lang K. Reversible Capture of Small Molecules On Bimetallaborane Clusters: Synthesis, Structural Characterization, and Photophysical Aspects. Inorg Chem 2011; 50:7511-23. [DOI: 10.1021/ic200374k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jonathan Bould
- Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i., 250 68 Husinec-Řež, Czech Republic
- The School of Chemistry of the University of Leeds, Leeds LS2 9JT, U.K
| | - Tomáš Baše
- Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i., 250 68 Husinec-Řež, Czech Republic
| | - Michael G. S. Londesborough
- Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i., 250 68 Husinec-Řež, Czech Republic
| | - Luis A. Oro
- Instituto Universitario de Catálisis Homogénea, Universidad de Zaragoza, 50009-Zaragoza, Spain
| | - Ramón Macías
- Instituto Universitario de Catálisis Homogénea, Universidad de Zaragoza, 50009-Zaragoza, Spain
| | - John D. Kennedy
- The School of Chemistry of the University of Leeds, Leeds LS2 9JT, U.K
| | - Pavel Kubát
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic
| | - Marcel Fuciman
- Institute of Physical Biology, University of South Bohemia, Zámek 136, 373 33 Nové Hrady, Czech Republic
| | - Tomáš Polívka
- Institute of Physical Biology, University of South Bohemia, Zámek 136, 373 33 Nové Hrady, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry, Academy of Sciences of the Czech Republic, v.v.i., 250 68 Husinec-Řež, Czech Republic
| |
Collapse
|
6
|
Vincent KA. Triggered infrared spectroscopy for investigating metalloprotein chemistry. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:3713-3731. [PMID: 20603378 DOI: 10.1098/rsta.2010.0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recent developments in infrared (IR) spectroscopic time resolution, sensitivity and sample manipulation make this technique a powerful addition to the suite of complementary approaches for the study of time-resolved chemistry at metal centres within proteins. Application of IR spectroscopy to proteins has often targeted the amide bands as probes for gross structural change. This article focuses on the possibilities arising from recent IR technical developments for studies that monitor localized vibrational oscillators in proteins--native or exogenous ligands such as NO, CO, SCN(-) or CN(-), or genetically or chemically introduced probes with IR-active vibrations. These report on the electronic and coordination state of metals, the kinetics, intermediates and reaction pathways of ligand release, hydrogen-bonding interactions between the protein and IR probe, and the electrostatic character of sites in a protein. Metalloprotein reactions can be triggered by light/dark transitions, an electrochemical step, a change in solute composition or equilibration with a new gas atmosphere, and spectra can be obtained over a range of time domains as far as the sub-picosecond level. We can expect to see IR spectroscopy exploited, alongside other spectroscopies, and crystallography, to elucidate reactions of a wide range of metalloprotein chemistry with relevance to cell metabolism, health and energy catalysis.
Collapse
Affiliation(s)
- Kylie A Vincent
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QR, UK.
| |
Collapse
|