1
|
Wang Q, Geng S, Wang L, Wen Z, Sun X, Huang H. Bacterial mandelic acid degradation pathway and its application in biotechnology. J Appl Microbiol 2022; 133:273-286. [PMID: 35294082 DOI: 10.1111/jam.15529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 12/22/2021] [Accepted: 03/09/2022] [Indexed: 11/28/2022]
Abstract
Mandelic acid and its derivatives are an important class of chemical synthetic blocks, which is widely used in drug synthesis and stereochemistry research. In nature, mandelic acid degradation pathway has been widely identified and analyzed as a representative pathway of aromatic compounds degradation. The most studied mandelic acid degradation pathway from Pseudomonas putida consists of mandelate racemase, S-mandelate dehydrogenase, benzoylformate decarboxylase, benzaldehyde dehydrogenase and downstream benzoic acid degradation pathways. Because of the ability to catalyze various reactions of aromatic substrates, pathway enzymes have been widely used in biocatalysis, kinetic resolution, chiral compounds synthesis or construction of new metabolic pathways. In this paper, the physiological significance and the existing range of the mandelic acid degradation pathway were introduced first. Then each of the enzymes in the pathway is reviewed one by one, including the researches on enzymatic properties and the applications in biotechnology as well as efforts that have been made to modify the substrate specificity or improving catalytic activity by enzyme engineering to adapt different applications. The composition of the important metabolic pathway of bacterial mandelic acid degradation pathway as well as the researches and applications of pathway enzymes is summarized in this review for the first time.
Collapse
Affiliation(s)
- Qingzhuo Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Shanshan Geng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Lingru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Zhiqiang Wen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Qixia District, Nanjing, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, People's Republic of China
| |
Collapse
|
2
|
Mechanistic and Structural Insight to an Evolved Benzoylformate Decarboxylase with Enhanced Pyruvate Decarboxylase Activity. Catalysts 2016. [DOI: 10.3390/catal6120190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
3
|
Andrews FH, Horton JD, Shin D, Yoon HJ, Logsdon MG, Malik AM, Rogers MP, Kneen MM, Suh SW, McLeish MJ. The kinetic characterization and X-ray structure of a putative benzoylformate decarboxylase from M. smegmatis highlights the difficulties in the functional annotation of ThDP-dependent enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1001-9. [DOI: 10.1016/j.bbapap.2015.04.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/05/2015] [Accepted: 04/23/2015] [Indexed: 10/23/2022]
|
4
|
Brugger D, Krondorfer I, Shelswell C, Huber-Dittes B, Haltrich D, Peterbauer CK. Engineering pyranose 2-oxidase for modified oxygen reactivity. PLoS One 2014; 9:e109242. [PMID: 25296188 PMCID: PMC4190269 DOI: 10.1371/journal.pone.0109242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/12/2014] [Indexed: 01/15/2023] Open
Abstract
Pyranose 2-oxidase (POx), a member of the GMC family of flavoproteins, catalyzes the regioselective oxidation of aldopyranoses at position C2 to the corresponding 2-ketoaldoses. During the first half-reaction, FAD is reduced to FADH2 and reoxidized in the second half-reaction by reducing molecular oxygen to H2O2. Alternative electron acceptors including quinones, radicals or chelated metal ions show significant and in some cases even higher activity. While oxygen as cheap and abundantly available electron acceptor is favored for many processes, reduced oxygen reactivity is desirable for some applications such as in biosensors/biofuel cells because of reduced oxidative damages to the biocatalyst from concomitant H2O2 production as well as reduced electron "leakage" to oxygen. The reactivity of flavoproteins with oxygen is of considerable scientific interest, and the determinants of oxygen activation and reactivity are the subject of numerous studies. We applied site-saturation mutagenesis on a set of eleven amino acids around the active site based on the crystal structure of the enzyme. Using microtiter plate screening assays with peroxidase/2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) and 2,6-dichlorophenolindophenol, variants of POx with decreased oxidase activity and maintained dehydrogenase activity were identified. Variants T166R, Q448H, L545C, L547R and N593C were characterized with respect to their apparent steady-state constants with oxygen and the alternative electron acceptors DCPIP, 1,4-benzoquinone and ferricenium ion, and the effect of the mutations was rationalized based on structural properties.
Collapse
Affiliation(s)
- Dagmar Brugger
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Iris Krondorfer
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christopher Shelswell
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Benjamin Huber-Dittes
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens K. Peterbauer
- Food Biotechnology Laboratory, Department of Food Sciences and Technology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
5
|
Andrews FH, Rogers MP, Paul LN, McLeish MJ. Perturbation of the monomer-monomer interfaces of the benzoylformate decarboxylase tetramer. Biochemistry 2014; 53:4358-67. [PMID: 24956165 PMCID: PMC4215898 DOI: 10.1021/bi500081r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The X-ray structure of benzoylformate
decarboxylase (BFDC) from Pseudomonas putida ATCC
12633 shows it to be a tetramer.
This was believed to be typical of all thiamin diphosphate-dependent
decarboxylases until recently when the structure of KdcA, a branched-chain
2-keto acid decarboxylase from Lactococcus lactis, showed it to be a homodimer. This lent credence to earlier unfolding
experiments on pyruvate decarboxylase from Saccharomyces cerevisiae that indicated that it might be active as a dimer. To investigate
this possibility in BFDC, we sought to shift the equilibrium toward
dimer formation. Point mutations were made in the noncatalytic monomer–monomer
interfaces, but these had a minimal effect on both tetramer formation
and catalytic activity. Subsequently, the R141E/Y288A/A306F variant
was shown by analytical ultracentrifugation to be partially dimeric.
It was also found to be catalytically inactive. Further experiments
revealed that just two mutations, R141E and A306F, were sufficient
to markedly alter the dimer–tetramer equilibrium and to provide
an ∼450-fold decrease in kcat.
Equilibrium denaturation studies suggested that the residual activity
was possibly due to the presence of residual tetramer. The structures
of the R141E and A306F variants, determined to <1.5 Å resolution,
hinted that disruption of the monomer interfaces will be accompanied
by movement of a loop containing Leu109 and Leu110. As these residues
contribute to the hydrophobicity of the active site and the correct
positioning of the substrate, it seems that tetramer formation may
well be critical to the catalytic activity of BFDC.
Collapse
Affiliation(s)
- Forest H Andrews
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis , Indianapolis, Indiana 46202, United States
| | | | | | | |
Collapse
|
6
|
The modular structure of ThDP-dependent enzymes. Proteins 2014; 82:2523-37. [DOI: 10.1002/prot.24615] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/06/2014] [Accepted: 05/20/2014] [Indexed: 01/12/2023]
|
7
|
Kourist R, Guterl JK, Miyamoto K, Sieber V. Enzymatic Decarboxylation-An Emerging Reaction for Chemicals Production from Renewable Resources. ChemCatChem 2014. [DOI: 10.1002/cctc.201300881] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Andrews FH, McLeish MJ. Using site-saturation mutagenesis to explore mechanism and substrate specificity in thiamin diphosphate-dependent enzymes. FEBS J 2013; 280:6395-411. [DOI: 10.1111/febs.12459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Forest H. Andrews
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University Indianapolis; IN USA
| | - Michael J. McLeish
- Department of Chemistry and Chemical Biology; Indiana University-Purdue University Indianapolis; IN USA
| |
Collapse
|
9
|
Andrews FH, Tom AR, Gunderman PR, Novak WRP, McLeish MJ. A Bulky Hydrophobic Residue Is Not Required To Maintain the V-Conformation of Enzyme-Bound Thiamin Diphosphate. Biochemistry 2013; 52:3028-30. [DOI: 10.1021/bi400368j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Forest H. Andrews
- Department of Chemistry and
Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Alan R. Tom
- Department of Chemistry, Wabash College, Crawfordsville, Indiana 47933, United
States
| | - Peter R. Gunderman
- Department of Chemistry, Wabash College, Crawfordsville, Indiana 47933, United
States
| | - Walter R. P. Novak
- Department of Chemistry, Wabash College, Crawfordsville, Indiana 47933, United
States
| | - Michael J. McLeish
- Department of Chemistry and
Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
10
|
Müller M, Sprenger GA, Pohl M. CC bond formation using ThDP-dependent lyases. Curr Opin Chem Biol 2013; 17:261-70. [PMID: 23523314 DOI: 10.1016/j.cbpa.2013.02.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 02/02/2013] [Accepted: 02/14/2013] [Indexed: 01/17/2023]
Abstract
The present review summarizes recent achievements in enzymatic thiamine catalysis during the past three years. With well-established enzymes such as BAL, PDC and TK new reactions have been identified and respective variants were prepared, which enable access to stereoisomeric products. Further we highlight recent progress with 'new' ThDP-dependent enzymes like MenD and PigD, which catalyze the Stetter-like 1,4 addition of aldehydes and YerE, which is the first known ThDP-dependent enzyme accepting ketones as acceptors.
Collapse
Affiliation(s)
- Michael Müller
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany.
| | | | | |
Collapse
|
11
|
|
12
|
Siloto RM, Weselake RJ. Site saturation mutagenesis: Methods and applications in protein engineering. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2012. [DOI: 10.1016/j.bcab.2012.03.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Substrate specificity in thiamin diphosphate-dependent decarboxylases. Bioorg Chem 2011; 43:26-36. [PMID: 22245019 DOI: 10.1016/j.bioorg.2011.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 12/19/2011] [Accepted: 12/20/2011] [Indexed: 11/20/2022]
Abstract
Thiamin diphosphate (ThDP) is the biologically active form of vitamin B(1), and ThDP-dependent enzymes are found in all forms of life. The catalytic mechanism of this family requires the formation of a common intermediate, the 2α-carbanion-enamine, regardless of whether the enzyme is involved in C-C bond formation or breakdown, or even formation of C-N, C-O and C-S bonds. This demands that the enzymes must screen substrates prior to, and/or after, formation of the common intermediate. This review is focused on the group for which the second step is the protonation of the 2α-carbanion, i.e., the ThDP-dependent decarboxylases. Based on kinetic data, sequence/structure alignments and mutagenesis studies the factors involved in substrate specificity have been identified.
Collapse
|
14
|
Shim DJ, Nemeria NS, Balakrishnan A, Patel H, Song J, Wang J, Jordan F, Farinas ET. Assignment of function to histidines 260 and 298 by engineering the E1 component of the Escherichia coli 2-oxoglutarate dehydrogenase complex; substitutions that lead to acceptance of substrates lacking the 5-carboxyl group. Biochemistry 2011; 50:7705-9. [PMID: 21809826 DOI: 10.1021/bi200936n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first component (E1o) of the Escherichia coli 2-oxoglutarate dehydrogenase complex (OGDHc) was engineered to accept substrates lacking the 5-carboxylate group by subjecting H260 and H298 to saturation mutagenesis. Apparently, H260 is required for substrate recognition, but H298 could be replaced with hydrophobic residues of similar molecular volume. To interrogate whether the second component would allow synthesis of acyl-coenzyme A derivatives, hybrid complexes consisting of recombinant components of OGDHc (o) and pyruvate dehydrogenase (p) enzymes were constructed, suggesting that a different component is the "gatekeeper" for specificity for these two multienzyme complexes in bacteria, E1p for pyruvate but E2o for 2-oxoglutarate.
Collapse
Affiliation(s)
- Da Jeong Shim
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, United States
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Strohmeier GA, Pichler H, May O, Gruber-Khadjawi M. Application of Designed Enzymes in Organic Synthesis. Chem Rev 2011; 111:4141-64. [DOI: 10.1021/cr100386u] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Gernot A. Strohmeier
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, A-8010 Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, A-8010 Graz, Austria
| | - Oliver May
- DSM—Innovative Synthesis BV, Geleen, P.O. Box 18, 6160 MD Geleen, The Netherlands
| | | |
Collapse
|
16
|
Kneen MM, Stan R, Yep A, Tyler RP, Saehuan C, McLeish MJ. Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae. FEBS J 2011; 278:1842-53. [DOI: 10.1111/j.1742-4658.2011.08103.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|