1
|
Ghosh M, Misra R, Bhattacharya S, Majhi K, Jung KH, Sheves M. Retinal-Carotenoid Interactions in a Sodium-Ion-Pumping Rhodopsin: Implications on Oligomerization and Thermal Stability. J Phys Chem B 2023; 127:2128-2137. [PMID: 36857147 PMCID: PMC10026069 DOI: 10.1021/acs.jpcb.2c07502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Microbial rhodopsin (also called retinal protein)-carotenoid conjugates represent a unique class of light-harvesting (LH) complexes, but their specific interactions and LH properties are not completely elucidated as only few rhodopsins are known to bind carotenoids. Here, we report a natural sodium-ion (Na+)-pumping Nonlabens (Donghaeana) dokdonensis rhodopsin (DDR2) binding with a carotenoid salinixanthin (Sal) to form a thermally stable rhodopsin-carotenoid complex. Different spectroscopic studies were employed to monitor the retinal-carotenoid interaction as well as the thermal stability of the protein, while size-exclusion chromatography (SEC) and homology modeling are performed to understand the protein oligomerization process. In analogy with that of another Na+-pumping protein Krokinobacter eikastus rhodopsin 2 (KR2), we propose that DDR2 (studied concentration range: 2 × 10-6 to 4 × 10-5 M) remains mainly as a pentamer at room temperature and neutral pH, while heating above 55 °C partially converted it into a thermally less stable oligomeric form of the protein. This process is affected by both the pH and concentration. At high concentrations (4 × 10-5 to 2 × 10-4 M), the protein adopts a pentamer form reflected in the excitonic circular dichroism (CD) spectrum. In the presence of Sal, the thermal stability of DDR2 is increased significantly, and the pigment is stable even at 85 °C. The results presented could have implications in designing stable rhodopsin-carotenoid antenna complexes.
Collapse
Affiliation(s)
- Mihir Ghosh
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ramprasad Misra
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sudeshna Bhattacharya
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Koushik Majhi
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul 04107, South Korea
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
2
|
The chirality origin of retinal-carotenoid complex in gloeobacter rhodopsin: a temperature-dependent excitonic coupling. Sci Rep 2020; 10:13992. [PMID: 32814821 PMCID: PMC7438509 DOI: 10.1038/s41598-020-70697-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 07/29/2020] [Indexed: 11/08/2022] Open
Abstract
Retinal proteins play significant roles in light-induced protons/ions transport across the cell membrane. A recent studied retinal protein, gloeobacter rhodopsin (gR), functions as a proton pump, and binds the carotenoid salinixanthin (sal) in addition to the retinal chromophore. We have studied the interactions between the two chromophores as reflected in the circular dichroism (CD) spectrum of gR complex. gR exhibits a weak CD spectrum but following binding of sal, it exhibits a significant enhancement of the CD bands. To examine the CD origin, we have substituted the retinal chromophore of gR by synthetic retinal analogues, and have concluded that the CD bands originated from excitonic interaction between sal and the retinal chromophore as well as the sal chirality induced by binding to the protein. Temperature increase significantly affected the CD spectra, due to vanishing of excitonic coupling. A similar phenomenon of excitonic interaction lose between chromophores was recently reported for a photosynthetic pigment-protein complex (Nature Commmun, 9, 2018, 99). We propose that the excitonic interaction in gR is weaker due to protein conformational alterations. The excitonic interaction is further diminished following reduction of the retinal protonated Schiff base double bond. Furthermore, the intact structure of the retinal ring is necessary for obtaining the excitonic interaction.
Collapse
|
3
|
Ganapathy S, Opdam L, Hontani Y, Frehan S, Chen Q, Hellingwerf KJ, de Groot HJ, Kennis JT, de Grip WJ. Membrane matters: The impact of a nanodisc-bilayer or a detergent microenvironment on the properties of two eubacterial rhodopsins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183113. [DOI: 10.1016/j.bbamem.2019.183113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
|
4
|
Ganapathy S, Kratz S, Chen Q, Hellingwerf KJ, de Groot HJM, Rothschild KJ, de Grip WJ. Redshifted and Near-infrared Active Analog Pigments Based upon Archaerhodopsin-3. Photochem Photobiol 2019; 95:959-968. [PMID: 30860604 PMCID: PMC6849744 DOI: 10.1111/php.13093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/15/2019] [Indexed: 01/01/2023]
Abstract
Archaerhodopsin‐3 (AR3) is a member of the microbial rhodopsin family of hepta‐helical transmembrane proteins, containing a covalently bound molecule of all‐trans retinal as a chromophore. It displays an absorbance band in the visible region of the solar spectrum (λmax 556 nm) and functions as a light‐driven proton pump in the archaeon Halorubrum sodomense. AR3 and its mutants are widely used in neuroscience as optogenetic neural silencers and in particular as fluorescent indicators of transmembrane potential. In this study, we investigated the effect of analogs of the native ligand all‐trans retinal A1 on the spectral properties and proton‐pumping activity of AR3 and its single mutant AR3 (F229S). While, surprisingly, the 3‐methoxyretinal A2 analog did not redshift the absorbance maximum of AR3, the analogs retinal A2 and 3‐methylamino‐16‐nor‐1,2,3,4‐didehydroretinal (MMAR) did generate active redshifted AR3 pigments. The MMAR analog pigments could even be activated by near‐infrared light. Furthermore, the MMAR pigments showed strongly enhanced fluorescence with an emission band in the near‐infrared peaking around 815 nm. We anticipate that the AR3 pigments generated in this study have widespread potential for near‐infrared exploitation as fluorescent voltage‐gated sensors in optogenetics and artificial leafs and as proton pumps in bioenergy‐based applications.
Collapse
Affiliation(s)
- Srividya Ganapathy
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Svenja Kratz
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Que Chen
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Huub J M de Groot
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Kenneth J Rothschild
- Molecular Biophysics Laboratory, Photonics Center and Department of Physics, Boston University, Boston, MA
| | - Willem J de Grip
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.,Department of Biochemistry, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Misra R, Eliash T, Sudo Y, Sheves M. Retinal-Salinixanthin Interactions in a Thermophilic Rhodopsin. J Phys Chem B 2018; 123:10-20. [PMID: 30525616 DOI: 10.1021/acs.jpcb.8b06795] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In microbial rhodopsins (also called retinal proteins), the retinal chromophore is used for harvesting light. A carotenoid molecule has been reported to complement the retinal as light harvesting antenna in bacterial retinal proteins, although examples are scarce. In this paper, we present the formation of a novel antenna complex between thermophilic rhodopsin (TR) and the carotenoid salinixanthin (Sal). The complex formation and its structure were studied using UV-visible absorption as well as circular dichroism (CD) spectroscopies. Our studies indicate that the complex is formed in both the trimeric and monomeric forms of TR. CD spectroscopy suggests that excitonic coupling takes place between retinal and Sal. The binding of Sal with artificial TR pigments derived from synthetic retinal analogues further supports the contribution of the retinal chromophore to the CD spectrum. These studies further support the possibility of interaction between the 4-keto ring of the Sal and the retinal in TR-Sal complexes. Temperature-dependent CD spectra indicate that the positive band (ca. 482 nm) of the bisignate CD spectra of the studied complexes originates from the contribution of excitonic coupling and induced chirality of Sal in the protein binding site. The presence of a relatively smaller glycine residue in the vicinity of the retinal chromophore in TR is proposed to be crucial for binding with Sal. The results are expected to shed light on the mechanism of retinal-carotenoid interactions in other biological systems.
Collapse
Affiliation(s)
- Ramprasad Misra
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Tamar Eliash
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical sciences , Okayama University , Kita-Ku, Okayama 700-8530 , Japan
| | - Mordechai Sheves
- Department of Organic Chemistry , Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
6
|
Shen YC, Sasaki T, Matsuyama T, Yamashita T, Shichida Y, Okitsu T, Yamano Y, Wada A, Ishizuka T, Yawo H, Imamoto Y. Red-Tuning of the Channelrhodopsin Spectrum Using Long Conjugated Retinal Analogues. Biochemistry 2018; 57:5544-5556. [DOI: 10.1021/acs.biochem.8b00583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yi-Chung Shen
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Toshikazu Sasaki
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Take Matsuyama
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshinori Shichida
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Takashi Okitsu
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-0003, Japan
| | - Yumiko Yamano
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-0003, Japan
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe, Hyogo 658-0003, Japan
| | - Toru Ishizuka
- Department of Developmental Biology and Neuroscience, Graduate School of Life Science, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Hiromu Yawo
- Department of Developmental Biology and Neuroscience, Graduate School of Life Science, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Yasushi Imamoto
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Leem JW, Kim SR, Choi KH, Kim YL. Plasmonic photocatalyst-like fluorescent proteins for generating reactive oxygen species. NANO CONVERGENCE 2018; 5:8. [PMID: 29607289 PMCID: PMC5862923 DOI: 10.1186/s40580-018-0140-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
The recent advances in photocatalysis have opened a variety of new possibilities for energy and biomedical applications. In particular, plasmonic photocatalysis using hybridization of semiconductor materials and metal nanoparticles has recently facilitated the rapid progress in enhancing photocatalytic efficiency under visible or solar light. One critical underlying aspect of photocatalysis is that it generates and releases reactive oxygen species (ROS) as intermediate or final products upon light excitation or activation. Although plasmonic photocatalysis overcomes the limitation of UV irradiation, synthesized metal/semiconductor nanomaterial photocatalysts often bring up biohazardous and environmental issues. In this respect, this review article is centered in identifying natural photosensitizing organic materials that can generate similar types of ROS as those of plasmonic photocatalysis. In particular, we propose the idea of plasmonic photocatalyst-like fluorescent proteins for ROS generation under visible light irradiation. We recapitulate fluorescent proteins that have Type I and Type II photosensitization properties in a comparable manner to plasmonic photocatalysis. Plasmonic photocatalysis and protein photosensitization have not yet been compared systemically in terms of ROS photogeneration under visible light, although the phototoxicity and cytotoxicity of some fluorescent proteins are well recognized. A comprehensive understanding of plasmonic photocatalyst-like fluorescent proteins and their potential advantages will lead us to explore new environmental, biomedical, and defense applications.
Collapse
Affiliation(s)
- Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
| | - Seong-Ryul Kim
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Jeollabuk-do 55365 Republic of Korea
| | - Kwang-Ho Choi
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Jeollabuk-do 55365 Republic of Korea
| | - Young L. Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 USA
- Regenstrief Center for Healthcare Engineering, West Lafayette, IN 47907 USA
- Purdue Quantum Center, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
8
|
Smolensky Koganov E, Leitus G, Rozin R, Weiner L, Friedman N, Sheves M. Cation Binding to Xanthorhodopsin: Electron Paramagnetic Resonance and Magnetic Studies. J Phys Chem B 2017; 121:4333-4340. [PMID: 28379004 DOI: 10.1021/acs.jpcb.6b12670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Xanthorhodopsin (xR) is a member of the retinal protein family and acts as a proton pump in the cell membranes of the extremely halophilic eubacterium Salinibacter ruber. In addition to the retinal chromophore, xR contains a carotenoid, which acts as a light-harvesting antenna as it transfers 40% of the quanta it absorbs to the retinal. Our previous studies have shown that the CD and absorption spectra of xR are dramatically affected due to the protonation of two different residues. It is still unclear whether xR can bind cations. Electron paramagnetic resonance (EPR) spectroscopy used in the present study revealed that xR can bind divalent cations, such as Mn2+ and Ca2+, to deionized xR (DI-xR). We also demonstrate that xR can bind 1 equiv of Mn2+ to a high-affinity binding site followed by binding of ∼40 equiv in cooperative manner and ∼100 equiv of Mn2+ that are weakly bound. SQUID magnetic studies suggest that the high cooperative binding of Mn2+ cations to xR is due to the formation of Mn2+ clusters. Our data demonstrate that Ca2+ cations bind to DI-xR with a lower affinity than Mn2+, supporting the assumption that binding of Mn2+ occurs through cluster formation, because Ca2+ cations cannot form clusters in contrast to Mn2+.
Collapse
Affiliation(s)
- Elena Smolensky Koganov
- Department of Organic Chemistry and ‡Department of Chemical Research Support, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Gregory Leitus
- Department of Organic Chemistry and ‡Department of Chemical Research Support, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Rinat Rozin
- Department of Organic Chemistry and ‡Department of Chemical Research Support, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Lev Weiner
- Department of Organic Chemistry and ‡Department of Chemical Research Support, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Noga Friedman
- Department of Organic Chemistry and ‡Department of Chemical Research Support, Weizmann Institute of Science , Rehovot 76100, Israel
| | - Mordechai Sheves
- Department of Organic Chemistry and ‡Department of Chemical Research Support, Weizmann Institute of Science , Rehovot 76100, Israel
| |
Collapse
|
9
|
Modulation of spectral properties and pump activity of proteorhodopsins by retinal analogues. Biochem J 2015; 467:333-43. [DOI: 10.1042/bj20141210] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microbial proteorhodopsins are light-driven proton pumps, using the vitamin A derivative retinal as chromophore. We show that retinal analogues can shift their absorbance band with preservation of functionality. This may provide attractive opportunities in biotechnology, optogenetics and as potential sensors.
Collapse
|
10
|
Smolensky Koganov E, Brumfeld V, Friedman N, Sheves M. Origin of Circular Dichroism of Xanthorhodopsin. A Study with Artificial Pigments. J Phys Chem B 2014; 119:456-64. [DOI: 10.1021/jp510534s] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Vlad Brumfeld
- Department
of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noga Friedman
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Mordechai Sheves
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
11
|
Iyer ESS, Gdor I, Eliash T, Sheves M, Ruhman S. Efficient Femtosecond Energy Transfer from Carotenoid to Retinal in Gloeobacter Rhodopsin–Salinixanthin Complex. J Phys Chem B 2014; 119:2345-9. [DOI: 10.1021/jp506639w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Itay Gdor
- Institute
of Chemistry, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel 91904
| | - Tamar Eliash
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Mordechai Sheves
- Department
of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Sanford Ruhman
- Institute
of Chemistry, Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel 91904
| |
Collapse
|
12
|
Wand A, Gdor I, Zhu J, Sheves M, Ruhman S. Shedding New Light on Retinal Protein Photochemistry. Annu Rev Phys Chem 2013; 64:437-58. [DOI: 10.1146/annurev-physchem-040412-110148] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Amir Wand
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Itay Gdor
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Jingyi Zhu
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Mordechai Sheves
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sanford Ruhman
- Institute of Chemistry and the Farkas Center for Light-Induced Processes, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| |
Collapse
|
13
|
Oren A. Salinibacter: an extremely halophilic bacterium with archaeal properties. FEMS Microbiol Lett 2013; 342:1-9. [PMID: 23373661 DOI: 10.1111/1574-6968.12094] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 12/17/2022] Open
Abstract
The existence of large number of a member of the Bacteroidetes in NaCl-saturated brines in saltern crystallizer ponds was first documented in 1999 based on fluorescence in situ hybridization studies. Isolation of the organism and its description as Salinibacter ruber followed soon. It is a rod-shaped, red-orange pigmented, extreme halophile that grows optimally at 20-30% salt. The genus is distributed worldwide in hypersaline environments. Today, the genus Salinibacter includes three species, and a somewhat less halophilic relative, Salisaeta longa, has also been documented. Although belonging to the Bacteria, Salinibacter shares many features with the Archaea of the family Halobacteriaceae that live in the same habitat. Both groups use KCl for osmotic adjustment of their cytoplasm, both mainly possess salt-requiring enzymes with a large excess of acidic amino acids, and both contain different retinal pigments: light-driven proton pumps, chloride pumps, and light sensors. Salinibacter produces an unusual carotenoid, salinixanthin that forms a light antenna and transfers energy to the retinal group of xanthorhodopsin, a light-driven proton pump. Other unusual features of Salinibacter and Salisaeta include the presence of novel sulfonolipids (halocapnine derivatives). Salinibacter has become an excellent model for metagenomic, biogeographic, ecological, and evolutionary studies.
Collapse
Affiliation(s)
- Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
14
|
Smolensky Koganov E, Hirshfeld A, Sheves M. Retinal β-ionone ring-salinixanthin interactions in xanthorhodopsin: a study using artificial pigments. Biochemistry 2013; 52:1290-301. [PMID: 23331279 DOI: 10.1021/bi301318n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Xanthorhodopsin (xR) is a retinal protein that contains, in addition to the retinal chromophore, a carotenoid (salinixanthin) that functions as a light-harvesting antenna [Balashov, S. P., et al. (2005) Science 309, 2061-2064]. The center-center distance between the two polyene chains is 12-13 Å, but the distance between the two rings of retinal and salinixanthin is surprisingly small (~5 Å) with an angle of ~45° [Luecke, H., et al. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 16561-16565]. We aimed to clarify the role of the β-ionone ring in the binding of retinal to apo-xR, as well as a possible role that the β-ionone ring plays in fixation of the salinixanthin 4-keto ring. The binding of native retinal and series of synthetic retinal analogues modified in the β-ionone ring to apo-xR was monitored by absorption and circular dichroism (CD) spectroscopies. The results indicate that the β-ionone ring modification significantly affected formation of the retinal-protein covalent bond as well as the pigment absorption and CD spectra. It was observed that several retinal analogues, modified in the retinal β-ionone ring, did not bind to apo-xR and did not form the pigment. Also, none of these analogues induced the fixation of the salinixanthin 4-keto ring. In addition, we show that the native retinal within its binding site adopts exclusively the 6-s-trans ring-chain conformation.
Collapse
|
15
|
Gdor I, Zhu J, Loevsky B, Smolensky E, Friedman N, Sheves M, Ruhman S. Investigating excited state dynamics of salinixanthin and xanthorhodopsin in the near-infrared. Phys Chem Chem Phys 2010; 13:3782-7. [PMID: 21183996 DOI: 10.1039/c0cp01734e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Excited state dynamics of native Xanthorhodopsin (XR), of an XR sample with a reduced prosthetic group, and of the associated Carotenoid (CAR) salinixanthin (SX) in ethanol were investigated by hyperspectral Near Infrared (NIR) probing. Global kinetic analysis shows that: (1) unlike the transient spectra recorded in the visible, fitting of the NIR data requires only two phases of exponential spectral evolution, assigned to internal conversion from S(2) → S(1) and from S(1) → S(0) of the carotene. (2) The rate of the internal conversion from S(2) → S(1) in the reduced sample is well fit with a decay time of 130 fs, significantly longer than in XR and in SX, both of which are well fit with τ ≈ 100 fs. This increased lifetime is consistent with a ∼30% efficiency of ET from SX to retinal in XR. (3) S(1) of salinixanthin is verified to lie ∼12,700 cm(-1) above the ground electronic surface, excluding its involvement in the retinal sensitization in XR. (4) The oscillator strength of the S(1) → S(2) transition is determined to be no more than 0.16, despite its symmetry allowedness. (5) No long lived NIR absorbance decay assignable to the carotenoid S* state was detected in any of the samples. Inconsistencies concerning previously determined S(2) lifetimes and kinetic schemes used to model these data are discussed.
Collapse
Affiliation(s)
- Itay Gdor
- Institute of Chemistry and The Farkas Center for Light Induced Processes, The Hebrew University, Jerusalem 91904, Israel
| | | | | | | | | | | | | |
Collapse
|
16
|
Imasheva ES, Balashov SP, Wang JM, Lanyi JK. Removal and reconstitution of the carotenoid antenna of xanthorhodopsin. J Membr Biol 2010; 239:95-104. [PMID: 21104180 PMCID: PMC3030941 DOI: 10.1007/s00232-010-9322-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/05/2010] [Indexed: 11/24/2022]
Abstract
Salinixanthin, a C40-carotenoid acyl glycoside, serves as a light-harvesting antenna in the retinal-based proton pump xanthorhodopsin of Salinibacter ruber. In the crystallographic structure of this protein, the conjugated chain of salinixanthin is located at the protein–lipid boundary and interacts with residues of helices E and F. Its ring, with a 4-keto group, is rotated relative to the plane of the π-system of the carotenoid polyene chain and immobilized in a binding site near the β-ionone retinal ring. We show here that the carotenoid can be removed by oxidation with ammonium persulfate, with little effect on the other chromophore, retinal. The characteristic CD bands attributed to bound salinixanthin are now absent. The kinetics of the photocycle is only slightly perturbed, showing a 1.5-fold decrease in the overall turnover rate. The carotenoid-free protein can be reconstituted with salinixanthin extracted from the cell membrane of S. ruber. Reconstitution is accompanied by restoration of the characteristic vibronic structure of the absorption spectrum of the antenna carotenoid, its chirality, and the excited-state energy transfer to the retinal. Minor modification of salinixanthin, by reducing the carbonyl C=O double bond in the ring to a C-OH, suppresses its binding to the protein and eliminates the antenna function. This indicates that the presence of the 4-keto group is critical for carotenoid binding and efficient energy transfer.
Collapse
Affiliation(s)
- Eleonora S Imasheva
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4560, USA
| | | | | | | |
Collapse
|
17
|
Balashov SP, Imasheva ES, Choi AR, Jung KH, Liaaen-Jensen S, Lanyi JK. Reconstitution of gloeobacter rhodopsin with echinenone: role of the 4-keto group. Biochemistry 2010; 49:9792-9. [PMID: 20942439 DOI: 10.1021/bi1014166] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In previous work, we reconstituted salinixanthin, the C(40)-carotenoid acyl glycoside that serves as a light-harvesting antenna to the light-driven proton pump xanthorhodopsin, into a different protein, gloeobacter rhodopsin expressed in Escherichia coli, and demonstrated that it transfers energy to the retinal chromophore [Imasheva, E. S., et al. (2009) Biochemistry 48, 10948]. The key to binding of salinixanthin was the accommodation of its ring near the retinal β-ionone ring. Here we examine two questions. Do any of the native Gloeobacter carotenoids bind to gloeobacter rhodopsin, and does the 4-keto group of the ring play a role in binding? There is no salinixanthin in Gloeobacter violaceous, but a simpler carotenoid, echinenone, also with a 4-keto group but lacking the acyl glycoside, is present in addition to β-carotene and oscillol. We show that β-carotene does not bind to gloeobacter rhodopsin, but its 4-keto derivative, echinenone, does and functions as a light-harvesting antenna. This indicates that the 4-keto group is critical for carotenoid binding. Further evidence of this is the fact that salinixanthol, an analogue of salinixanthin in which the 4-keto group is reduced to hydroxyl, does not bind and is not engaged in energy transfer. According to the crystal structure of xanthorhodopsin, the ring of salinixanthin in the binding site is turned out of the plane of the polyene conjugated chain. A similar conformation is expected for echinenone in the gloeobacter rhodopsin. We suggest that the 4-keto group in salinixanthin and echinenone allows for the twisted conformation of the ring around the C6-C7 bond and probably is engaged in an interaction that locks the carotenoid in the binding site.
Collapse
Affiliation(s)
- Sergei P Balashov
- Department of Physiology and Biophysics, University of California, Irvine, California 92697-4560, United States.
| | | | | | | | | | | |
Collapse
|