1
|
Lin J, Shorter J, Lucius AL. AAA+ proteins: one motor, multiple ways to work. Biochem Soc Trans 2022; 50:895-906. [PMID: 35356966 PMCID: PMC9115847 DOI: 10.1042/bst20200350] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Abstract
Numerous ATPases associated with diverse cellular activities (AAA+) proteins form hexameric, ring-shaped complexes that function via ATPase-coupled translocation of substrates across the central channel. Cryo-electron microscopy of AAA+ proteins processing substrate has revealed non-symmetric, staircase-like hexameric structures that indicate a sequential clockwise/2-residue step translocation model for these motors. However, for many of the AAA+ proteins that share similar structural features, their translocation properties have not yet been experimentally determined. In the cases where translocation mechanisms have been determined, a two-residue translocation step-size has not been resolved. In this review, we explore Hsp104, ClpB, ClpA and ClpX as examples to review the experimental methods that have been used to examine, in solution, the translocation mechanisms employed by AAA+ motor proteins. We then ask whether AAA+ motors sharing similar structural features can have different translocation mechanisms. Finally, we discuss whether a single AAA+ motor can adopt multiple translocation mechanisms that are responsive to different challenges imposed by the substrate or the environment. We suggest that AAA+ motors adopt more than one translocation mechanism and are tuned to switch to the most energetically efficient mechanism when constraints are applied.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, U.S.A
| | - Aaron L. Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| |
Collapse
|
2
|
Modular and coordinated activity of AAA+ active sites in the double-ring ClpA unfoldase of the ClpAP protease. Proc Natl Acad Sci U S A 2020; 117:25455-25463. [PMID: 33020301 PMCID: PMC7568338 DOI: 10.1073/pnas.2014407117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Understanding of how ClpA and other double-ring AAA+ enzymes perform mechanical work is limited. Using site-specific cross-linking and mutagenesis, we introduced ATPase-inactive AAA+ modules at alternating positions in individual ClpA rings, or in both rings, to investigate potential active-site coordination during ClpAP degradation. ClpA variants containing alternating active/inactive ATPase modules processively unfolded, translocated, and supported ClpP degradation of protein substrates with energetic efficiencies similar to, or higher than, completely active ClpA. These results impact current models describing the mechanisms of AAA+ family enzymes. The cross-linking/mutagenesis method we employed will also be useful for answering other structure-function questions about ClpA and related double-ring enzymes. ClpA is a hexameric double-ring AAA+ unfoldase/translocase that functions with the ClpP peptidase to degrade proteins that are damaged or unneeded. How the 12 ATPase active sites of ClpA, 6 in the D1 ring and 6 in the D2 ring, work together to fuel ATP-dependent degradation is not understood. We use site-specific cross-linking to engineer ClpA hexamers with alternating ATPase-active and ATPase-inactive modules in the D1 ring, the D2 ring, or both rings to determine if these active sites function together. Our results demonstrate that D2 modules coordinate with D1 modules and ClpP during mechanical work. However, there is no requirement for adjacent modules in either ring to be active for efficient enzyme function. Notably, ClpAP variants with just three alternating active D2 modules are robust protein translocases and function with double the energetic efficiency of ClpAP variants with completely active D2 rings. Although D2 is the more powerful motor, three or six active D1 modules are important for high enzyme processivity, which depends on D1 and D2 acting coordinately. These results challenge sequential models of ATP hydrolysis and coupled mechanical work by ClpAP and provide an engineering strategy that will be useful in testing other aspects of ClpAP mechanism.
Collapse
|
3
|
Scull NW, Lucius AL. Kinetic Analysis of AAA+ Translocases by Combined Fluorescence and Anisotropy Methods. Biophys J 2020; 119:1335-1350. [PMID: 32997959 DOI: 10.1016/j.bpj.2020.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022] Open
Abstract
The multitude of varied, energy-dependent processes that exist in the cell necessitate a diverse array of macromolecular machines to maintain homeostasis, allow for growth, and facilitate reproduction. ATPases associated with various cellular activity are a set of protein assemblies that function as molecular motors to couple the energy of nucleoside triphosphate binding and hydrolysis to mechanical movement along a polymer lattice. A recent boom in structural insights into these motors has led to structural hypotheses on how these motors fulfill their function. However, in many cases, we lack direct kinetic measurements of the dynamic processes these motors undergo as they transition between observed structural states. Consequently, there is a need for improved techniques for testing the structural hypotheses in solution. Here, we apply transient-state fluorescence anisotropy and total fluorescence stopped-flow methods to the analysis of polypeptide translocation catalyzed by these ATPase motors. We specifically focus on the Hsp100-Clp protein system of ClpA, which is a well-studied, model ATPases associated with various cellular activity system that has both eukaryotic and archaea homologs. Using this system, we show that we can reproduce previously established kinetic parameters from the simultaneous analysis of fluorescence anisotropy and total fluorescence and overcome previous limitations of our previous approach. Specifically, for the first time, to our knowledge, we obtain quantitative interpretations of the translocation of polypeptide substrates longer than 100 aa.
Collapse
Affiliation(s)
- Nathaniel W Scull
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
4
|
Lopez KE, Rizo AN, Tse E, Lin J, Scull NW, Thwin AC, Lucius AL, Shorter J, Southworth DR. Conformational plasticity of the ClpAP AAA+ protease couples protein unfolding and proteolysis. Nat Struct Mol Biol 2020; 27:406-416. [PMID: 32313240 PMCID: PMC7529148 DOI: 10.1038/s41594-020-0409-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/09/2020] [Indexed: 11/09/2022]
Abstract
The ClpAP complex is a conserved bacterial protease that unfolds and degrades proteins targeted for destruction. The ClpA double-ring hexamer powers substrate unfolding and translocation into the ClpP proteolytic chamber. Here, we determined high-resolution structures of wild-type Escherichia coli ClpAP undergoing active substrate unfolding and proteolysis. A spiral of pore loop-substrate contacts spans both ClpA AAA+ domains. Protomers at the spiral seam undergo nucleotide-specific rearrangements, supporting substrate translocation. IGL loops extend flexibly to bind the planar, heptameric ClpP surface with the empty, symmetry-mismatched IGL pocket maintained at the seam. Three different structures identify a binding-pocket switch by the IGL loop of the lowest positioned protomer, involving release and re-engagement with the clockwise pocket. This switch is coupled to a ClpA rotation and a network of conformational changes across the seam, suggesting that ClpA can rotate around the ClpP apical surface during processive steps of translocation and proteolysis.
Collapse
Affiliation(s)
- Kyle E Lopez
- Graduate Program in Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Alexandrea N Rizo
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Eric Tse
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel W Scull
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aye C Thwin
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron L Lucius
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics, Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Duran EC, Lucius AL. Examination of the nucleotide-linked assembly mechanism of E. coli ClpA. Protein Sci 2019; 28:1312-1323. [PMID: 31054177 DOI: 10.1002/pro.3638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/08/2022]
Abstract
Escherichia coli ClpA is a AAA+ (ATPase Associated with diverse cellular Activities) chaperone that catalyzes the ATP-dependent unfolding and translocation of substrate proteins targeted for degradation by a protease, ClpP. ClpA hexamers associate with one or both ends of ClpP tetradecamers to form ClpAP complexes. Each ClpA protomer contains two nucleotide-binding sites, NBD1 and NBD2, and self-assembly into hexamers is thermodynamically linked to nucleotide binding. Despite a number of studies aimed at characterizing ClpA and ClpAP-catalyzed substrate unfolding and degradation, respectively, to date the field is unable to quantify the concentration of ClpA hexamers available to interact with ClpP for any given nucleotide and total ClpA concentration. In this work, sedimentation velocity studies are used to quantitatively examine the self-assembly of a ClpA Walker B variant in the presence of ATP. In addition to the hexamerization, we observe the formation of a previously unreported ClpA dodecamer in the presence of ATP. Further, we report apparent equilibrium constants for the formation of each ClpA oligomer obtained from direct boundary modeling of the sedimentation velocity data. The energetics of nucleotide binding to NBD1 and NBD2 are revealed by examining the dependence of the apparent association equilibrium constants on free nucleotide concentration.
Collapse
Affiliation(s)
- Elizabeth C Duran
- Chemistry Department, University of Alabama at Birmingham, Birmingham, Alabama, 35205
| | - Aaron L Lucius
- Chemistry Department, University of Alabama at Birmingham, Birmingham, Alabama, 35205
| |
Collapse
|
6
|
Duran EC, Lucius AL. ATP hydrolysis inactivating Walker B mutation perturbs E. coli ClpA self-assembly energetics in the absence of nucleotide. Biophys Chem 2018; 242:6-14. [PMID: 30173103 DOI: 10.1016/j.bpc.2018.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 02/03/2023]
Abstract
E. coli ClpA is an AAA+ (ATPase Associated with diverse cellular Activities) chaperone that catalyzes the ATP-dependent unfolding and translocation of substrate proteins for the purposes of proper proteome maintenance. Biologically active ClpA hexamers contain two nucleotide binding domains (NBD) per protomer, D1 and D2. Despite extensive study, complete understanding of how the twelve NBDs within a ClpA hexamer coordinate ATP binding and hydrolysis to polypeptide translocation is currently lacking. To examine nucleotide binding and coordination at D1 and D2, ClpA Walker B variants deficient in ATP hydrolysis at one or both NBDs have been employed in various studies. In the presence of ATP, it is widely assumed that ClpA Walker B variants are entirely hexameric. However, a thermodynamically rigorous examination of the self-assembly mechanism has not been obtained. Differences in the assembly due to the mutation can be misattributed to the active NBD, leading to potential misinterpretations of kinetic studies. Here we use sedimentation velocity studies to quantitatively examine the self-assembly mechanism of ClpA Walker B variants deficient in ATP hydrolysis at D1, D2, and both NBDs. We found that the Walker B mutations had clear, if modest, effects on the assembly. Most notably, the Walker B mutation stabilizes the population of a larger oligomer in the absence of nucleotide, that is not present for analogous concentrations of wild type ClpA. Our results indicate that Walker B mutants, widely used in studies of AAA+ family proteins, require additional characterization as the mutation affects not only ATP hydrolysis, but also the ligand linked assembly of these complexes. This linkage must be considered in investigations of unfolding or other ATP dependent functions.
Collapse
Affiliation(s)
- Elizabeth C Duran
- University of Alabama at Birmingham, Chemistry Department, Birmingham, AL, United States
| | - Aaron L Lucius
- University of Alabama at Birmingham, Chemistry Department, Birmingham, AL, United States.
| |
Collapse
|
7
|
Duran EC, Weaver CL, Lucius AL. Comparative Analysis of the Structure and Function of AAA+ Motors ClpA, ClpB, and Hsp104: Common Threads and Disparate Functions. Front Mol Biosci 2017; 4:54. [PMID: 28824920 PMCID: PMC5540906 DOI: 10.3389/fmolb.2017.00054] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/13/2017] [Indexed: 11/25/2022] Open
Abstract
Cellular proteostasis involves not only the expression of proteins in response to environmental needs, but also the timely repair or removal of damaged or unneeded proteins. AAA+ motor proteins are critically involved in these pathways. Here, we review the structure and function of AAA+ proteins ClpA, ClpB, and Hsp104. ClpB and Hsp104 rescue damaged proteins from toxic aggregates and do not partner with any protease. ClpA functions as the regulatory component of the ATP dependent protease complex ClpAP, and also remodels inactive RepA dimers into active monomers in the absence of the protease. Because ClpA functions both with and without a proteolytic component, it is an ideal system for developing strategies that address one of the major challenges in the study of protein remodeling machines: how do we observe a reaction in which the substrate protein does not undergo covalent modification? Here, we review experimental designs developed for the examination of polypeptide translocation catalyzed by the AAA+ motors in the absence of proteolytic degradation. We propose that transient state kinetic methods are essential for the examination of elementary kinetic mechanisms of these motor proteins. Furthermore, rigorous kinetic analysis must also account for the thermodynamic properties of these complicated systems that reside in a dynamic equilibrium of oligomeric states, including the biologically active hexamer.
Collapse
Affiliation(s)
- Elizabeth C Duran
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| | - Clarissa L Weaver
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at BirminghamBirmingham, AL, United States
| |
Collapse
|
8
|
Lin J, Lucius AL. Examination of the dynamic assembly equilibrium for E. coli ClpB. Proteins 2015; 83:2008-24. [PMID: 26313457 DOI: 10.1002/prot.24914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/03/2015] [Accepted: 08/18/2015] [Indexed: 12/17/2022]
Abstract
Escherichia coli ClpB is a heat shock protein that belongs to the AAA+ protein superfamily. Studies have shown that ClpB and its homologue in yeast, Hsp104, can disrupt protein aggregates in vivo. It is thought that ClpB requires binding of nucleoside triphosphate to assemble into hexameric rings with protein binding activity. In addition, it is widely assumed that ClpB is uniformly hexameric in the presence of nucleotides. Here we report, in the absence of nucleotide, that increasing ClpB concentration leads to ClpB hexamer formation, decreasing NaCl concentration stabilizes ClpB hexamers, and the ClpB assembly reaction is best described by a monomer, dimer, tetramer, hexamer equilibrium under the three salt concentrations examined. Further, we found that ClpB oligomers exhibit relatively fast dissociation on the time scale of sedimentation. We anticipate our studies on ClpB assembly to be a starting point to understand how ClpB assembly is linked to the binding and disaggregation of denatured proteins.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| |
Collapse
|
9
|
Abstract
The ATPases associated with diverse cellular activities (AAA+) is a large superfamily of proteins involved in a broad array of biological processes. Many members of this family require nucleotide binding to assemble into their final active hexameric form. We have been studying two example members, Escherichia coli ClpA and ClpB. These two enzymes are active as hexameric rings that both require nucleotide binding for assembly. Our studies have shown that they both reside in a monomer, dimer, tetramer, and hexamer equilibrium, and this equilibrium is thermodynamically linked to nucleotide binding. Moreover, we are finding that the kinetics of the assembly reaction are very different for the two enzymes. Here, we present our strategy for determining the self-association constants in the absence of nucleotide to set the stage for the analysis of nucleotide binding from other experimental approaches including analytical ultracentrifugation.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aaron L Lucius
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
10
|
Escherichia coli ClpB is a non-processive polypeptide translocase. Biochem J 2015; 470:39-52. [PMID: 26251445 PMCID: PMC4692069 DOI: 10.1042/bj20141457] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/05/2015] [Indexed: 11/17/2022]
Abstract
Escherichia coli caseinolytic protease (Clp)B is a hexameric AAA+ [expanded superfamily of AAA (ATPase associated with various cellular activities)] enzyme that has the unique ability to catalyse protein disaggregation. Such enzymes are essential for proteome maintenance. Based on structural comparisons to homologous enzymes involved in ATP-dependent proteolysis and clever protein engineering strategies, it has been reported that ClpB translocates polypeptide through its axial channel. Using single-turnover fluorescence and anisotropy experiments we show that ClpB is a non-processive polypeptide translocase that catalyses disaggregation by taking one or two translocation steps followed by rapid dissociation. Using single-turnover FRET experiments we show that ClpB containing the IGL loop from ClpA does not translocate substrate through its axial channel and into ClpP for proteolytic degradation. Rather, ClpB containing the IGL loop dysregulates ClpP leading to non-specific proteolysis reminiscent of ADEP (acyldepsipeptide) dysregulation. Our results support a molecular mechanism where ClpB catalyses protein disaggregation by tugging and releasing exposed tails or loops.
Collapse
|
11
|
Salzano AM, Novi G, Arioli S, Corona S, Mora D, Scaloni A. Mono-dimensional blue native-PAGE and bi-dimensional blue native/urea-PAGE or/SDS-PAGE combined with nLC–ESI-LIT-MS/MS unveil membrane protein heteromeric and homomeric complexes in Streptococcus thermophilus. J Proteomics 2013; 94:240-61. [DOI: 10.1016/j.jprot.2013.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/04/2013] [Accepted: 09/14/2013] [Indexed: 02/06/2023]
|
12
|
Miller JM, Lucius AL. ATPγS competes with ATP for binding at Domain 1 but not Domain 2 during ClpA catalyzed polypeptide translocation. Biophys Chem 2013; 185:58-69. [PMID: 24362308 DOI: 10.1016/j.bpc.2013.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/01/2013] [Accepted: 11/01/2013] [Indexed: 11/30/2022]
Abstract
ClpAP is an ATP-dependent protease that assembles through the association of hexameric rings of ClpA with the cylindrically-shaped protease ClpP. ClpA contains two nucleotide binding domains, termed Domain 1 (D1) or 2 (D2). We have proposed that D1 or D2 limits the rate of ClpA catalyzed polypeptide translocation when ClpP is either absent or present, respectively. Here we show that the rate of ClpA catalyzed polypeptide translocation depends on [ATPγS] in the absence of ClpP, but not in the presence of ClpP. We observe that ATPγS non-cooperatively binds to ClpA during polypeptide translocation with an apparent affinity of ~6 μM, but that introduction of ClpP shifts this affinity such that translocation is not affected. Interpreting these data with our proposed model for translocation catalyzed by ClpA vs. ClpAP suggests that ATPγS competes for binding at D1 but not at D2.
Collapse
Affiliation(s)
- Justin M Miller
- Department of Chemistry, The University of Alabama at Birmingham, 1530 3rd Ave S, Birmingham, AL 35294-1240, United States
| | - Aaron L Lucius
- Department of Chemistry, The University of Alabama at Birmingham, 1530 3rd Ave S, Birmingham, AL 35294-1240, United States.
| |
Collapse
|
13
|
Li T, Lucius AL. Examination of the polypeptide substrate specificity for Escherichia coli ClpA. Biochemistry 2013; 52:4941-54. [PMID: 23773038 DOI: 10.1021/bi400178q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzyme-catalyzed protein unfolding is essential for a large array of biological functions, including microtubule severing, membrane fusion, morphogenesis and trafficking of endosomes, protein disaggregation, and ATP-dependent proteolysis. These enzymes are all members of the ATPases associated with various cellular activity (AAA+) superfamily of proteins. Escherichia coli ClpA is a hexameric ring ATPase responsible for enzyme-catalyzed protein unfolding and translocation of a polypeptide chain into the central cavity of the tetradecameric E. coli ClpP serine protease for proteolytic degradation. Further, ClpA also uses its protein unfolding activity to catalyze protein remodeling reactions in the absence of ClpP. ClpA recognizes and binds a variety of protein tags displayed on proteins targeted for degradation. In addition, ClpA binds unstructured or poorly structured proteins containing no specific tag sequence. Despite this, a quantitative description of the relative binding affinities for these different substrates is not available. Here we show that ClpA binds to the 11-amino acid SsrA tag with an affinity of 200 ± 30 nM. However, when the SsrA sequence is incorporated at the carboxy terminus of a 30-50-amino acid substrate exhibiting little secondary structure, the affinity constant decreases to 3-5 nM. These results indicate that additional contacts beyond the SsrA sequence are required for maximal binding affinity. Moreover, ClpA binds to various lengths of the intrinsically unstructured protein, α-casein, with an affinity of ∼30 nM. Thus, ClpA does exhibit modest specificity for SsrA when incorporated into an unstructured protein. Moreover, incorporating these results with the known structural information suggests that SsrA makes direct contact with the domain 2 loop in the axial channel and additional substrate length is required for additional contacts within domain 1.
Collapse
Affiliation(s)
- Tao Li
- Department of Chemistry, The University of Alabama at Birmingham , 1530 3rd Avenue South, Birmingham, Alabama 35294-1240, United States
| | | |
Collapse
|
14
|
Miller JM, Lin J, Li T, Lucius AL. E. coli ClpA catalyzed polypeptide translocation is allosterically controlled by the protease ClpP. J Mol Biol 2013; 425:2795-812. [PMID: 23639359 DOI: 10.1016/j.jmb.2013.04.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/08/2013] [Accepted: 04/20/2013] [Indexed: 11/25/2022]
Abstract
There are five known ATP-dependent proteases in Escherichia coli (Lon, ClpAP, ClpXP, HslUV, and the membrane-associated FtsH) that catalyze the removal of both misfolded and properly folded proteins in cellular protein quality control pathways. Hexameric ClpA rings associate with one or both faces of the cylindrically shaped tetradecameric ClpP protease. ClpA catalyzes unfolding and translocation of polypeptide substrates into the proteolytic core of ClpP for degradation through repeated cycles of ATP binding and hydrolysis at two nucleotide binding domains on each ClpA monomer. We previously reported a molecular mechanism for ClpA catalyzed polypeptide translocation in the absence of ClpP, including elementary rate constants, overall rate, and the kinetic step size. However, the potential allosteric effect of ClpP on the mechanism of ClpA catalyzed translocation remains unclear. Using single-turnover fluorescence stopped-flow methods, here we report that ClpA, when associated with ClpP, translocates polypeptide with an overall rate of ~35 aa s(-1) and, on average, traverses ~5 aa between two rate-limiting steps with reduced cooperativity between ATP binding sites in the hexameric ring. This is in direct contrast to our previously reported observation that, in the absence of ClpP, ClpA translocates polypeptide substrates with a maximum translocation rate of ~20 aa s(-1) with cooperativity between ATPase sites. Our results demonstrate that ClpP allosterically impacts the polypeptide translocation activity of ClpA by reducing the cooperativity between ATP binding sites.
Collapse
Affiliation(s)
- Justin M Miller
- Department of Chemistry, The University of Alabama at Birmingham, 1530 Third Avenue South, Birmingham, AL 35294-1240, USA
| | | | | | | |
Collapse
|
15
|
Chakraborty M, Kuriata A, Nathan Henderson J, Salvucci M, Wachter R, Levitus M. Protein oligomerization monitored by fluorescence fluctuation spectroscopy: self-assembly of rubisco activase. Biophys J 2012; 103:949-58. [PMID: 23009844 PMCID: PMC3433602 DOI: 10.1016/j.bpj.2012.07.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/18/2012] [Accepted: 07/23/2012] [Indexed: 12/22/2022] Open
Abstract
A methodology is presented to characterize complex protein assembly pathways by fluorescence correlation spectroscopy. We have derived the total autocorrelation function describing the behavior of mixtures of labeled and unlabeled protein under equilibrium conditions. Our modeling approach allows us to quantitatively consider the relevance of any proposed intermediate form, and K(d) values can be estimated even when several oligomeric species coexist. We have tested this method on the AAA+ ATPase Rubisco activase (Rca). Rca self-association regulates the CO(2) fixing activity of the enzyme Rubisco, directly affecting biomass accumulation in higher plants. However, the elucidation of its assembly pathway has remained challenging, precluding a detailed mechanistic investigation. Here, we present the first, to our knowledge, thermodynamic characterization of oligomeric states of cotton β-Rca complexed with Mg·ADP. We find that the monomer is the dominating species below 0.5 micromolar. The most plausible model supports dissociation constants of ∼4, 1, and 1 micromolar for the monomer-dimer, dimer-tetramer, and tetramer-hexamer equilibria, in line with the coexistence of four different oligomeric forms under typical assay conditions. Large aggregates become dominant above 40 micromolar, with continued assembly at even higher concentrations. We propose that under some conditions, ADP-bound Rca self-associates by forming spiral arrangements that grow along the helical axis. Other models such as the stacking of closed hexameric rings are also discussed.
Collapse
Affiliation(s)
- Manas Chakraborty
- Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, Tempe, Arizona
| | - Agnieszka M. Kuriata
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
| | - J. Nathan Henderson
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
| | - Michael E. Salvucci
- Arid-Land Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Maricopa, Arizona
| | - Rebekka M. Wachter
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona
| | - Marcia Levitus
- Department of Chemistry and Biochemistry and the Biodesign Institute, Arizona State University, Tempe, Arizona
| |
Collapse
|
16
|
Lucius AL, Veronese PK, Stafford RP. Dynamic light scattering to study allosteric regulation. Methods Mol Biol 2012; 796:175-186. [PMID: 22052490 DOI: 10.1007/978-1-61779-334-9_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Escherichia coli ClpA protein, like many AAA+ motor proteins, is allosterically regulated by nucleotide binding. We have combined analytical ultracentrifugation approaches with dynamic light scattering (DLS) to examine the self-association properties and the allosteric linkage of assembly to nucleotide binding. Here we present a protocol for the rapid and precise determination of the diffusion coefficient using DLS measurements in a model-independent fashion. When combined with analytical ultracentrifugation experiments, such an approach can yield a more complete understanding of the hydrodynamic and thermodynamic properties of the system.
Collapse
Affiliation(s)
- Aaron L Lucius
- Department of Chemistry, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | | |
Collapse
|
17
|
Garai K, Frieden C. The association−dissociation behavior of the ApoE proteins: kinetic and equilibrium studies. Biochemistry 2011; 49:9533-41. [PMID: 20923231 DOI: 10.1021/bi101407m] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The apolipoprotein E family consists of three major protein isoforms: apolipoprotein E4 (ApoE4), ApoE3, and ApoE2. The isoforms, which contain 299 residues, differ only by single-amino acid changes, but of the three, only ApoE4 is a risk factor for Alzheimer’s disease. At micromolar concentrations, lipid-free ApoE exists predominantly as tetramers. In more dilute solutions, lower-molecular mass species predominate. Using fluorescence correlation spectroscopy (FCS), intermolecular fluorescence resonance energy transfer (FRET), and sedimentation methods, we found that the association−dissociation reaction of ApoE can be modeled with a monomer−dimer−tetramer process. Equilibrium constants have been determined from the sedimentation data, while the individual rate constants for association and dissociation were determined by measurement of the kinetics of dissociation of ApoE and are in agreement with the equilibrium constants. Dissociation kinetics as measured by intermolecular FRET show two phases reflecting the dissociation of tetramer to dimer and of dimer to monomer, with dissociation from tetramer to dimer being more rapid than the dissociation from dimer to monomer. The rate constants differ for the different ApoE isoforms, showing that the association−dissociation process is isoform specific. Strikingly, the association rate constants are almost 2 orders of magnitude slower than expected for a diffusion-controlled process. Dissociation kinetics were also monitored by tryptophan fluorescence in the presence of acrylamide and the data found to be consistent with the monomer−dimer−tetramer model. The approach combining multiple methods establishes the reaction scheme of ApoE self-association.
Collapse
Affiliation(s)
- Kanchan Garai
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
18
|
Veronese PK, Rajendar B, Lucius AL. Activity of E. coli ClpA bound by nucleoside diphosphates and triphosphates. J Mol Biol 2011; 409:333-47. [PMID: 21376057 DOI: 10.1016/j.jmb.2011.02.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/21/2011] [Accepted: 02/07/2011] [Indexed: 11/28/2022]
Abstract
The Escherichia coli ClpA protein is a molecular chaperone that binds and translocates protein substrates into the proteolytic cavity of the tetradecameric serine protease ClpP. In the absence of ClpP, ClpA can remodel protein complexes. In order for ClpA to bind protein substrates targeted for removal or remodeling, ClpA requires nucleoside triphosphate binding to first assemble into a hexamer. Here we report the assembly properties of ClpA in the presence of the nucleoside diphosphates and triphosphates ADP, adenosine 5'-[γ-thio]triphosphate, adenosine 5'-(β,γ-imido)triphosphate, β,γ-methyleneadenosine 5'-triphosphate, and adenosine diphosphate beryllium fluoride. In addition to examining the assembly of ClpA in the presence of various nucleotides and nucleotide analogues, we have also correlated the assembly state of ClpA in the presence of these nucleotides with both polypeptide binding activity and enzymatic activity, specifically ClpA-catalyzed polypeptide translocation. Here we show that all of the selected nucleotides, including ADP, promote the assembly of ClpA. However, only adenosine 5'-[γ-thio]triphosphate and adenosine 5'-(β,γ-imido)triphosphate promote the formation of an oligomer of ClpA that is active in polypeptide binding and translocation. These results suggest that the presence of γ phosphate may serve to switch ClpA into a conformational state with high peptide binding activity, whereas affinity is severely attenuated when ADP is bound.
Collapse
Affiliation(s)
- P Keith Veronese
- Department of Chemistry, The University of Alabama at Birmingham, USA
| | | | | |
Collapse
|
19
|
Veronese PK, Lucius AL. Effect of temperature on the self-assembly of the Escherichia coli ClpA molecular chaperone. Biochemistry 2010; 49:9820-9. [PMID: 20964444 DOI: 10.1021/bi101136d] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein quality control pathways rely upon ATP-dependent proteases, such as Escherichia coli ClpAP, to perform maintenance roles in the cytoplasm of the cell. ATP-dependent proteases remove misfolded and partially synthesized proteins. This action is particularly important in situations where an unregulated accumulation of such proteins will have a deleterious effect on the cell. ClpAP is composed of a tetradecameric serine protease, ClpP (21.6 kDa monomer), and the ATPase/protein unfoldase ClpA (84.2 kDa monomer). ClpA also uses its protein unfolding activity to remodel proteins and protein complexes; thus, in the absence of the proteolytic component, ClpA is considered a molecular chaperone. Previous reports, by others, suggested that ClpA exists in a monomer-dimer equilibrium at 4 °C. In contrast, using a combination of sedimentation velocity, sedimentation equilibrium, and dynamic light scattering, we recently reported that ClpA exists in a monomer-tetramer equilibrium at 25 °C. Here we report an investigation of the effect of temperature on the self-association of the E. coli ClpA protein unfoldase using analytical ultracentrifugation techniques. The results of sedimentation velocity and sedimentation equilibrium experiments performed at multiple loading concentrations of ClpA over a range of temperatures from 3.9 to 38.2 °C are discussed. Sedimentation velocity experiments show a decrease in weight average s(20,w) at the extremes of temperature. This result, along with extensive sedimentation equilibrium data and analysis, suggests the presence of a dimeric intermediate of ClpA that is differentially populated as a function of temperature. Further, analysis of sedimentation equilibrium data as a function of temperature led us to propose a monomer-dimer-tetramer equilibrium to describe the temperature dependence of ClpA self-assembly in the absence of nucleotide.
Collapse
Affiliation(s)
- P Keith Veronese
- Department of Chemistry, The University of Alabama at Birmingham, 1530 3RD Avenue South, Birmingham, Alabama 35294-1240, United States
| | | |
Collapse
|
20
|
Rajendar B, Lucius AL. Molecular mechanism of polypeptide translocation catalyzed by the Escherichia coli ClpA protein translocase. J Mol Biol 2010; 399:665-79. [PMID: 20380838 DOI: 10.1016/j.jmb.2010.03.061] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/25/2010] [Accepted: 03/29/2010] [Indexed: 11/26/2022]
Abstract
The removal of damaged or unneeded proteins by ATP-dependent proteases is crucial for cell survival in all organisms. Integral components of ATP-dependent proteases are motor proteins that unfold stably folded proteins that have been targeted for removal. These protein unfoldases/polypeptide translocases use ATP to unfold the target proteins and translocate them into a proteolytic component. Despite the central role of these motor proteins in cell homeostasis, a number of important questions regarding the molecular mechanisms of enzyme catalyzed protein unfolding and translocation remain unanswered. Here, we demonstrate that Escherichia coli ClpA, in the absence of the proteolytic component ClpP, processively and directionally steps along the polypeptide backbone with a kinetic step size of approximately 14 amino acids, independent of the concentration of ATP with a rate of approximately 19 amino acids s(-1) at saturating concentrations of ATP. In contrast to earlier studies by others, we have developed single-turnover fluorescence stopped-flow methods that allow us to quantitatively examine the molecular mechanism of the motor component ClpA decoupled from the proteolytic component ClpP. For the first time, we reveal that in the absence of ClpP ClpA translocates polypeptides directionally, processively and in discrete steps similar to other motor proteins that translocate vectorially on a linear lattice, such as nucleic acid helicases and kinesin. We believe that the methods employed here will be generally applicable to the examination of other AAA+ protein translocases involved in a variety of important biological functions where the substrate is not covalently modified; for example, membrane fusion, membrane transport, protein disaggregation, and protein refolding.
Collapse
Affiliation(s)
- Burki Rajendar
- The University of Alabama at Birmingham, Department of Chemistry, 1530 3rd Avenue South, Birmingham, AL 35294-1240, USA
| | | |
Collapse
|